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In th1s paper we give a further application of the concept of 
harmonic ana.lyticity in R~"devopoled in [1 ]. We show that .the 
conatrainta defining hyper-Kãhler geometry in curved ~4~ can be 
interpreted aa the integrability conditiona for the existence of 
harmonic analytic fields. These constraints can be solved by exprea­
aing all the elements of' the differential geometry formalism in terms 
of two un'constrained analytic prepotentials (one of them ia in fact 
apure gauge). The geometric rneaning of the prepotentials ia brought 
out in an extended framework involving central charge coordinates. 
The prooedure of constructing the hyper-Kãhler metric from the pre­
potentials involvea solving a differential equation. In one approach 
it ia a ·nrutilinear equation for the bridge between the original 

basis with gauge parameters independent of the harmonic variables, 
and a new basis where analyticity becornes m~ifest. This approach is 
in ma.ny respects similar to the tw:tstor one [2-5 J • An al, ternative 
approaoh leads to a linear differential equation relating the viel­
beins of the harmonic covariant derivatives in the new analytic 
basia. Examples illustrating both cases are given. Finally, we 
establish tbe one-to-one correspondence betwee? hyper-Kãhler geometry 
and N"2 aupersymmetric off-shell sigma models. !t turns out 'that 
the byper-KShler prepotentials determine the Lagrangian for the N=2 

hypermultiplet (N=2 matter multiplet) superfielda in juat the aame 
way aa the Kãhler potentiál prescribes the Lagrangi~ for the N=l 
chiral (matter) superfields. 

T,he reader is expected to be familiar with the ideaa and nota­
tion ofí.l. l. Lfre in [ 11,our conaid eration here is purely local, 
we do not concernany global aspects of hyper-Kãhler geometry. 

I. Harmonia analytioity and byper-Xahler prepotentials 

r.r. ~~!....22Bst~~~ Tbe set-up for hyper...Kãhler 
geometry ia analogous to tbat for the self-dual Yang-Mills equations 
(see[ 1 ), aeat. III) • One considera the Eucl1dean space Rl,h = 
=- {Xft i. ). , where )1-:.1.., _,. 21'\ and l.::, 1.,2 1. In 
it one defines fielda lfofJ ... i.i- .. (X) which transfQrm under tbe 
following gauge groups: . 

'.1 ~~--. 

IneltiríetiHbJA SHC'm'fYl , 
~'-~~.MX ~~C~eJOBnpa~
 

E'~SJ1~·I·~·T~!··L~
- -_.__ ._.­._~-



sr. 8 :i (X) =: (n: .' /.1'+l"::t)- in ., /'l.') ­
O'-r ... Lrj" - rl1i/' "1'''1.:: o TO<J••. 'i'" toA. ­

='To<' ol (X) ~)6 ...'i'.. (x) + :;P(;r) t'f.. ,/JJi)+ .,. CU) 

b' ;xfiL' = rc:PL (x). 

Here rr)4LtX) correspond to ooordinate transfo:rmat1ons; 
I / ' ...7o'ol(::t) r;/Iot »L,... .2h), to looal 'sp (h) tranaformations; L)j ... 

are r1gid SU(2) indicas. Thus the tangent spaoe group is ohosen to be 
a product of local SPCh) and rigid BU(2). Correspondingly, the 
covar1ant derivatives 1nvolve only S pC.,) - valued oonneotions: 

'A. -' Jlk 2 
oUcI lo -- ec;{ L 1"k -I- ~L' ") tU"i =- CUolL (J3 K') r (per) , (I.2) 

where r are the generators of SP(h). Th1s framework allows us to 
impose the following constra1nts whioh define hypor-XShler geometry: 

(I.))[Jt.: )~J ]=[~ R(oI') =: ['J "'R(oI})(,l'S) r W), 
or, equ1valently: 

(I.)) ,l»01 te, ~'J)1=. RUj)[oI,fJ = O 
/

In order to establ1sh a contact w1th the standard oharacter1zat1on 
of hyper...Kiihler geometry (see Intr;duction to [1]) wa take not1ce 

of the faot that the component Ro< [L j3iJ-= é/i RWft) of gene­
ral Riemann tensor g"'I..'j3i generates a subgroup S p (n) in the full 
holonomy group O(4n) generated by th1s tensor. 80, eqs. (I.)) (or 
(I.)') ) amount to reduoing the holonomy group to a subgroup of 
Sp(n), in aocord with the general defin1t1on of hyper-Kahler manifolds. 

From the Bianohi 1dent1t1es it follows that the nonvanishing part 
of the curvature R. CP<.P) Cfó) 1s totally 'symmetrio • In the case er
R4 1t ia just the self-dual half of the Weyl tensor, so in four 

dimens10ns the hyper...Ká.1ü.er oonstra1nts are equ1"alent to the oondi­
t10n of self-dual1ty for the R1emann tensor. 

!he problem no'W 1s to find a way to present (I.)) as integrab1lity 
conditions, wh10h will lead to their solution. Tnis oan be aoh1eved 
in the extended framework of harmonic space. 
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I.2. !!armo~~~d-ªnal:d!~!.U.We begin by addlng 
harmonia varí.abl.e s U±i E. .s V(Z) to the coordinates of' R4 h , 
{XJAi.. }1A±L} • Then the constraints (I.)), (I.)') oan be rewritten 

in the following equivalent form (see the discussion of the self-dual 
IM oonstraints in LI]): 

(a)
l~~ ~+J= O~> R[~J;: 1).1"1' zti RIJ "[oi,!]=O

0<, } (I.4) 

~+- 1J"t·" ~[2J++ ")t2)~] =: O ~ oUr;l = oUoI t... • (b)t-{.. 

-'Q-l-+ == r)++ .:=. U"" " 0/~ /~vu. LHere iXJ p 1s the harmonio oovariant derivative 
(in this case 1t coinoides with the r1gid oue, since the gauge 
parameters (1.1) do not depend on k±': ). In 'addition we require 
that alI harmonic functions bave def~nite U(I) charge, i.e. they are 
eigenfunotions of the operator ~o:=. U-+"~U-+t'-2A-I'~(?U-'" • 

Obviously, (I.4a) now has the meaning of the 1ntegrability 
condition for the existence of harmonio analytic fields defined by 

lJ; lfj(~ .. , (:x,?A~ = O· (I.5) 

As we have eeen before [. 1J, the wa;y to the solution of such 
constraints goes through the 1ntroduction of an analytic bas1s in 
harmon10 space, where the analytioity (1.5) becomes manifest. It ls 
defined "Hh the help of bridges ?J)U:: (XI U) 

X: ±. =- eX,M I< 'li.t -\' lF)i ± (Ã lU) 
(I.6)E;X;+ -::. ~~(2t lU)
 

~ ~- =))4- o: ,XÃ )1{) ") sut:,'=. O.
 

In thia basia the analyt1city of soalar fields simply meana that they 
do not dapend on ~-. Th1s statement is covar1ant under the 

group (I.6). In other words, the cavar1ant dér1Tat1Te ~~ can be 
ohoaen in the form 

(I.1)~+ - lfJl J+ ar: 
N fi.. - "ri t{4/f + ()l. 

BOW9ver, the tangent apaoa group 18 st111 the original one (I.1), 
and 1t v101atea the explioit a.nalytio1t1' of :f1elds rlth,sP (n) 
1ndioes. HOW8ver, juat as in Kahler case (see disouseion in [lJ a:tter 
eq. (II.26)) the bas10 oonstraint f<.1;IPJ =O (I.4a) guarantees the 
ex1stenoe of analyt1c tangent spaoe. Indeed, 1t ~.llows from this 
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constraint that the re: oova rãa nt oonneotion cu;;; oan be presented 
in a "pure gaug s " form: 

-+- C 1) s lEfi à'+- /1 r (1.8)úJcJ.ftr'-=. M-:t ~ í)f1 8· 

Symplectic matrix f1~~(21~J provides a bridge to the tangent space 
with manifest ana1ytioity: 

cpcf. (~\?A) = t1f(i \UJ ctp (Â' I -u) ) MS2. MT -=- S?­
(1.9) 

ÓM/= )~ nt-M}'rr/, li CP", r?p .z: ): 

The new Sp(n) parameters )0< r are aDQlyt10 I À r, )oL cr'{..:t':; lU).ot
Correspond1ngly, in this analytic tangent Ã frame there will be no 
oonneotion wt 
(dJ+ õ')" -:: nPM J (lJ+ 'P)(n' i )J'1=Srf16fffia+ =Sr E}1dtt~+(I.IO) 

d J 1\ pé f 'I' v .J'P 'J Q( ct ~ - Jl ri-/-1 lS~· 

Note an important difference with the Kãhler oase. There, the ana1ytio 
tangent frame group was induoed by the analytio world transformations 
and was essentially oomplex. In the present oase, this group is again 
Sp(n) with real paramet ers )0< f (x 11.<) (rea11ty 1a deflned now with 
respect to generali2'ied conjugati on A.- [1] whioh MS no analog in 
K'â.h.ler case). 

In what follows we shall work in the analytio basia (1.6) and 
frame (1.9), 50 we shall often drop the identlfiers) A • 1'.he new 
vielbe1ns t=.~ transform as follows 1 

c E fi "\ PE f'I E J "l .... l)t ­
O ~ = 1'0< '.P + ~ 17;1 1\ • (1.11) 

!.hey are still subject to the constraint (I.4a):
 

..,4
.6+ 
[O< Cf] = O . (1.12) 

It is not hard to find the general solution af (1.12), but we post­
pone thls until we introduoe some other useful objeots.
 

Çb.++I.J. Harmonia covar1ant derivatlve 0(/ • G01ng to the analy­
tic basis (I.6) and frame (1.9) we have made the derivative :b+o< 

·almost s1mpl~. Instead, the harmonic one acqulres vielbeins and
 
connectionl
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1)++=- d+-t"+ H+'0+-~-+ H+Y'-~++ c.u~+= a::+ CU++. (1.13) 

Here 

H+;)H -= D+ to 7F)-f + ) H+ i')t -::. .t1+ -rv-Jl-.- ?f/' -+ + :x:+ 

(1.14)
íJ-r~ P==- Moi r LJ-rt M:; P 

s ~+~±:: fj++ ,À..M±) g úJ+; J :::: - ,ó-++).~ P. 

The parameter .Â)1-(.:::r.4~\ 1{) .is a general function,so one i: able 
to gauge the vielbein H++J'- into its flat space limit :x~ : 

H-t~-= X~+ ~ LSt T1T/f-= 1r)H·~ 6-t"'t).Jf--::; )fi+. (1.15 ) 

This gauge will be a1ways implied henceforth. 
Recall that in the YM theory Ll] the bridges connecting the ) 

and '1:' frames were secondar;r 'objects, they could be expressed in 
terms of the analytic conneotion V++ of tlJ++. The latter was the 
unconstrained prepotential of the self-dual YM theory. The situation 
here 1s different in that it 1nvolves one more step. The coordinate 
and frame bridges Tr.ft.:r and Mo'.P can be found as solutions of 
(I.l4) g1ven the ) worlà (= frame and basis) vielbeins and 
connection of ;b++ (I.IJ). Howe~er, the latter are not unconstrained 
th1s time. As we shall see in sect. 1.6, they will be expreaaed in 
terms of some unconstrained anal~1c prepotentials. 

We remark that the equations (1.14) relating the bridges to the 
vielbeâns anã oonne ction of ;Õ++ are highly nonlinear because "l,T-. 
and M are defined in the '7: basã.s , while H++ and cor: are 
analytio (see (1.16) ) f1elds defined in the À basia. Under 
certaln simp11fying assumptions they can be solved (see an example 
in sect. ~II.2), but it ia hard to deal with them in general. There 
is an alternative approach which requires living only in the ). 'world, 
thus avoid1ng the use of the bridges to the ~ wor1d. In this 
approaoh one has. to deal with linear differentia1 equations 
(see aect. 1.4). 

We return to the discussion of the constraints (I.4b). We have 
to insert the expressions (1.10) for ;l)~ and (I.IJ) for ~++ 
lnto (I.4b) and examine the oansequences: 
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'h+-t E)I -=- ,Ó.t-t" 1:)1-r ar: jJE/"= O
oU pI. (,i cK ~ (a) 

!J-; }-f~ i)'l-t":=. O 
(b) (1.16) 

A .... r, r++ r
 
LJ cÁ VV f' ::::. O. .. (c)
 

First we cons~der (I.16a). Note that it ia oovariant because the 
parameter d.jY- in (1.11:) has the property Lt+(()! ~-):=:: O 
1n the gauge (1.15) (taking 1nto acoount (I.16b ) ). From (I.16a) 
ons can express the oonneotion úJ++ in t erms of the vielbe1n ~: 

w"-; f z: EV'"fjH E,Í<J) . (1.17) 

Here the sp(n) indices of cor: and t=~1. are lowered w1th the 
help of the symplectic tensor Rc/..p (ú);'fl::::..fl. j3~ {.(JI-; P

J 
etc)~ 

W+:rfl ;ls symmetric in «,» be oause it t ake s !ts values in 
the algebra of sp(n). The antisymmetrio part of (1.16a) remains as 
a constraint which will be solved later on: 

E }4 A++ t-1. - O (I.18)
(~ LJ L)f f] - . 

Secondly', (1.16b) means that the vielbein H-+~+ must be 
analytic, H+i)1+:::: H~i)l+(X~ 1.{) • Finally, the analyticity 
of &u~~ (1.17) (follow1ng fro~ (1.16c) ) will be a consequence 
of the exp11c1t expression for E! in tenns of independent pre_' 
potentials (see eq. (1.27) below) 

1.4. Harmonic cava.riant derivativa Jl)-- • As in the case of 
I.M. self-d~ll,tyth;-;l_;lb:tl~s of- J:;-- in the À world will 
prove essential in the oonstruc:ion of the dif~~ential,ge~metry 

forma11sm. In the q;- world 2)- .:::. ()--= 'ZC' a/JUi'L 
:Passing to the .À worLd , i t becornes ' 

~--= í)-- -t H-"jt"t ~ + H-;f1-~+ +úJ---::=. Ó---+W-- . 

(1.19)SH~jt;t: a: )/,fr, sar; »--=-fj--À~ J3. 

As in (i.14) the new v1elbe1ns and oonnection can be expressed in 
terms 01' the bridges V- and ~ Rowever, following B.M.Zupnik [6Jo 
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we prefer to find them directly from the relat10n 

[ib+f- 2)--J =: ~0=E tJ°+ :1;:+~- - 2'~-~+. . (1.20) 
) ~o 

T,his relation is obviously true in the ~ world (there ~o= G' ~ 
=- ,'V+c'J/ t:1U+" - U-i'J/J u> ). Note that:tJ° La not cova'­
riantized in the ~ world. The reason i8 that. every objeot in ,9ur 

framework 15 an eigenfunction of ~o ,as we have stated above. 
In the ~ world, from (1.13), (1.19) and (1.20) one gets 

L)-t-'i" 1-1"-71- -- 6- - H+yt- = - x:­
(1.21 ) 

fJ+-+ H-j't+ - jj- - H+'Y"'" = Jct+· 
In addition, the curvature term 1n (1.20) must also vanish. This 
becomes true after deriving from 2++ E""ft= O (I.16a) the relation 
~-- ~}I= O (it can be proved by going back to the rz:' wi>rld). 
Then (.A..r- Ls expr-es sed in terroso of E::: 

r. ,- - t:: ~ , J. ) 
(.AJ (~J) ~ L.{tI-.tr - E;)3) (1.22 

whioh together with (1.17) implies""1::>"'+ -- ~ O 
4 

The equations (1.21) are linear differential equations for
 
ti -:i':!: . Their solution alw8Ys exists and 18 uní.que , One way
 

t~this is to construct the solution perturbativel.1 [6J. To th1s
 
n,.A~ _ ""A+"'I.-~ h_ +'enã one introduoes an auxiliary bas í.s t o.ko - A. A f'f -:XÁ 'U (. 

There the operators a: and Ll- - become 

A'i"+_ ~++ J++ A--_ 'j-- J_4, I ft_ J.r!,/tl'). \ 
W - 0'0 + h ).D. - Oi) + h ) h - n ~1. ) 

~~~": H++-j4t1-r i 1 h-jA~: (H-j1-t_ -:l.~)k-"- H-;f1-U+L . 

Then (I.2l) takes the same form 

~o++ J,-- - 'J; -h+Y + [Jtt-) h--J: O 
as the IH equation (111.26) from (1] and i8 solved in the aame way. 
Of course, one ahould try to solve (I.2l) nonperturbat1vely. In seot. 
111.1 we give an example. 

r, 

I. 5. 2Q.!!.!!tt~tion-2! t~.-Y!!1l!!!!!...E~ • )Tow ~t 1,8 easy to 
find ~ express10n for ~~ wh10h sat1s!ies (1.12): 

. 7 



Ef=- e/ (dHJ~ 1<; (dH):'== J; W/'+, ;'+el~".(I.2J) 
In fact, the matrix (ÕH)-j alone does satisi'y (1.12). However, it 
tran~f~rms as follows (see (1.6),(1.19» 

e C~Hr;. J=_ ~- /)1+(&11); J+ ("JflJ) P~+ ),v-. (1.24) 

The aecond term here corresponds to the seoond torro 1n (1.11), but 
the f1rst one 18 dlfferent. ~erefore one lntroduces tbe new objeot 
é?~ whloh ls analytlc (so lt does not spo11 (I.12»and suppl1es 

the oorreot tangent group transformat1on: 
(I.25)

("I }1 \,s A J ') - "\/ti­
O e", ::::. A~ ~ -t ~ t1v /1 • 

The solutlon (1.23) of (1.12) 15 un1que. Inde,ed, 1f)here were 
another solut1on E;,t4 ,the oomb1nation E ~)f E-d. wo~ld be 

~ dimensionless tensor; the only such tensor 1n the t~ory 15 8~. 
After construoting E"M we ean f1nd a naw expression for 

OI 
úJ~-r , (1.17): 

pl 

, (1.26)
tu-+-+ ::: e/JA1J++-e +e }lIJH,-JVA++J+J-r-j>+epp..). 

~f \P'" '7J) (o' C ~ LJ Y .) r 

Further, us1ng (I.16b), (1.21), (1.19) one f1nda 

a:dt H-;P+ = (); (:xt+T (j--H++f+)-= d~ H--df dJ- /-tt+f'+ J 

so (1.26) simpl1f1es to 

(1.27)t<.J++ - e }4 A ++ A ')01.' - úI- LJ ~J) + e(p{ t': - H++ V+ ev~' · .?' J 

In thia fom the analytio1ty (I.16b) of úJ++ Ls obv1ous. 

l.6. Hyper...Kãhle r..l!.repo t.!!lll:âl-!!. 80 far we have been a1>le to 
solve all the oonstraints foll~w1.. from (1.4) exoept for (I.lS). 
Hera _a shal1 solve this oonstra1nt by express1ng the two bas10 

anal:rt10 quan'Üt1es e ,J-4 ~d H+0+ 1n terms of unoonstrained 
ol 

prepotent1als. 
Repeating the steps (1.26,27) one oan re_r1te (I,.lS) in the 

:fol1o_1ng torml 

e r 'J~+e -+ e p)- H++)+e == O· (I.2S)
[pl f.P] (oi. "r - À,J 
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Next o)'e mul,t1pl1es (I.28) b;y e.:e~ and 1ntroduces the nota­
t10n 1 

(1.29)~~ = ~ol eo(y =- -I-I~. 
afte)." wh1ah (1.28) beoomes 

(I.JO)~++ ~\I - 2- 'àr, H+"-Y"" H\I]f =- O. 

Th1s equation 1mplies 

(1.31)H;II). == d~ H,,).]=- O ~ H/v: ?; X:J 

To aee th1a one d1fferent1ates (1.30) w1th ~~ and uses the rela­
t Lon (recall dei'1n1t10n of {)++ (1.13) and property' ~+ ~u=O) : 

'"")- Lj++ H =- A++ ~- H + ')- H++J+ "\- LI(/) ?\J W VÃ,Y1V (/). '} '/",J . 

The resul t 1s 

(;t.J2)
fj+-+- I}JÀ+ 3 d~ H+"tfi" HJ~]1'==O 

Th1s 1s noth1ng but the oovar1ant (under world transformat10ns w1 th 

parameter ?;:.\V+- ) der1vativa, ~++ ~vÀ::: O • Returning to the 

rr: world th1s equa t í.on zead s d++ Ij;,,). = O wh1ch implias 
(I.J1) (the reason 18 that 1n the harmonio expansdon of H;v .... 

"'"\++-' /'. 01'\
there are no te:rme vanish1ng under t7 ). 

The new objeot cX,.J, 1n (I. :31) shou1d ±ransfo'l."lIl under the wor1d .• 
(~~+ ) transformations as a veotor so that H.)'4v 11"111 be a pro­
per world tensor (8ee (I.29) ). In add1t1on, ~ 18 def1ned up to 
teI'l11S Df the type ~Ã+'" (a pregauge freedom of (I.J1». So, the 

transformation law for ~~ 18 

S if+ := - ~- ,J+ Y;+ _ d- ,++ (I.JJ)
:I' r-c /\ OCa! /'1 A • 

'-1+ 1++
Wtthout 10S8 of generali ty both 0(.,./1 and 1\ can be taken to be 
analyt10 

1) Note that the av1elbe1ns w ~~ oan be obtained from (1.29) 
as maquare roots· of the lmetr1c· H~v , up to the tangant spaoa 
Sp(n) !reedom A! (much l1kQ the relationshlp between v1erbe1ns and 
metr10 1n general re1ativity). 
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~....tX: ::: ~+ ,À++ = o.	 (1.34) 

(the nonanalytic , i. e. ;Xfr- dependent part df ;(; must be of 
pregauge form, because H).tJ Ls analytic; then i t can be gauged 

aWa:;{ by the corresponding part of Â++ ). 
The next step is to plug (r.3l) in (r.30) and rewrite it in the 

following form: 

1")- (~++ 'f + é)- H+-t"Jt- ..p +-) =- O
O~ o- VJ -to v] o<v.P . 

This equatlon implles 

(1.35)
.b,++cl; + ~- H+i-Jt;t~ z: - ~- H++(++). 

Once again, one can ohoose the new objeat H++(++) to be analytlc. 
Taking into account (r.33), (1.14) it oan be oheoked that 

S H++ (++) =- rs:: À++.	 (1.36) 

Finally, one introduces yet another analytic object: 

~ (t-4) = H+-f" (+-+ ) -+ \-\++)1+ X; 1 ~i-cl (+4) = O 
(1.37) 

s:l (+4) == 0++ )t+ -+ d++ ))4+ . ~ . 

1'his maltes 1t possible to soLv e (1.35) for H-t-t)f+ 
1:1 

(1.38)H-H)i+:. i H~J(d~ ~(+~) -+ ()++cXJ) 1 HPlJH,,).= s1 
Summarizing the above discussion we oan say ~hat alI the 

oonstraints of hyper-Kãhler geometry bave been solved in terms of two 
unconstrained anal tic re ot'entials IM -t- and (+..() • Like th-;-
Kahle~ prepotentlal tsee (1)), they have their own pregauge 
trans:Ç'ormatlons with the analytlc parameter )/+. The dimension of 
these prepotentials and parameter are peouliar ((et)t+]= C"",,1, ­

2),[~(+~)J: [)"'+J = om their geometria meaning is obsoure in 
the present scheme. The origin of those objects will bacorne clêar in 
an extended framework involving oentral charge coordinatea (see 
aect. 11). 

'Ia would like to ~oint out that the approach to h;rper-Kâ.'bler 
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geometry developed here is closely related to the twistor approach 
to the self-dual Einstein equations (in R4) [2, J, 5J. This relation­
ship i~ analogous to th~ one we disous~ed in [1] in the context of 
self-dual IM theory. Here we shall only recall the fact that the 
t~stor approaoh makes use of the ~ basis and the central problem 
there i8 to solve the nonlinear bridge equation (the "splitting 
procedure" in the twistor language). ,In se ot , 111.2 we present the 
Ansatz due to Ward [5] whidl allows to solve this ,problem in a oer­
tain class of cases. In the harmonic framework we suggest an alter­
native way whioh is confined to the analytic /l world. The problem 
in this case is to solve the linear differential ~quation (1.21). We 
hope that this task may prove easiar. An example is worked out in 
sect. 111.1­

I. 7. !h~_~~r-J{ag~!:_!!!.tlri~!!Lth~_ana!l~!Q~ª§'!~ To comlete 
the	 differential geometry formalism we need the covariant derivative 
~~ • It i8 defined by the conventional constraint (which obviously 
ta.kes place in the tT: world): 

q..- - [Q>.-- ~+] == f).- + 4)- ­	 (1.39)(1Jo/. - pV ,(ljoi - c;( o( ­

=-e",-M ~-- LJ~ H-f4-~+- L):úJ--== E-)d:.~+ -~+ co:".
 
. + ~ - ~ ~ ~
 

Taking into aooount that l>Ql:: eot (ÕH)"; VdS ::: E+J- J:
 
one derives the contravariant components of the hyper-KBh1er metric in
 
the ') basis:
 

~}f-rJ+ ==- O 
(1.40)~jA"'J-=- ~t1;A+::: _ Eol;A+ E;J-: _H)()0Hr~ J 

~}4-J-:: t.O<+~- E~V-+ (jt~ v):= 

=2 H PG (õHr~ ). (ôH)~ ()' ;;~ H--v)- . 
The transformation law for the metric (which is a world tensor) oan be 
read off from the law for a'world veotor Af'+) A~- • The ,) basia
ã s asymmetrio ()14+ ia anal;rtio, but ~j.t - ia not), therefore N"t­
transforma homogeneously 

8pt+= AJ+ ;;; )#+ 

while SA}f- involves both ,4A- and AA+: 
8AJf-: AJ- ) ; r + A.J+ d: )t'­
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A peculiarity of the metric (1.40) is its dependence on the
 
harmonic variables, q:. 3(.x-t) x-) ü±) • This Ls quite natural
 
in the íl basis, w:ff'ere we now live. However, it a s covariantly
 
independent of 1l± in the sense of the following relations:
 

lJ -t-+dfI+v.- z: ;;b for Jp-.,;.,.. =- () 

9:J+-t Jft- J - =- J~+J- + r:r: 
Here ~++ contains su1table Christoffel terms. 

I.8. ~U~_chOiO~!L!!D--ª--~Q.....rma1_Q2.Q!d1nªte§.In addition to the
 
gauge (1.15) whioh· fixes the paramet er Y - one oan impose th;cee
 
further gauge s on the parameters í\).1+- ,)."t fJ and ).+t- •
e:t;From (1.33) and the fact that is analytic and MS the
 
flat space limit JljUvJrAV+ one oonoladas that the following
 
gauge is possible:
 

-r «: -+ 
0(,)'1 - ~~ ~ ~v =- ~/"J . (1.41) 

IJ\,. ,+ '1- ,Jt.",+ fJ- ,++
"uis implies 1\)" + ~ /\ <Ã.Av + ~ 1\ =- O • Introducing 

the ne" analytic paramet er 

(1.42)j ~ +:= ).i-+ -t" )~+ .:tA~ 
A

one oan express A. + in terms of )++ 
)'t 

Ao. 
(1.43)); ~ ~ )++ =;> ?[J ~J = O 

Under these oiroumstanoes the remain1ng prepotential ,y;(+4)trans­

forma as follo1l's: 

S~(+4)-: 0++A
)+r . (1.44) 

fhe saoond gauge fixing conoerns the Sp(n) parameter )fi
OlUsing (I.4l), (1.29), (1.25) one oan demand: 

).f!1 ~- ,+eol ::. ~ol ~ ).rI-J = - O(o(~) • (1.45) 

The third gauge corresponds to finding a normal set of ooordi­

nates in the analrtio basis. This means that one uses the, full 
remaining gauge freedom (in our case (1.44) ) to gauge away whatever 
pOBliIible from the prepotential ot(-+4). The remainder is a ooordinate 
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, V (+4)
expansion Df ~ at a given point, where the cOêff1cients coincide 
with the values of the nonvanishing tensors at this point. To achieve 
this one considers the expansion of a function of charge+S 

G»<:) 

f l+5) }".J:.+ """+ -r + - ­(:x+ 'U)= -JA~·"·..Ã-..4h,U"r·~lt' 'UI..' ---U" 
') _ / ';J. / . :o. WI kot+, \. n~ JIt1-S 

\.1\~-O 

Yt.1."H"I~S 

'( f~,-- '~"" tt ~ - . lh+ ~1- t · (1.46) 

(: 4' A++
Comparing the expansions of i;l '+ '/ and ') ,from (1.44) one derives 
the following normal gauge form of X(+·4) .' 

\..f(+~) _ ~.x+ + ""7 -; riA, .. )1Vlr", l~-' .l., . (1.47)o: - L -..uL·_·.:toM 1A.td."" . ur; ~ 
YI =. o / - / '~11'4 

+ . 4 
Note the absence of U Lo in (1.47). In the case of -g the coeff'i ­
oient C Á 1--.,A4 is the value of the self-dual Weyl t ensnr at the 

point X = O , and the higher rank coefficients correspond to the 
totally symmetrized oovariant derivatives of the Weyl tensor at that 
point. Still in '(<4 , XC+4) as. a function of three oomplex variables 

. (2 from X + -to 2 from 'lA. - - 1 from U(I) charge) 2) , as predioted in 

l?] .From the reality of the ana'Lyt í,o space ( ;X--r 1 1,{:t) under the 
oonjugation /V (see[l]) it follows that the coefficients c! are 
pseudo-real (since Ct~4) ia real). The genera11zation of the above 
interpretation to the case of R~t1 is straightforward. 

In the gauge (I.47) a few oonstant parameters survive in the 
.expansion of x++; 

).++ ~ .x; X t ÀA J -+ 2): Ur aP '; -t l<tÜ; ú>'i, (1.48 ) 

~J ..
where ;\ are ri~id Sp(n) rotations, a)h are r1gid translations. 

2The meaning of W(J ([w J= cm ) will -become olear in the next 
aect Lon, 

Note an intersting correspondence with the self-dual IM problem
 
cons1dered in [1]. Ás fol10ws from .e q, (1.38) JtC+4) enters H+0;
 
and hanoe alI the other geometrio objeots 1noluding the metric,via
 
a derivative Ov- ttC+4) • Clearly, at least in the normal g3.uge
 

_ Qne mav' writ!
 

2)Reoa.ll tha.t .x -r\Uij 'U - are real ,in the sense of operation rv 
but ge complex in the oonventional sens.e [lJ • The same regards also 
the U(1)-paramet'er. ):n fact, one ha$ no need to require 'Ut and-U­
to be mutually oonjugated, it Buffices to keep them real under ('J • 
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--;;-;I(-t4);: (V+-+\I.M.x+, 
v ./\1 /'" (1.49) 

(V++) ·,(f	 l)(t-4)
where j.J is defined by ex- (up to a gauge freedom). As a 
matter of fact , (V+~J~ can alwa.ys be regarded as some particular 
case of unconstrained self-dual IM prepotential in ]<4" for gauge 
gro up S p(n) ,with the internaI and space Sp(n)-indices identified. 
Thus, we observe a surprising isomorphism between the complete set 
of hyper-Kâ:hler rnetrics in R~h (given by :f,(+4)) a.nd a subclass of 
self-dual solutions of Sp(n) YM equations in 1<.4", (given by V+r ) . 

~is isomorphism deserves a further study. 

11.	 Central charges and the geometric rneaning of the hyper-Kãhler 
prepotentials 

In sect. I we.have presented a solution of the hyper-Kâhler 
constraints. We saw that alI the objects of differential geometry 
(vielbeins, connections, etc~ could be expressed in terms of two 
analytio prepotentials and with theír own pregaugeDl; dtCH ) 

freedom with analytic paramet er Â++ • However, neither the pre­
potentials nor the pregauge group naturally fit in the existing 
geometrio framework. A similar situation was observed in Kãhler 
geometry [lJ • Tbere we found an extension of the spa ce 'R,2n with 
a new central charge coordinate ~ ,[2J· cm2• Then it beoame 
possible to interpret the Kàhler pregauge parameter as a local 
translation of t ,and the Itãhler pr-epot en t ã al, as the bridge 
between the rt' and í\ coordinates l! and 2A • In this section we 
shall develop an analogous interpretation of hyper-Kahler geometry in 
an extended harmonic spaoa with an SU(2) triplet of central charge 
coordinates. 

11•.1. ~i~-.Q~~xte!!ê.io!Lof..1~Lh~Q.ni~L~~Wé begin 
by considering the following extens.ion of the Poincaré algebra 
(with Sp(n) x SU(2) as an automorphism group): 

[ ~~ Pvi] 2 i. .rz/" v 2~i )l = 

(11.1)r:r. i' L 1::. rz.	 ZLi] = O,
Lj'l'-) JI< 'J1 ~ 

Here lL'j =- l j l. Ls a real SU(2) triplet of central charge' ge~~rators. 
This algebra oan be realized in the apace R4",3;;: {::t"tf~' '} "2 'J }, 

11
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I 

where (x]:::. cm, [Z] = cm2 • "The derivatives covariant with respect 
to (II.l) are 

r;;	 .» d~ ~ ~ (11.2)
~~ =- ?X~i. + SL,l'tIl:L 'ri;; 2.íi ) (J ?2.Lj 

. -4., "3
Further, adding harmonic variables U±L to -g, I we find an analytio 
subspace 

{ "'yo}A+= X).4i. U -t: 2~+ =.	 e. (i u"f:" u...· U ±L.} CrI.J) 
..,A. Lo ') L J ') 

which is closed under the action of the full algebra (11.1). There 
we can introduoe qnalytic fields defined by the oonditions 

I\+to (L+l.~+L+.:t-L)(oUJ1 r:. 'd-x.M- 2 /1 d.2-t- )M )2-- r = O (11.4) 

d;+ ~ = r;)z+- (p = O, 
The solution of (11.4) i5 

(lI.5) 
~ -= $P (:t.)i+, 2. -to+) u:ri) . 

V411,3 N'U". •11 C• 2. _!!rv.ed~_-ªB.çi_~"Q~!:~a.h~t_J~~Q.@~l!:l. ext W'e sha'LL 
discuss the curved version of the space introduced above and locate 
the places where the hyper-Kahler prepotentials ocour as geometric 
objects. Our discussion w1ll be brief, we ahall only point out the 
modifications to the scheme developed in seot.I. 

First "e extend the -'7: group by adding local translations 
of 2.IJ) I)2Li ~ r'C'J'(x) • As in the case of Kãhler geometry [lJ, 
neither the gauge group nor the gauge fields wi1l depend on 2'J 
On1y matter fields are allowed to do 50. The requirement that matter 
2 -depeDdent arialytic f1elds (11.,) should ex1st in the curved oase 

has 1mportant consequences for the geometry. In order to make the 
analyticity (11.,) manifest we introduoe an anal;tio basis and ) 
group with the following new (in addition to (1.6) ) elements: 

-++ ," +:r ++"2A- - z: ZotJ U"Z 1tj + 1J - - (:z, U) 

Sl~"'= )t+(.x-t,'U) ') S2Á-= À-t-(~±l 'U), ~2Ã-= À.--(~:t} 1<) .(11.6) 

T.his gives rise to severa! new vielbeins in the A world covariant 
harmonic derivative ,2)++ (c f. (1.13) ): 
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JJ+T: 6t-t- + H+t-(++) d;--t 2;+- d2+- 4- 22tt- ~;i-+ ar: . 
(11.7) 

'"\+- '\++
For simplic1ty ihe vielbeins of d2 and ~2 have been gauged 
into their flat space values and the corresponding parameters have 
been fixed: 

(II.a)
~++ ').+- = )tt-, ~++).,- -= 2 À+-. 

H++(t-+) 
The vielbein transforms as follows 

S H++(++) = [j+r ).++ (11.9) 

which coincides with (I.~6). This reveals the meaning of the prepo­
tential tit(;.4}Which is r'e Lat ed to H++(++) qy the field redefinition 
(1.37) We stress that the vielbein H++(++) as well as alI theo 

other new vlelbeins appearing below have no need to depend on the 
central charge coordinates. 

The next step Ls to express the new vielbeins in cl;--: 

~-- (r. )~' !J (1.10)
Q(j =. /J---+ H--l++)+2c;- "2-+lH--{+~'2Ã-)4.';H--l--)~++.,-tU--

in t ezms of 1:1++ as so'lutions to the differential equations following, 
from (1.20). Further, the oovar-Lant; derivative:bt, becomes 

2); =- /1+ E-t:(+-) ")+- E+ F;-) d-- (1.11)'o/. + o<. C/r! + .Q( 2 

')++
N9te the absenc e of a (12 term in (lI. 11) , whioh is due to the 
a.n.alytlci ty of the parameter Â+-+- (:::r+J u) (11.6). Finally, the deri­
vative lJ~ is defined as' before (1.39) and has the following new 
terms: 

~-::. Ó- c..p+ ~-- (IJ--E+(+--) A-r 1-1--(+-)) '::).... ­
~ oi -+ o(,p{ O2 -+ o'- - LJ~ ~ 

-t (6- E;(--)- Ó~ H--C--))t3;++ tv;;{ . 

Here 

LP+ =- ~v>+ _ J... A+ 1/j,++)2H--(--)+? E+(i--) 
(J.., <J. oL ()I..,fi - 2 LJ oi \J N '" 

and one obtains (soe (1.25),(11.6) ) 

(' l.P + 'I - ,J+- '-P + I") - ++ 
O 0<.)'\ z, - ~ /\ d-- V '-.~ A (Ir. 14) 

which coincides wit~ (1.)3). Thus we find a natural place for the 
prepotential if+ also. 

The set ofAcovariant derivativas shown abov e must satisiy a num­
ber of constraints. They look the same as the ones cons1dered in 
sect.I with the exception of 

[~~,~;J:::- -2 SLolf );+ 
(11.15) 

[~;'~JJ~ -2...Qo<'p~+-T R:'~ 

[~~, ~fJ =: -2 S2~! d;-. 
Tbe se reproduce the flat space c ommutatLan relationsof the derivati­
ves (11.2). The essential new point i8 the presence of new.torsion· 
terms in the constra,ints, related to the oentral charge coordinates. 
They naturally give rise to a number of relations which were derived 
in sect. I as oonsequenoes of htgner-order differential oonstraints. 
Thus, the vanishing of the torslon 

rr; l, I(-t~)= O 
ylelds the anal;rtici ty of . :t.; (1.34). The relation 

T;j;((--)~O 

explains why H.I'J (1.29) is expresaed in terms of ~; .(1.31). 
Further, 

T';-+ li- /(++):= 6 
implies the analY~i01tY of H-t'+ (++-) Cand bhus of ~ (-+4)). Finally, 
the relation (1.35) which allows us to expreSB H~~~ in terms of the 
prepotentials is now equivalent to the torslon constraint 

T -t-t I; 1(+-) = O . 
So, we have seen that the introd~ction of the auxiliary central 

charge coordinates proved very use fuI in the geometric interpreta­
tion of the hyper~ler prepotentials and th~ir pregauge group. 
'However, none of these objeQts depend on the new coordinates. At 
the sarne time, the geometry permlta the exlstence of analytio matter 
fields with non-trivial central charge dependence. It ls intriguing 
to find out the meaning of such fields. 
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111. Examples of explioit construction of hyper-Kâhler metrics 

In this sect ion we sha.ll g1ve two rather simple 1<.4 example s 
in which we shall explicitly carry out the procedure for construction 
~ hyper-Kahler metrics. They 111ustrate the two aiternative approa­
ches to the problem. The first 1s to work 1n the À world and solve 
the linear differential equations for the vielbelns H-- (I.2l)~ The 
secand i6 to find the bridge to the ~ world by solving the nonlinear 
equation (I.14.). This se cond approach Ls analogous to the one of 
Newman, Penrose, Ward and others [2-5J. 

111.1. !g~Taub-~~_~iF1~_~~~Q~_~nalli~~basis. We consider the 
harmonic extension of 12,:~ with coordinates 

:rA ± =. (.x±"')-.x±) ) ~U.-J::i. (nLl) 

AlI the gauges discussed inSect.1.8 are assumed to be fultilled.Our 
choice of the prepotentials 15 prompted by the results in [7J whe re 

u2the Taub-NUT metric [8J WaS obtained írom an N sUpers~netric 

sigma model (the precise relationship between hyper-Kahler prepoten­
tials and Nu2 supersymmetric Lagrangians will be discussed in Sect.IV): 

i/.:~':..:x+ ~C+4)-:::_i. (:t-i')2 (X..-)'2.. (lI!. 2) 
/" j'1 ) 2­

This choice corresponds to an SU(2) x U(I) isometry of the manifold 
(SU(2) follows frem the absence of explicit harmonic dependence in 
(rrr. 2), U(I) rotates .x....l> e''a(.x, X ~ e-I'oI. X .). It is worth 

remarking that the form (111.2) is the simplest example of prepoten­
tials in the normal coordinates of sect.I.8, where all the symmetri ­
zed covariant derivatives of the Weyl tensor vanish at the point 
x ... 0, except for the Weyl tensor itself. 

'The next step is to calculate H+·~+ according to (1.)8) and 

write down the differential equa't í.ons (1.21) for H-.?t"-: (n> -kJ 
and H--)4 -:: (fi fI) ) - H(-~)) : ) 

[X-i"'d-t"+ xi- 0+ -t l:+ X + (..x+ d-- X+ ê)-)] H-= 

.= 'X -t -+ 2.~ 1" X + H--+- (X+JZ J-I ­

r:x'to++ x+ õ++.:xTx+(x-to-- x+:3-)l H(-3) = (IIr.)) 

= -X--+l-f-. 

It 18 not hard to check that (111.)) bas the following unique solu­

t1on:
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H-;: - K g'1 Cf - C\) r1.+ eV\ (i -+ ~ ')J 
a­

(111.4)li (-3):::. - ;:;);X- e., Ci-t C)[ti. + e., (i- lt)] 

_ r"-J 

a..::. X-.2+ 
1 t=- .::t+ .J: -:: - t{.. . 

Finally, a straiehtforward calculation using (1.40) and (1.23) pro­
duces the metric in the ~ basis. For instance: 

X"'~- (i-a) e~(I-{{) (:1.-tf)[i+ eh (ii"cf)J 

Q[:L+~Ú-aJÚ~f)] -1 +.f'Vl (:i-t\) C:t+ cf)
9ft"'V~-E)ií\C()HJ; \J=: 

(:i-a)[i+&(l-a)] 5C...x- C-í+t)e"'(-1+f) 
·i -t e; Ci-o..)(i+C) t[1+ e~&-tt)(~+d) 

As follows from the computation in ref.C7], the re basis form of the 
metrio indeed coincides with the standard Taub-NUT one[8J. 

This example, although rather simple, illustrates the main 
advantage of the analytio basis approaoh, the linearity of the diffe­
rential equations which determine the metric. 

III.2. Tb.~_~~j:LQLWard_~UhLlli!!~Lto_ih~_fJ'_~. As 
we explained, the main obstacle On the way to constructi~g a ~ 

basia hyper-Kahler metric from the prepotentials is the non11near 
differential equation (1.14) for the bridges. The nonlinearity ia due 
to the faot that the prepotential Je(+4)(.xí U) is naturally cJefined 
in the ~ bas í s , whereas the br1~ge V-A+ (~AC:l '2<) has natu­
ral ~ basis ooordinates (for the purpose of calculating the ~ 

metric one does not ne ed the sympleeti e bridge M (1.8) whioh affeots 
only the vielbeins). Nevertheless, a elever triok propoaed by Ward [5J 
make8 it possible to avoid this nonlinearity in a class of examples 
(in 'four dimen8ions). The idea (in our notation) i8 to ohoose a 
special dependence of dt[+~) on its argument .xJ.\ : . 

:1(+4) =- ~ (-to() Cp)4-+ X~ ) u) , (IIl.5) 

Here p)-f't': ~iU! where p}4~ (';'''',2j ~'= :1,2) t s a constant real 
vector J). Tben from (1.38) one finda 
~This~~oice is simplest though no~ uIlique. Original Ward's 
Ansatz [5] corresponds to us í.ng three-rank spinor P.ff++=.. ~IJ u1','Ut:I rather than pJ't + . d1I 
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t'"'\ 1.1>[+4)

H-++f -+ - p~+q++C .... +- 1<) q++-_ 00<., 
- <J P.J:A ") ) (J - d (p-t.x,tJ (lII.6) 

Further, in, ~ basis the equation (1.14) for the bridge lrj4~ now 

becomes: 
'·s 

(III.7)d++ ir/" (::r, ?<) ~ Pft+ 3+t- (pt:x:;. 1 u) . 

By inspection of (111.7), one concludes that Or~r can be sought in 

the form 

(III.S)1))f-r (~l1-i):= p~+- ?T(:x, u) . 

The advantage of this Ansatz is no~ çlear. With a bridge like (111.8) 

on~ has 

p"ft~;' =- p+ft (~'"U1),' (P'"r p;.=- O) (IlI.9) 

so the eq~tions (1.14) for the bridges become linear. In particular, 

eq. (III.7) 

'd+-t lr(X, 'ü):::: ~+T Cp-tX+, itJ 
has the solution 

( III.IO)'1t-,)1-t =- 'b)i+. ('Jur u.+W- a+r (.p'+-.:ir W).
V I r' J u-t Z/r+ (J c:.u) 

Here 7A. and ter are two sets of' harmonic variables, U-tZq-: 'U1"" lUi 
the harmonic distribution (7.{t''W+) -i has the prop'erty (9] :J 

d~"" (U+W~ri =- g (1 1-1) (u 1 'W) . 
Analogous1y, in the gauge (1.15) one finds 

'lrft- '" 1'1<+ ~.oI W 7.<~-:::: t+ (pt.x'" 1 1.<1"). (111.11) 

Having obtained the bridges, it is a matter of tedious calculations
 
to firid the expression for H-;t4+::. 0-- 1))1+-+ ;:x.Ai -u-:
 
and then to evaluate ();\I ;:xJ'k and (tJH)1:. 0XJ l-r~+ _
 

'")+ ' pk i}. H-~LJ+
 
~ ~\lX '~k /" :
 

dA~.l:Pk=- A~(!z) (~S; ... ?'k ~1(X))U+e 

dA"''' Ir1'"' '" A~ (X) ( S; - pft+:r; (J)u» 
{ - -+" • d 3+i­

%d:l)=- .lJw. «. Pv ~ 1 ~ =- d (I>+:x..+)
 

~ ,-(::{ ;u) -==­ \e!w- j p+-v u-tw+ .lI 

Ar -1 (f I ) 

v (X) -=i i: P'Y•.fp2lf'2 Sy + <yfL(a:) Pv.: • (af~ a.P' 6fi). 

Next one finds the vielbe1n. Elt-)Ik_ (OH)-:l. JJ+ ;X),(k..
o< - o<. í4.J

(see Append1x) us1ng 

( JH)-J. LJ = (SP + ~ p.P+1- )A-1 J. 
pt. Oi 1.."* P't' . oi f 

Final1y, the vie1bein E'tk equals (dHrj J. ;)-- JIv:x.)ik. 
~d one i8 ab1e to compute the metrio 

gftk,Jl::: E}Jol (E -+,Ak E -ve_ E-,Pk E+ vfJ) = 
o( .f oi 'f 

= Ci-+ ptrJi (e,4,Jêlt... 'f'/Ik PYf-+ r>Jtp"úk+(r'/') p.llk p>Je] . 

So, the above Ansatz works for this class of hyper-KShler metrics. 
However, we a~e not aware of any suitable Ansatz of thi5 kind which 
wou1d make 1t possible to find the most general hyper-Kãhler metrics. 

IV. ~er-Xáhler geometry and m-2 8upersymmetr10 sigma mode18 

fbere i5 a remarkable one-to-one correspondence between the
 
most general N=l supersymmetric sigma model in 4 dimensions and
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Klihler geometry [19]. The superfield Lagrangian for such a sigma
 
model is just the Kãhler prepotential K (CP) CP) of t h é manifold with
 
chiral (i.e. N=l analytic) superfields as its' coordinates. The rela­

tionship between N=2 sigma models and hyper-Kanler geometry ha~ been
 
'investigated in [11]. It was shown that the metrio of an N=2 sigma
 
model is neoessarily hyper-Kahler and vice yersa, given a hjper­

-Kãhler metric one oan always construct an on-shell N=2 sigma modelo
 
Rowever, unlike the simple case of N=l, it was a nontrivial problem
 
to give a recipe how to explicitly construot N=2 sigma models. ~e
 

. solution to this problem involves finding an adequate way to formu­
late N=2 off-shell matter multiplets in Buperspace. This was 
done in L12] using harmonic superspace. Hera we briefly review this 
approach and establish the precise ona-to-one correspondence between 
the N=2 sigm~ model superfield Lagrangians and the hyper-Kãhler 
prepotentials introduced in aeot.I. 

~·2 8upers~etry is usually realized in the superspace 
{;x.ol;!, 6,1i } ~Cli. } ( ;XP(J la the coordinate oi 4- dimensiona.l 
MinkO\'V5ki spaoe and ahould not be conruaed Wj.th;x.JA of the previous 
aections). Aading harmonio ooordinates Zt~i one becomea able to 
define analytio 5uperfielda 5atisfying the oonstraint 

(IV. 1)+ t+. - + "" ])()l. ~ =- J);t 't' :: O,
 
""1\+ +7\t


"here -llO<CiJi)'=: UlVo«(;t) are the +- projections of the spinor
 
oovariant derivativas. This oonstraint 15 naturally solved in the
 
analytic basis in harmonic superspace: 

olót ol.ÕI '-;t' + -:t .X A = X -2 i. ec..o( e d ua:ui) l 8QlGo= ~Gf)2{f' (IV.2) 

There "":D;(õ()= ()/()f)oI(õ/J- and (IV.l) simply means 

cp::: cp (:xA , e+ I 6 +, Ü ± ) . (IV'" J) 

It turns out that the N=2 matter multip1ets (hypermultlplets)
 
are adequately described by analytio super:Uelds r+ (XA ) e+)l§+ li)
 
"lth u(r) oharge +1. Here /" is an Bp(n) splnor index, und ttf.,.
 
satlsfies the pseudo-reallty oondition
 

(1V.4 ) ii'Jt-4- a ~ - Sl. ClV~ ~ 2-v :.?= -:/,V" .,)'::':.1 1 - - ' f-I.
 

fhe super:fleld as lt is, oontains an inflnita number of
r+, 
flelds in its harmonic expanslon. Bowever, lts frae equat10n of 
~otion 

]y~+1/+= O") ])+-r:= 'd'+-+- 2L· er:X+e';;-+ d:ot (IV.5) 

cuts off the infinite tail of auxillary fields. The remaining 4n 
real soalar fields (~-+::. C(!"'C.X) »t+." ) and t.he same number 
of fermions satisfy the Klein-Gordon and Dirac equations. The 
equation (IV.5) oan be.derived from the following adtion 

(IV.6)Sf'" = - Jol-l,xA ol2e...",UW,11.( ~lrt't+· 
The above picture can be generalized to inolude self-interao­

tiona of the hypermultiplets. The most gene~al action propagating 
4n scalar fields has the following form 4 

(IV.'7)s== ~Ck'.xA etze+JZe"'d~ H-+T(++) 

(IV.8) 
.W"(H) =-J;.+ (C(.... ,U) Jr't"..., clC"·OCt\ 'U) 

This action i8 invariant under reparametrizations of ql1+)
Sqt+ == ).,A-r ( 1-+- )U) 
as follows: 

Sd + := - d- )/+ \/).J.
:A ?' o- v 

Here ~-:: C1/J~+ 
acting on the argument 

pr[;lvided 0'(; and Jec'NJ tJ:ansform 

(IV.9)
8~ (+4):::. d- + d+ r ;\-11+ .
 

/1
 
f"'")+ +


and (7 Ls the partial derivativa 
U of .À".tf+(~I~(but ignoring the U 

dependence of the argument ~+ ). In addition, the aotion does 
not change um er the following redefinitions ().++::. ~++ (1..+ U))1

~~::: - ~- ).+1' J Ô~C+4) -:::. d+T )+"': (IV.IO) 

Indeed, 
SH-++(T+-)= 'd++).-ri"+ J)+f"~~ tj.- i\-t'i" =- Jr+-i")++ (rV.lt!) 

and the integral of such a total derivative in (IV.7) vanlshes. Here 

4) In L7] we bave proposed a fonn of the aotion wh1ch could contain 
more tnan one derivative 1>++. The corre8pond.in~ equ@otions of motion 
are of higher order in1># (although not in Ô'/~.x ) which ia 
equivalent to propagating more than 4n scalars. So, one oan restriot 
oneself to the action (IV.7,8) without loss of generality. We are 
grateful to O.Ogievetsky for po~nting this out to USo 
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one may recall a similar phenomenon in N=l sigma models, where the 
action is invariant up to a total derivative under Kãhler transfor­
mations of the Lagrangian. 

The variation of the action (IV.7) with respect to rI' yields 
the equation of motion 

( ;)- I.J)+_d- '-.0+) 1J+Tq V+' = d-X (+-4) -+ é)++ UJ-+ • (IV 12)
:íM do-v v o(./' f..--,71 o:/1 · 
~ now the reader should have recognized the r emarkab1e similarity 
of the theory of ~+ hypermultiplets with the description of 
hyper-Xãhler geometry given in sect.I. The analyt~c basis coordina­
tes X}l+ are replaoed by Grassmann analytic superfields ~+ , the 
hyper-Kiih.ler prepotentials Jt~ , X(+4) determine the self­
interaction. The on-shell derivative ~++~~ expressed from the 
equation of motion (IV.12) is exactly the sarne as the vielbein H+~+ 

(I.J8). Finally, the Lagrangian in (IV.7,S) coincides on -shell with 
the vielbein H++(·t+) (I.37) in front of d/~~.i+ in the covariant 
derivative ~++ (II.7). Thus, the invariance (IV.ll) of the sigma 
model action is associated with the transformations of the central ­
charge coordinate 2;+. 

We stress that it .is the on-shell hypermultiplet action which 
corresponds to a hyper-Kahler sigma modele The reason is that off­
-shell the hypermultiplet superfield ~r contains an infinite 
number of aux11iary fields of the sarne dimension as the physãcal 
ones. The role of the· equation of motion (IV.12) (which corresponds 
to the hyper-Xâhler constraint (I.J8) ) is to eliminate those 
auxiliary fields in favour of the physical ones. For the latter the 
equations with the familiar sigma model type of self-interaction 
emerge. we recall that in [7] we used just this procedure to obtain 
the Taub-NUT metrio. In [7] we also gave anotber interpretation of 
the equation of motion for v: which was inspired by the constrained 
superfleld formulation of hyper-Kabler sigma mOdels of (13J. This 
equation oan be viewed as the definition of a bridge to a certain 
rr baaí,a, Indeed, in the gauge dt+:: 1:); the equation of moti on 

(IV.12) reàds /1 

"])+-+r:+: -1 ())f-~(+4)= H-+--+-jt+(t\ ú) . (IV.IJ) 

Making the change of variables 

(+:::. Q}4i. U~ + 1))'C+(G u) , (IV.14)
1 

where Qhi.::: Q~l (.x««, eoli ) &01 i). , IV .~3) 'bec OIIlleS 
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])++ ?J~+{QI u) == H+~-r[Q.+-+ 15+(GI~)1·UJ.(IV.15) 
This is nothing but the bridge defining equation (I.14). So, we 
conclude that passing to the new variables ~.~L (which involves 
solving (IV.15) ) we have eliminated the infinite set of auxiliary 
fields. HOwever, in the new basis the condition of Grassmann 
analyticity (IV.l) for Y+ become s covariant: 

(IV.16)])-r .• Qf41. u: -+ d7.rf1+ + .J"
 
ri- ((J) L ') a.Ji 'Doi COe') Q d = O
 

This equation generalizes the flat-space eq~ation for the hyper­
mu'l, tiplet 

~ (i ~J'> 
..l)ci(OI) Q = O 

proposed in [14]. Comparing (IV.16) with the definition of inverse 
vielbein (A.6) we see that this equation can be written as 

EJj D; ((I) Q Ji == O 
that differs frem the equation giyen in (lJJ merely by a rotation 
of the tangent space index.)'1 with tlie Sp(n) bridge M; C~I1{) 
(. .E ~J.'f is covariantly U -independent). 

~o avoid a possible misunderstanding, we point out that there 
is no direct correlation between choices of bases in the target 
harmonic space .{ q, 1 'l.<.} and in the harmonic superspace {:x) e, u} 
where q, (and Q) are defined as superfields. For instance, we 

might stay in the ~ -world with manifest anaLyticity as regards 
~* and,at the sam~ time, choose the central basis in superspace 

where J)++ equals d++- and Grassinann harmonic analyticity is non­
manifesto It is crucial that both manifolds, {'l-, k} and {:x.) 8.,q, 
intersect by the pure harmonic pa~t {U}, having the common set of 
harmonic variables. 

Our next remark concerns an alternative way of describing 
off-shell hypermultiplets [12J. It make s use of chargeless analytic 
real superfield W (XA \ e+, 15+) ü.) satisfying the second-order 
equation of motion 

(1J++)2CV -= f (w 1 U ) . 
(IV.17) 

In fact, the ~ description can be obtained by a duality transfor­
matio~ from the CJ....+ one [15]. To this end one decomposes t+ into 
(we consider the case of '~.:'i ) 
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r+ == U}H W -+ U}4- j+-+ 

and -insert s 1t intD (IV. 7). Elimlnating the auxl1iary superfield . 1H 

one obtains an aetion for W alone, from whieh the equat t on o f 

motion (IV.17) follows. It ls remarkable that (IV.l?) looks almost 
ident Leal, wl th the "good cut 11 equation of the so-called "H.-space" 
appro ach to self-dual Elnstein equat í.ons [4J . 

In eonclusion we point out that besides hyper-Kãhler manifolds 
"R4n 

in one may consider quant"ernionic manifolds as well. According 
to a theorem ln.[16], such manifolds necessarily emerge when 
coupling N=2 supersymmetric sigma models to N=2 supergravity. 
Reeently. the general N=2 supergravity-matter couplings were 
explicitly constructed employlng harmonic superspace[17J. In a separa­
ta publication we shall describe how this eoupling gives rise to 
quaternlonic sigma models and shall find the prepotentials for 
that kind of g,uatarnlonic geometry. 

Aoknowledgements. Authors are sincerely indebted to
 
Q.Oglevetsky for numerous debates and oomments and to A.Perelomov
 
snd B.Zupnik for useful disoussions.
 

~!-NB!!. !~!~l~~Q...~Ul.Q...l!L1he 'T _!!2!!i 

The ~ basis components of the v~elbein can be read off from the
 
expressions for oavar:1ant derivatives '0; , it>; (1.10), (1.23),
 
(1.39) by passing in the latter to central basis coordinate :x.P1<
 
(we impose the gauge (~45)):
 

E+/1< ~ (ÕHy1 11;.-+ Xpl< ilJ--+-t E+J'k~ O, 
o< o' /M ) ç;( (A. 1) 

E/k "" r E;,k =- ~-:x;1<- CJH)~ If'.i;.zfti?ó.1 X"\ fv-ê"i 
) ~y! sP ')- -)+ jJi< 

=. ( (lH) 01 (7 &Tf'> X . (A. 2) 

~ 1:-+ ")~ t" t-t ++ 
Here ri./ -='C' +CA.! "here (AJ-- are given by e qs , (1.27), 
(1.22) and (JH)j:= ~-+ H--,p+ = t?+ ;)(J1" d . )--,x-t-Y 
Note the U8 eful relations ?'f 'jJ" • 

()+1" ~.,+ ,21'k =: O ::=> (~-)2 ~-t :xJ'k =. O (A. J) 

whioh follow frem the analytlclty of H'h"'''' and frem the gauge 
chotoe (1.15). The metr1c is def1ned as 

q fk ,AS( _ (E +pk E- À.s E-J'k E- -t A~) \)10(
(J .=t) - (1( J - eX j3 .J,-. (A.4) 

It lnvolvQ8 no dependenoe 011 7A. ± 

(A.5);1++ i'":" :: O 

that onn be oheoked by using the eg,uation' (A.l) together with 

2-i-t" E-}'k = E+Jh . 

Recall that the Sp(n)-connections of the rt basis derivatives 
~+T)~-êan be entirely removed by rotating tangent space indices 
wi th the help of the Sp(n)-bridge M{(~) '2-(} (the latter drops 
out fro~ the metric (A.4) ). 

It is useful also to quote here the vielbeins w~ich are inversa 
to (A.l),(A.2) and produce the conventional metric (with covariant 
world indices): 

c: t ri. _ ") --v+t/.
 
L lk - - 'tJ1<
 V\. 

E -" == J,. X-i'(oH) 0(_ J, x+~(QHri cpd+Xfl.'~ .1~-rIJH,~·6)11< 71< li' 71< J r1 fO ?c. -[-' l' 

E+} E-).~ E-.P E+~t.- 8'\Se:
".lI< .p +"]>1< J - f k » 

E-' e"; O Et-' E-tjl<= O (A.7)
J'1e o< )! I< ot J 

E-;:kE+j3=SP E-t-jk E -j3 = S' 
(fi jJJ< fI.) ~ :li< o< 

Zl+-tE+ ol 
=. O '})--E+O<=-E-;O<

-.;k ) -.; k -:11<' 
It is easy to check that the metric 

(A.a)a - E-j'JE+ E-4'JE­
dfi< )$ - '"fk ).S P - fk ).s.p 

t s U -independ ent, (3+r iJ'k;ÀS =. O , and is indeed inverse to 
3ft)).s (A.4). 

As a final remark, we point' out that the skew-symmetric tw~old 
charged obje ct 
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1­

(A.9)n	 + + - (,'j) t: üt: -:=. E-+ J3 ET 

.-lL ryk )Às] - .5L ryk"lÁs1 u~ J ll<).s ~ 

oont~ins just the triplet of eovariantly constant l-forms the 
existence of which i8 characteri8tic of hyper-Kâhler geometry [11,13J • 
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ranbnapHII A.C. H AP.	 E2-87-264 
reOMOTpHH ~nnHCpODOqH~X nonea H3 
I\OMMOKCIIOA li rapMOHH'lleCKO.Ü aH8JIHTHt.IHOCTeH. 
rHnopK9nopOD cnyqaA. 

npHHqHn coxpaHeHHH rapMOHHt.IeCKOH aHaITHTHt.IHOCTH npHMe­
HeH AnR Haxo~eHHH npenOTeH~HanOB rHrrepK3nepOBOH reOMeT­
pHH. Hx reOMeTpHt.IeCKHH CMMcn BWHBneH B paMKax pacmHpeHHO­
ro npOCTpaHCTBa c KooPAHHaTaMH ~eHTpanbHoro 3apHAa. YCTa­
HOBneHO B3aHMHO-OAH03Hat.IHOe COOTBeTCTBHe Me~y rHnepK3ne­
POBWMH npenOTeH~HarraMH H HaHôOnee OÔ~HM narpaH~aHOM d= 
=4, N=2 cynepcHMMe~pHt.IHOH a MOAenH BHe MaCCOBOH dGonOt.IKH. 

PaÕOTa BwnonHeHa B llaõopaTopHH TeOpeTHt.IeCKOH ~H3HKH 

oaaa. 

Flpenpaar 06'he,nHHeHHOrO HHCTHTyra anepasrx HCCJIe,nOBSHHH. ):(y6H8 1987 

Galperin A.~.et aI. E2-87-264 
Gauge Field Geometry from Complex and 
Harmonic Analyticities. Hyper-Kahler Case 

The concept of preservation of harmonic analyticity is 
applied to find unconstrained prepotentials of hyper-Kãh­
ler geometry. The geometric meaning of prepotentials is 
revealed with introducing extra central charge coordinates. 
Finally, we establish the one-to-one correspondence bet­
ween hyper-Kãhler geometry and off-shell d=4, N=2 super­
symmetric a-models. Their most general Lagrangian is shoW! 
to be uniquely composed of hyper-Kãhler prepotentials, 
with the analytic space coordinates replaced by analytic 
hypermultiplet superfields defined on the same set of har­
monic variables. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JlNR. 
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