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1. INTRODUCTION

This work is devoted to tlie problem of construction of an
invariant generalization in the case of an arbitrary differen-
tiable manifold of the usual relative Euclidean radius-vector
(the difference of two radius-vectors in an Euclidean space,
i.e. the displacement vector between the end points of these -
radius—yectors).

In Sect.2, on the basis of we give a brief introducti-
on to the theory of general linear transport (I-transport, ge-
neralized transport) (of tensors) along a given curve. Using
the concept of an I-transport, in Sect.3 and Sect.4 we define
and study some properties of the displacement and deviation
vectors, respectively. We end the paper with some concluding
remarks in Sect.5. .
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2. THE GENERALIZED TRANSPORT (I-TRANSPORT) ?

Let Mbe an n]gimensional (n > 1) real differentiable ma-
nifold of class C°, k > 1, T ﬂllx(M) be the set of tensors of
P

type (q ) ,P ,9 being non-negative integers, at X €M, J be a

nondegenerate real interval and y: J -+ M be a given curve
(map) .
Following the works we give the following
Definition. The I-transport (=generalized (linear) trans-
port) is the map
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Y . mP P
which corresponds to any curve y : J» M and every points
Xy€ y (J) and has the properties:

1) Linearity: if A ,p €R, T", T”@’qu|X(M) and X,y € y(J),

then
y . Y . Y .-
Teny (AT 4 4T i=Al, Treul T (2.2)
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2) For any X & y(J) -

Yy .
1., = id, (2.3)

where id denotes the identity map.
3) For every x, y , z & y(J)

Y o1V = 1Y
Uy, o0, =1, , (2.4)

_4) If ¥* is the restriction of y on any subinterval J'C J
(i.e. y(s):=y(s) for se 3’ ), then
I))(’_)y :=1,{qy . Xy Y3y = yd). (2.5)

Remark 1. In the following we shall use this definition es-
pecially for the case é=1, ¢ =0 (T1 | (M)=: T, (M)).

" Remark 2. For brevity 1nstead of an I transport along a cur-
ve y we shall often speak about the map or the transport IV :
Remark 3. It can be proved (see/3/ ) that the transports
such as parallel, Fermi-Walker, Jaumann and others used in the
theoretical physics, satisfy the conditions (2.1)-(2.5), i.e.,

they are concrete examples for I-transports.

Remark 4. In the present work we shall not use the property
(2.5). We shall only note that from (2.4) and (2.5) it follows
that the I-transport corresponding to a composition of curves
is equal to the composition of the I-transports corresponding
to these curves’3/

Putting in (2.4) z'=y and using (2.3), we get

Y -1 V4
(Tyay) = 15, 4 o (2.6)

and hence the maps 1Y are linear isomorphisms of the tensor
spaces along y .

If f ,8:y(J) > R are real functions, then from (2.2) we
immediately find

Z*y(f(X)T + 8(x)T") = f(x)I g T7+ g(x)l (2.7)

xsy T
Let {E,(x)} be a basis in T,10|x (M) =T, (M), ¥&M, where

here and from now on the lat:in indices run from | to n = dim M
and are referred to an arbitrary (coordinate or nohcoordinate
as well as holonomic or’ anholonomic) basis and the Greek indi-
ces also run from | to n but are referred to a coordinate ba-
sis {dg=9,9x%} . So, we have E, (x)._A (x)d, » where Aa are
some functions of x ¢ M and det HAa(X)1|¢ 0, ce.
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Thus, due to (2.1) qus,E (x) € TyM), x,y & y(J) and hence
this vector can be expanded, over the basis {E;(y)l , i.e.,
if the map 1Y and the bases {E;(y)} and {E; (y)} are given,
then there are uniquely defined functions H (y x,y) such
that

Yy Bj(x) = HY j(v,%; y)E{(x), %y & y(I), (2.8)

or all the same
HY (r,x5y) = (1)L, B (x)', (2.8")

are the components of the vector Ix,yE] (x) in the basisiE(y)l.
From (2.8) it follow ’3/ that the functlons (2.8') are compo-
nents of a two-point tensor from T‘(M) ® T%(M), where @
is the temsor product sign and T} {(M): —’F 1|x(M)
If V:=V'E;(x) e T,(M)> X &y(J)>» then by virtue of (2.7)
and (2.8), we get for any y < y(J)

i i

Iypy = (H.lj (v, %59y) VHE (%), ) (2.9)
or i

Y iy v (2.9")
Iy,y V) = H.j(y,X,y)V .

From the above discussion we observe that the definition of

Iﬁ.,y is equivalent to the definition, in some basis from T&(M)®
® TY(M), of the matrix ||H' NCZR )l consisting of the

components of a two-point tensor from Ty (M) ®T3(M)in this ba=
sis.

Using (2.8) we ea511y see that (2. 3) and (2 4) are equiva-
lent respectively to

' : - : 2.1
Hlj(x,x;y)—. 5 o | : | (2 :o)
H 2oy B (roxiy) = Y (oxiy), .20
where Bi =1 .for i=j and 5 =0 for i #1] (Kronecker's delta

symbol). In the same: way we see that (2.6) is equivalent to
i -1
HH ) (voxip) [l = IH Ly L : (2.12)

Remark. If we treat (2.10) and (2.11) as functional equa-
tions with respect to [|H!;(y,x;y)|| , then their general solu-
tion in fixed bases {E (%)) and {E (y)} will be
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IH! (oxi)l = LGy, (L 0 (2.13)

where L(z,y) is an arbitrary nondegenerate nxn matrix func-
tion of z ¢ y(J)y and y:J » M(detL(z, y) # 0,-) . We shall not
prove (2.13) because it will not be used in the present work.

At the end of this section let us nete that the tensor
field T defined on y(J) is said/3/ to undergo an I-transport
(or to be I-transported) along y:J > M if

: ¥
Tky) = Ix—,yT(X)v X,yG}'(J). (2.1’4)

From (Z.3) and (2.4) it follows that if T is I-transported

along y, then it is uniquely defined on y (J) by its value T,

at an arb’trary fixed point xoequ):TTx)=I§oﬁxTo, X € y(J).

3. THE DISPLACEMENT VECTOR

Definitiom. Let X,y € M, y:[(s,s”} > M be a Cl—curve
such that y(%')= X and y(s™) =y , 1’ be an I-transport
along y and y be the tangent to y vector field:

Ix" (y(s)) | 3

y(s) = ( f (3.1)
, ds axa }’(S)
where s ¢ [s’,s”}and {x*} are coordinates in some neighbour-
hood of ¥(s) . Then, the vector
h(x,y):= h( 17 x )= S 1) )
\ . Yo ’ Y )i= f’ 'y(s)_;xy(s)dsg' TX(M) (3.2)

S
is called the displacement vector of y with respect to X (de-
fined by means of the curve y and the map 1Y ).

We shall not consider here the properties of the displace-
ment vector because they have been presented in’! from where
the above definition is taken.

Let a covariant differentiation be defined on M s Py Ty (M)~
»R", x ¢ M be an arbitrary fixed isomorphism and Ky Uy
» Fy (M) be defined by «,(y):= h(x,y), y ¢ Uy , where U, is
a normal neighbourhood of ¥ and h(x, y) is given by (3.2) in
which ¥ is the unique geodesic connecting x and y in U, and
IV is a parallel transport along v . Under these conditions
in/2/ it is proved that the map ¢ x° k;: Uy » R" is a coordi-
nate diffeomorphism. In other words, within an isomorphism the
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map ¥ ¢ h(x,y) defines a coordinate system (with an origin

at x in Uy). In another work the author will prove that there
exist an infinite set of generalized transports I” and the re-
levant curves y and neighbourhoods U, such that in U, the map

y &+ h(x,y),ycU,(y connects x with y ) defines (within an iso-

‘movphism) a coordinate system on U, . Begining with this place

we shall suppose hereafter the generalized transports 17 and
the curves y to be defined in such a way that for each x - M
there exists a neighbourhood U, of x in which the map yih(x,y)
y € Uy (or more precisely the map y | ¢, (h(x,y)) , where ¢y :
:Ty(M)> R™ is a fixed isomorphism) to define (through (3.2))
a coordinate system on Uy .
In connection with this assumption let us note that (a) the
arbitrariness in the choice of IY and y in the definition
(3.2) of the displacement vector can be considered as an arbit-
rariness in the definition of the coordinates of y with res~
pect to X, and (b) as a consequence of this, the displacement
vector (3.2) has a meaning of a relative coordinate of y with
respect to X . T :
Using (2.9) we get from (3.2) that in a coordinate basis
the displacement vector has the components

’

’”
S

n (x,y) = f H?ﬁ(X-y(S):y)}B(S)dS- (3.3)
S ’ B

Integrating by parts the right-hand side of this equality and

using (2.10), we find

. ,

’ S”aH . (X, }’(S ):V)

b (y) = H g (6, y (9 )y Bl S, - 1) &
S

- _B(s)ds =

© 7o g (x, (s )i y) . a
=H?ﬁ(&Y;y)yB-Xa ~J B(;S%@) Y yB(s)ds = " -x")+

: 3.4
a a. B s” aﬂ?ﬁ(x44@;y) (3.4
+[(H.5(X,Y;y)~56)y - J : yB(s)ds],

s’ s

where for brevity we have put yB(S):=(Xﬁ<>y)(s).s c[s,s”].

In the Euclidean case (see’2/ , Sect.III.3.1), whenM = E,
(E, is an n-dimensional standard Euclidean space) and IV is
a parallel transport along y , we have H?ﬁ(x,y; y) = 8% for
every x, y and y 3 so, from (3.4) we get

W (xyylg = v -x® (3.5)




From here we see that the expression in the square brackets
in (3.4) yields the deviation of the general displacement vec-—
tor (3.2) from the usual Euclidean displacement vector (3.5).
From (3.4) we see that in the general case this deviation de-
pends on the choice of the curve y and generalized transport
[Y and also on the topology of the manifold M. Generally spea-
king this deviation has an order of O(s ”-s”)?) . In fact, on
the one hand we have

¥ - x% = % (s7) - YA (s’ = ;a(s’)(sfﬁ-s’)+ O(s"~5")%); (3.6)

and one the other hand in’!’ , Sect.II.3, eq.(3.3) we showed
that )

h(x,y) = 9a (s)(s”-8") O«S'C—S')g), (3.7)

hence the above result follows from (3.4)-(3.7).
If s”-s” is an infinitesimal constant, i.e., if s”=s’+ ds ,
then according to (3.7) the infinitesimal displacement vector’!

E(x.y) = y(s’)ds, (3.8)

defines the general displacement vector (3.2) up to second or-
der in ds quantities. Let us note that the vector (3.8) depends
on ) only through its tangent vector } at the point x = y(s’)

4. THE DEVIATION VECTOR
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Let us consider the following general construction: Let be
given curves x,i[s/,s”] -M,a = 1,2 and x:[s;s”] .M and one-to-
one maps r, :[s7s” ]+ [s/,s”” ] which map the paramgeter s <[s’s”]
into the parameters s, =r,(s) = (s, sy | , a = 1,2, Let there
be given two one-parameter families of curves yg :[rg, t7] + M
and n5:lps «pg” 1 » M, such that y (rJ):=x%,(r,(8) (ry): =
= Xg (2 (8)) , 75 (pg):i =x,(7{(s)) and s (ps” )i= x(8), s & [s”, s
Finally, let there be given generalized transports I”s and 1’
(along y, ard 7, respectively) having the properties pointed
out in Sect.3.

In accordance with 2/ | Sect.IV.l, we define the deviation

vector of X, with respect to x, relatively to x at X(s) as

s
r
S

qs I_ 1 Vs
xl(rl(s))-»x(s)r A (l')»xl(r1
s

hyo(s,%) =1 sy Vs (DAE Ty (M), (4.1)

where a
‘a . ays(r) e
Vs (r): = ——-—ar , r.e[rs, r; ]. (4.2)

Evidently (cf. (3.2)), the integral in (4.1) is exactly the
displacement vector of the point Xplrg(s)) with respect to the
point Xﬁrl(s» . Thus, transporting the displacementlvector of
Xg(rg(s)) with respect to x,(r (s)) from the point x,(r (s)) to
the point x(s) along the curve 7, by means of the generalized
transport I7s , we get the corresponding deviation vector of
X, with respect to X, relative to x at the point x(s) . If
the curves x and x; coincide geometrically (x(s)= x,(7,(s))
for each s & [s’,s”]), then (see (2.3)) the deviation vector is
identical with the corresponding displacement vector.

The described above construction physically may be interpre-
ted in the following way (for example, in the 4-dimensional
Riemannian space V, of the general relativity). We can treat
the curves x; and X, as the trajectories (world lines) of two
observed particles and the curve x as a trajectory of an obser-
ver. who studies their movement. The parameters S;, Sy and s
can be interpreted as "proper times' of the corresponding par-
ticles. The maps 7; and 7, give the connection between these
proper times and define the "process of observation" in this
case and in a certain sense they define some simultaneity bet-
ween the three particles: the maps 7, and 7, define the simul-
taneity between the observer and the observed particles; and
the map ry° 7;1 s{si.s{"l - (s%,8% 1, betweén the observed par-
ticles themselves. For a fixed s = [s”,s” ]| the curves yg andn,
can be considered as trajectories (world. lines) of "signals"
which physically realize the maps 7, - rfl and 7y . (For ins-
tance, if yg and 7g are zero (isotrope) geodesic (e.g., in Vg4 ),
then this corresponds to defining the simultaneity by means of
light signals - see ™’ ).

Before going on we want to note that constructions like the
one described above arise every time when one considers ques-
tions connected somehow with the deviation equation (see the
references quoted in’? ) and also in the investigations of a
relative kinematics (and some time dynamics) of particles in
the general relativity and other alike theories. In connection
with this, as good examples of concrete applications of some
special cases of our general construction (under the condition
x(s) = x(r,(8)) ), it is enough to point the following places
in the book ‘¥ where one can also find suitable illustrations:
ch.I, § 6 (geodesic deviation equation); ch.II: § 3 (the world
function), § 6 (geodesic triangles), § 11 (metric in Fermi and
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optical coordinates) and § 12 (geodesics in Fermi and optical
coordinates); ch.ITII: § 5 (Born rigidity), § 6 (measurement
directions), § 7 (relative velocity and Doppler effect) and
§ 12. (physical meaning of the first normal and the curvative
of space-like curves); ch.VII: § 1 (de Sitter universe) and
§ 9 (spectral shift); ch.VIII, § 3 (cosmplogical red-shift);
ch.XI: § 5 (astronomical observations), § 6 (stellar aberra-
tion) and § 9 (spectral shift in a continuum). The same techi-
que is used in other places in/4/ as well but we shall not
point term out here.

Applying the expansion (2.9) to (4.1), we see that in a co-
ordinate basis the components of the deviation vector (4.1)
are

hip(s,%) = HO g (x(s), x (v, (8Nig )
Ts ﬁ i . o 4
x [ HEG (2 (7 (8D v (15 yg )y (nydr.

s

(4.3)

Integrating here by parts we can put (4.3) in the form (cf.
(3.4))

hip (5.%) = [x5(ry (8 = X (75 (s)]+

B B

+1HT g (X, (), X1 €ry ()i ) = 8 N(xhy (ry (8)) = x5 (7 (5)

LG x(s) x hry (35 1 TP (= (ry (89, x5 (rp (3005 7 ) -

(4.4)

6 o 1 9HP (kG (5 y g (D)ivs )
—-aa)xz(rz(s)) - f . R

l"
S

y? (rydrll.

As we have already said (see Sect.3), in the Euclidean case
H?ﬁ;(“.)s 8% ; hence, the Euclidean deviation vector has the
components
hip (s.%) lg = X5(ry (8) = %[ (ry (). (4.5)

From (3.5) and (4.5) we conclude that the Euclidean devia-
tion vector is exactly equal to the Euclidean displacement vec—
tor (in E ) between the corrﬂsrondlng points of the curves Xy
and - X,

So, we see that the expression in the curly brackets in
(4.4) describes the deviation of the general deviation vector

8
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from the usual Euclidean deviation (displacement) vector.
Using ‘the same method as at the end of Sect.3, one can easily
prove that this deviation has an order of O(p) ~p)O(r,—1_) +
+ 0O(rg-r¢ )2).

If the curves x,x, and X2 are infinitely close to each
other in the sense that pe —ps and r -1 are infinitesimal
constants, i.e.,ps —Ps + dPS and rg’=rg +drg, then due to x @2($)‘

(1 (90 = ys (1) = ys(13) = Y5 (05Mx - 1)+ O(rg-18) )(see al-
so (4.4)) the 1nf1n1te51mal dev1at10n vector
§(s, xy:= yg (rg)dry (4.6)
defines the general deviation vector (4.1) up te the second
order quantities.

5. CONCLUSION

In this paper, on the basis of the concept of a generalized
transport we have defined in the general case the displacement
and deviation vectors. We hawve given.a physical interpretation
of these vectors and examined their deviation from the corres-
ponding vectors in the usual Euclidean case.

In a forthcoming work we are going to show how on the basis
of the here developed theory one can define (in the "nonlocal"
case of a curved space} some kinematical and dynamical quanti-
ties such as relative velocity and relative momentum and find
some important eonnections between them.

The author thanks professor N.A.Chernikov for the discussi-
on.
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HUrmes B.3. E2-87-267
06006meHHble MePeHOCh H BEKTODPH NepeMemeHHsA

BBeneHb noHATHA 00 0606meHHEHIX NepeHOocaX, BEKTOpax ne-
peMellleHHs W OeBHAanUH. PacCMOTpeHn HEeKOTOopble HX CBOHCTBA
H B3aHMOCBH3H MeXOy HHMH, a TaKxe NpeayioxeHa uUx dH3HYeC—
xasg yHTepnperaurs. UccnenoBaHbsl OTKIIOHEHHA OGMMX BeKTOpOB
rnepeMemeHHsi H [Ne€BHAUHH OT COOTBETCTBYWIHX HM BEKTOPOB B
O06bIYHOM 3BKIUOOBOM Cliyyae.

Pa6ora BbmonHeHa B JlaBopaTOopuH TeopeTHUYecKoM GU3IUKHU
OUAH.

Coobiuernne O6benHHEHHOr0 HHCTHTYTA AlePHBIX HecnenoBanmii. ly6xa 1987

Iliev B.Z. E2-87-267
Generalized Transports and Displacement
Vectors

The concepts of generalized transports, displacement
and deviation vectors are introduced. Some their proper-
ties and connections between them are given and their
physical interpretation is proposed. The deviation of the
general displacement and deviation vectors from the rele-
vant vectors in the usual Eucledean case is investigated.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR,
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