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1. INTRODUCTION 

This work is devoted to the prob~em of construction of an 
invariant generalization in the case of an arbitrary differen-' 
tiable manifold of the usual relative Euclidean radius-vector 
(the difference of two radius-vectors in au Euclidean space, 
i.e. the displacement vector between the end points of these 
radius-vectors). 

In S~ct.2, on the basi~ of !l,3 
l we give a brief in~roducti

on to the theory of general linear transport (I-transport, ge
neralized transport) (of tensors) along a given curve~ Using 
the concept of ·an I-transport, in Sect.3 and Sect.4 we define 
and study some properties of the displacement and deviation 
vectors, respectively. We end the parer with some concluding 
remarks in Sect.S. . 

2. THE GENERALIZED TRANSPORT (I-TRANSPO~T) 

Let Mbe an n-dimensional (n ~ J) real differentiable ma
nifold of class c", k L 1., T ~q x(M) be the set of tensors of1 

p 
type (q ) ,P ,q being non-negative integers, a t x E- M, J be a 

nondegenerate real interval and y: J .. M be a given curve 
(rnap ) • 

Following the works '1,~1 we give the following 
Definition. The I-transport (=generalized (lip.ear) trans

port) is the map 

I y : T P I (M) .... T'P I (M ) (2. I)x .... Y • q x . q y , 

which corresponds to any curve Y : J .... M and every points 
x,y ~ y (J) and has the properties: 

I) Li ne á. r i t y : i f À, 11 .~. R, T' , T" E- T P I ( M) and x, YE- Y(J ),
. q x

then . 

I Y ( À T ' + T ;'): == À IY T ' + I Y T ". (2.2)
x .... y fJ. x .... y fJ. x .... y 

O(r~Cãhíi~Üli~Ü KHcrnyr l 
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2) For any x ~ y (J) 

Y 
I x~ X = id, (2.3) 

where id denotes the identity map. 
3) For every x , y , z ~ y(J) 

I y Q I Y = IY (2.4)
j/--'Z- x-v y x.-s Z 

. 4) If y' i s the restric t ion of Y on any subinterval J ' C J 
(i.e. y'(s):=y(s) for s~J'), then 

IY' :=IY , x, Y ~ y'( J ') = Y (J ) . (2.5)
x~y X--. y 

Remark 1. In the following we shall use this definition es
~ecially for the case ep= 1, q = O CT~olx(M)=: Tx(M». 

Remark 2'. For brevity instead of an I-transport along a cur
ve Y we shall often s pe ak about the map or the t r arispor t I Y ; 

Remark 3. It can be proved (see/3/ ) that the transports 
such as parallel, Fermi-Walker, Jaumann and others used in the 
theoretical physics, satisfy the conditions (2.1)-(2.5), i.e., 
they are concrete examples for I-transports. 

Remark 4. In the present work we shall not use the property 
(2.5). We sh~ll only note that from (2.4) and (2.5) it follows 
that the I-transport corresponding to a composition of curves 
is equal to the composition of the I-transports corresponding 
to these curves/ 3/ • 

Putting in (2.4) z'= y and using (2.3), we get 

( I Y )-1 - I Y (2.6)
x~y y--. X 

and hence the maps IY are linear isomorphisms of the tensor 
spaces along Y . 

If f ,g : y (J) ~ R are real functions, then from (2.2) we 
immediately find 

I ~ --. y ( f ( x ) T' + g( x ) T ") = f ( x ) I Y T' + g( x ) IY T " ( 2 • 7) 
.~yx . x~y . 

LetIEi(x)1 be a basis in T.1o l x (M) =Tx(M), x~M, where 
here and from now on the latin indices run from 1 to n = dim M 
and ~re reférred to an arbitrary (coordinate or noncoordinate 
as well ~s holonomic or·anho~.onomic) basis and the Greek indi
ces also run from I to n but are referred to a coordinate ba
sis Ida = d,'a x a I . So, we have E i (x) = A~ (X)aa' where A~ are 
some functions of x~ M and det IIA~(x)111= O,De.

I 

:2 

YThus, due to (2. 1) I x~ Y Ei (x) E- Ty (M ), x, y c- Y(J ) and hence 
this vector can be expanded, over the,basis· IEi(y)1 , i.e., 
if the map I Y and the bases lEi (y) I and IE i.(Y) I are given, 
then there are uniquely defined functions H~j (y,x; Y) such 

that 

y (2.8)I x-s Y E j (x) H ~ j ( y , x ; Y ) E i (x ) , x , Y G- y( J ) , 

or alI the same 

i y' (2.8')H . j (y, x ; Y) = (I x ~ y E j (x » I , 

are t he components ofthe vec t or I ~ -f Y E j (x ) in the basi s 1E i(y) L 
From (2.8) it follow /3/ that the functions (2.8') are compo

. . /4 / f hnents o f a t wo-r po í.n t tensor rom Ty(M) @T~(M), were @ 
is the tensor product sign and T i(M): =: T? 11 x (M). 

If V.:=ViE i (x ) ~ Tx(M), x ç; y(J) , then by virtue of (2.7) 
and (2.8), we get for any y ~ y(J) 

Y i j (2.9)I x--. y V = (H. j (y, x; y ) V ) E i (x ), 

or 

y . 
i .) j (2.9')(Ix~y V)I H. j (y,x,y V 

From the above discussion we observe that the definition of· 
I~ --. y is equivalent to the .definition, in some basis from Ty(M)@ 
@T; (M). of the ma t r.í.x I1 H ~ j (v., x : y) I1 coris i s t i ng of the 
components of a two-point tensor .fr om Ty (M) @T~(M) in t.h í s ba.... 
siso 

Using (2.8) ~e easily see that (2.3) and (2.4) are equiva
lent respectively to' 

. i ,., .(-2. la)
H~j(X' x : y) -= Oj , 

H . 
i 

k ( z , y ; y )H . 
k 

j (y, x; y). H i 
• J 
".. (z, x ; y ) , (2. 11) 

where 0/ ="1 .for i = j and o) = O for i f..j (Kronecker' s delta 
symbol). In the same, way we see that (2.6) is equivalent to' 

í -1 i . 
IIH. j (y,x;y)\1 = IIH.j.(x.,y; y)ll. (2.12) 

Remark . If we treat (2.10) and (2.11) as functional equa
tions with respect to IIH~j (y,x; y)II ., then t he í r general solu
tion in fixed bases IEj(x}1 and IEí(y)1 will be 
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II H~ j (y. , x; y )tI == L (y, y) ( L( x; y »-1, (2.13} 

where L(z,y) is an arbitrary nondegener a t e n x n matrix func
tion of z ~ y(JY and y: J --) M(detL(z. Y) 1= 0, <>e) • We shal I not 
prove (2.13) because it wil1 not be used in the present work. 

At the end of this section let us 
field T defined on y(J) is said~/3/ 
(o r to be I-transpdrted) along y: J ~ 

" y
T~ y) = I x --) y T( x ) , x,y~y(J). 

note that the tensor 
to undergo an I-transport 

tM if 

(2. t4) 

From (L.3) and (2.4) it follows that íf T is I-transported 
along y, then it is uniquely defined on y (J) by its value To 
a t an a r b ít r a r y f í xed point xoG-y(J}:T(X)==IY T, x ~ y(J) 

xo~ x o • 

3. THE DISPLACEMENT VECTOR 

Defini t i.orr, Let x , y ~ M , y .'] s', s"} -I' M be a C l-curve 
such that y(s') = x and y(s") == y , I Y be an Ir-t ranspor t 
along y and y be the tangent to y vector field: 

aX 
CX 

(y (s» a 
y (s): ~~·~-)~~r (3. I}

as axQ r(s) 

where s ~ I s ", s "'} and I x 
Q

} are coordinates in some neighbour
hood Df y(s~ • Then, the vector 

Y 8 "
y.

h( x , y ) : =z h{ y ,I ; x, y.) : == I I y ( s)~ x y ( s ) ds ~ T x (M ) (3.2) 
s' 

is called the displacement vector of Y with respect. to x (de
fined by means of the curve y and the- map IY ). 

He shal1 not consider here the pFoperties of the displace
ment vector because they have been presented in/l/ from where 
the above definition is taken. 

Let a ~ovariant differentiation be defined on M '~x:Tx(M)~ 
..... R n, X G- M be an arbitrary fixed isomorphism and K 

X: 
U:lf -+ 

'P x (M) be defined by K x(y): == h(x, y), y ~ U x , where U x is 
a normal neighbourhood of x and h(x, y) is given by (3.2) in 
which y is the unique geodesic connecting x and y in U and 
lY is a parallel transport along r , 
in /2/ it i8 proved that the map ~ x ? 

nate diffeomorphism. In other words, 

4 

x 
Under these condi tions 
K 

X: 
U x ..... e» is a coordi

within an isomorphism the 

map Y P h(x,y) defines a coordinate system (with an or~g~n 

at x in Ux ) . In another work the author wíll provethat there 
exist an infinite set of generalized transports IY and the re
levant curves y and neighbourqoods Ux such that in U the mapx 
y~ h(x,y),YG-U ( y connects x wít.h y) defines (within an isox

'morphism) a coordinate system on Ux • Begining with this place 
we shall suppose hereafter the generalized transports IY and 

ai the curves y to be defined in such a way that for each x G M 
there exists a neighbourhood U x of x in which the map y ...... h(x, v). 
Y ~ U x (or more precisely the map y ~ ~ x (h (x, y» , where ~ x : 
: T x (M) ..... R» is a fixed isomorphísm) to define (t.hrough (3.2» 
a coordinate system on u, . 

In connection with this assumption let us note that (a) the 
arbitrariness in the choice of IY and y in the definition 
(3.2) of the displacement vector can ·be considered as an arbit
rariness in the definition of the coordinates of y with res
pect to x, and (b) asa consequence of this, the displacement 
vec to r (3.2) has a meaning of a relative coordinate of y wi t h 
respec c to x. 

Using (2.9)' we get from (3.2) that in a coordinate basis 
the displacement vector has the components 

s " . f3a' Q •. 

h ( x, y) = f H. f3 { x, y ( s ); y) y ( s ) ds . (3.3) 

Integrating by parts the right-hand side of this equality and 
using (2.10), we find 

Q as" s"aH~f3(x,y(S);Y). yf3is)ds~ 
h (x , y ) = H. f3 ( x, y(s): y )y f3 (s) I s' f, as 

s 

Q H a
 
== H. f3.(x,y;.y )yf3 _xa _8 f aH. f3 (x, y(s); y) {3 a
as. y (s ) ds == (y (J - x ) + 

8 (3.4.) 

+ [(H ~f3 (x , y; y)~ IJ~ )y f3 _ -~--;----y f3 (s ) ds ] , r aH~ f3 (x , y(s); y ) 

s' as 

where for brevi ty we have put yf3 (8): == (xf3 ° y)( s), s C- [8', S "]. 

In the Euclidean case (see /'2/ , Sect. 111.3. 1), when M == E n 

(E is an n-dimensional 'st anda'rd Euclidean space) and IY isn 
a parallel transport along y, we have H~ f3 (x , y; y) == o~ for 
every x, y and y; so, from (3.4) we get 

ha(x'Y)/E == yQ-:x
Q• 

(3.5) 
n 

5 



whereFrom here we see that the expression in the square brackets aay (r)sin (3.4) yields the devi2tion of the general displacement vec ;: (r): = r.E-[r',r"]. (4.2)
tor (3.2) from the usual Euclidean displacement vector (3.5). ar s s 

From (3.4) we see that in the general case this deviation de
pends on the choice of the curve y and generalized transport 
IY and also on the topology of the manifold M. Generally spea
king this deviation has an order of O«s"- 8')2) . In fact, on 
the one hand we have 

as" .~ x = .ya (s") _ ya ( S ' ) y(J.(s')(S~'_ s ") + O«s"~ s')2,),<. (3.6) 

and one the other hand in!l! , Sect.II~3, eq.(3.3) we showed 
that 

ha(x,y) Y. a ( s 

hence the above 
IE s"-'s' sí 

then according 

') (s " ') 0«', , ) 2)s -s +- S -s , (3.7) 

resuIt follows from (3.4)-(3.7). 
an infinitesimal cons t ant , i.e.,. if s"=s'+ ds , 

to (3.7) the infinitesimal displacement vector / 1/ 

e(x ,y) --= }: (s ' ) ds, (3.8) 

defines the general displacement vector (3.2) up to second or
der in ds quantities. Let us note that the vector (3.8) depends 
on }' only through its tangent vector y at the point x -= y(s'.) 

4. THE DEVIATION VECTOR 

Let u~ consider the following general construction: Let be 
given curves xa:'[s; .. sa"].M, a = 1,2 and x:[s:s"].M and one-to
one maps r .{s . s ?"] .• [s;, -: 1 wh i ch map the par arget.er s ~[s~s"la 
into the parameters sa =ra(s) ,; [s;, s~ 1 , a = 1,2. Let there 
be given two one-ipa r amer e r families of curves Ys : [r~, r~] .. M 
and 1]s:[p;, p;' 1 ~ M, such that ys(r;): = x 1( r 1 (s» ')'s (r~): = 

= XZ(r2 (s ) , 1]s (p;): = X1(r1(s» and Tis (p~'): = x(s), S G- i s '. 5"]. 

Finally, let there be given generalized transports IYs and I Tis 
(along Y ar-d 1]s' respectively) having the properties pointeds 
out in Sect.3. 

In accordance with '2! , Sect.IV.l, we define the deviation 
vector of x2 with respect to Xl relatively to x at x(s) as 

r 
s 

Tis Ys 
h (s,x):=I r I y (r)drG- T (M) (4. 1) 12 x(r (s»-+X(s) y (r)~x (r (s) s x(s) ,11 ' s 11 . 

IJ 

Evidently (cf. (3.2», the integral in (4.1) is exactly the 
displacement vector of the point X2(r2(s» with respect to the 
point X1(r1(s» . Thus, transporting the displacement vector of 
x2('2(s» with respect to X 1( T1(-S» from the point X1(r 1(s» to 
the point x(s) along the curve 1]s by means of the generalized 
transport I1]s , we get the corresponding deviation vector of 
x2 with respect to Xl relative to x at the point x(s) . If 
the curves X and x 1 coincide geometrically (x(s) 0= xl (rl (s » 
for each s G- [s ', s"]), then (see (2.3» the deviation vector í s 
identical with the corresponding displac2ment vector. 

The described above construction physically may be interpre
ted in the following way (for example, in the 4-dimensional 
Riemannian 3pace V4 of,the general relativity). We can treat 
the curves Xl and X2 as the trajectories (world lines) of two 
observed particles and the curve x as a trajectory of an obser
ver.who studies their movement. The parameters 81' 82 and s 
can be interpreted as "proper times" of the corresponding par
ticles. The maps T1 and r 2 give the connection between these 
proper times and define the "process of observation" i{1 this 
case and in a certain scnse they define some simultaneity bet
ween the three particles: the maps T 1 and r 2 define the simul
taneity between the observer and the observed particles; and 
the map "z o TIl : [sí, sí'] ~ [s'2 ,s'2 1, betweên the observed par
ticles themselves. For a fixed s (.:. [ s ", s"] the curves Ys and Tis 
can be considered as trajectories (wor l d. lines) of "signals" 
which physically realize the maps r 2 ' r 11 and r 1 • (For ins-
t ance , if Ys and 1]8 are ,zero (isotrope) geodesic (e'8" in V4 ), 
then this corresponds to defining the simultaneity by means of 
light signals - see /4' ). 

'] 

Before going on we want to note that constructions like the 
one described above aride every time when one considers ques
tions connected somehow with the deviation equation (see the 
refe~ences quoted in/li ) and also in the investigations of a 
relative kinematics (an& some time dynamics) of particles in 
the general relativity and other alike theories. In connection 
with this, as good examples of concrete applications of some 
special cases of our general construction (under the condition 
x(S) = x 1(r 1 ( S » ), it is enough to point the following places 
in the book !4/ where one can also find suitahle illustrations: 
ch.I, § 6 (~eodesic deviation equation); ch.II: § 3 (the world 
function), § 6 (geodesic tridngles), § 11 (metric in Fermi and 

r s 
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optical coordinates) and § 12 (geodesics in Fermi and optical 
coordinates); ch.III: § 5 (Born rigi~ity), § 6 (measurement 
directions), § 7 (relative velocity and Doppler effect) and 
§ 12. (physical meaning of the first normal and the curvative 
of space-like curves); ch.VII: § 1 (de Sitter universe) and 
§ 9 (spectral shift); ch.VIII, § 3 (çosm9logical red-shift); I 

;1•
i 

ch.XI: § 5	 (astronomical observations), § 6 (stellar aberra
J,tion) and § 9 (spectral shi~t in a continuum). The same techi . ~ 

que is used in other places in :14/ as well but we shall not ;1 
po ímt term	 ou t here. , l 

Applying the expansion (2.9) to (4.]), we see that in a co I 
ordinate bas i s. the componen t s of the deviation vector (4.1) I

I . 

are 

a a.	 )
h12 ( s , x ) = H.f3(x(s), xl(r (s));'77 x

l 8 

r;'	 ' 
r: 
R	 

'a' (4.3)
x r H 1, (7 (x 1 (r1 (s )), Y8 ( r ); Y8 ) Ys ( r ) d r. 

r~ 

lntegrating here by parts 'we can put (4.3) in the form (cf. 
(3.4» . 

a a a 
h	 (s, x ) = [x 2(r (s)) - xl (ri (8))] +

12	 2 
1< 

a	 a f3 f3 . 
+ {(H.f3 (x,(s), xl(rl(s)); 77 s)-0f3 )(x 2 ( r2 (s)) - Xl(r l (s))) + 

+H~f3(X(s),xl(rl(S)); 77 8 )[(H~a.(xl(rl(s)),x2(r2(s.)); Ys ) - (4.4) 

r;' aH~ll (Xj(Tj(s))·ys(r);ys \~ (r j dr j }, f3	 (7' ) r-	 ,-0(7 )x 2 ( r2(s) arr s 

. , 
As we have already said (see Sect.~), in the Eucltdean case 

H~ f3 ( , .• ) == o~ ; hence, the Euc Li.dean deviation vector has t he 
components I 
h ~2	 (s, x ) IE = x~ (r 2 (s)) - x~ (r 1 (s)). (4.5) 

I 

n 

From (3.5) and (4.5) we conclude that the Euclidean devia \' 
tion vector is exactly equal to the Euclidean displacement vec II 
tor (in E	 ) between the corresponding points of the curves' Xl n 
and·x • •

2
So, we see	 that the expression in the curly brackets in 

(4.4) describes the deviatio~ of the general deviation vector 

from the usual Euclidean deviation (displacement) vector. 
Using -the same method aq at the end of Sect.3, one can easily 
prove that this deviation has an order ofO(p;'-p~)O(r~;-r~)+ 
+	 O «r~' - r ~ )2 ). 

If the curves X 'Xl and X2 are infinitely close to each 
other	 in the sense that p;' - P; and r~' - r~ are infini t e s í.ma L 

, '" d "; dr d aconstants,	 1.e.,Ps == ps + Ps andrs==r s+ s,then uetoX 2(r2(s))
-Xal(rl(s)) ==ys(r~')-ys(r;)=Ys(r;)(r~'-r~)+O«r~-r~) }(see al 
so (4.4» the infinitesimal deviation vector 

ç (s, x r: = ;'8 ([~ )dr '	 (4.6)s 

defines the general d~viation vector (4.1) up te the second' 
order quantities. 

5.	 CONCLUSION 

In this paper, on the basis of the concept of a generalized 
transport we have defined in the general case the. displacement 
and deviation vectors. We have given;a physical Lnterpretation 
of these vectors and examined their deviation from the corres
pondíng vectors in the usual Euclidean case. 

In a forthcoming work we are going to show how on the basis 
of the here developed theory one çan define (in the "nonlocal" 
case of a curved space} so~e kinematical and dynamical quanti 
ties such as relative velocity and relative momentum an~ find 
&ome important connections between them. 

The author thanks professor N.A~Chernikov for the discussi
on. 
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!IIJmeB B. 3. E2-87-267 
06o6meHHbJe rrepeHOCbJ H BeKTOpbJ rrepeMemeHHH 

BBep;eHbJ rroHHTHH o6 o6o6meHHbJX rrepeHocax, BeKTopax ne
peMemeHHH H p;eBHau;HH. PaCCMOTpeHbl HeKOTOpble HX CBOHCTBa 
H B3aHMOCBH3H MeJKp;y HHMH, a TaKJKe rrpep;JIOJKeHa HX 4JH3H'leC
KaH HHTeprrpeTaiJ;HH. 11CCJie)J;OBaHbl OTKJIOHeHHH 06mHX BeKTOpOB 
rrepeMemeHHH H p;eBHaiJ;HH OT COOTBeTCTBYIDmHX HM BeKTOpOB B 
06bJ'lHOM 3BKJIH)J;OBOM CJiyqae. 

Pa6oTa BbiiiOJIHeHa B na6opaTOpHH TeopeTH'leCKOH 4JH3HKH 
0115111. 

Coo6IUeHHe 06'heLtHHeHHOro HHCTHTYTa IILtepHbiX HCcneLtOBaHHH. J{y6Ha 1987 

Iliev B.Z. 
Generalized Transports and Displacement 
Vectors 

E2-87-267 

The concepts of generalized transports, displacement 
and deviation vectors are introduced. Some their proper
ties and connections between them are given and their 
physical interpretation is proposed. The deviation of the 
general displacement and deviation vectors from the rele
vant vectors in the usual Eucledean case is investigated. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 

Communication of the Joint Institute for Nuclear Research. Dubna 1987 
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