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In this paper we give a further application of the concept of
harmonic anglyticity in RAhdevopoled in{1 J. We show that .the
constraints defining hyper—Kéhler geometry in curved'Fi4n can be
interpreted as the integrability conditions for the existence of
harmonic analytic fields. These constraints can be solved by expres—
sing all the elements of the differential geometry formalism in terms
of two unconstrained analytic prepotentials (ome of them is in fact
a pure gauge). The geometric meaning of the prepotentials is brought
out in an extended framework involving central charge coordinates.
The proocedure of constructing the hyper-Kidhler metric from the pre—
potentials involves solving a differential equation. In one approach
it i1s a 'nanlinear equation for the bridge between the original
basis with gauge parameters independent of the harmonic variables,
and a new basis where analyticity becomes manifest. This approach is
in many respects similar to the twistor ome [2-5] . An alternative
approaoh leads to a linear differential equation relating the viel-
beins of the harmonic covariant derivatives in the new analytic
basis. Examples 1llustrating both cases are given., Finally, we
establish the one—to—one correspondence between hyper-~E&hler geometry
and N=2 supersymmetric off-shell sigma models. It turns out ‘that
the hyper-Kdhler prepotentlals determine the Lagrangian for the N=2
hypermultiplet (N=2 matter multiplet) superfields in Jjust the same
way as the Kihler potential prescribes the lagrangian for the N=l
chiral (matter) superfields.

The reader is expected to be familiar with the ideas and nota-
tion off1 ]. Like in [ J_Lour consideration here is purely local,
we do not concern any global aspects of hyper-Kdhler geometrye.

I. Harmoxic analytioity and bhyper-Eahler prepotentials

I,1. Hyper-Kihler constraints. The set-up for hyper-Eihler
geometry is analogous to that for the self-dual Yang-Mllls equations
(see[ 1 }, seot. III) . One considers the Euclidean space R =
= {xMiy, where M=4 ... 2n and (=142 + o In
1t one defines fields ¥yp. ij...() which transform under the
followlng gauge groups:
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Here Q’/“' ) correspond to coordinate transformations; 3
Toz"{/(l) a/,o(’—’i,---zh), to looal ,S'P (n) transformations; L)J
are rigid SU(2) indices. Thus the tangent space group 1s chosen to be
a product of local Sp(h) and rigid 8U(2). Correspondingly, the
covariant derivatives involve only SP(n)_va.lued oonnections:
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L(PY) ]—-(PJ‘), (1.2)

where \—‘ are the generators of SP(V\). This framework allows us to
impose the following constraints whioh define hyper-Kihler geometry:

|2 D5 1= &) Rup= £, Ry g, aw

or, equivalently:

i&l ¢, o%)s(jﬁi RL-‘JB[o(,JB] =0.

(1.3/)»

In order to establish a contact with the standard oharacterization

of hyper-Kéhler geometry (see Introduction to Ll]) we take notice

of the fact that the component K. AILB{1E &J Rexp of gene—

ral Riemann tensor K., g; genmeratés a subgroup 8 (n) 1in the full

holonomy group 0(4n) generated by this tensor. So, eqs. (I.3) (or

(1.3’) ) amount to reducing the holonomy group to a subgroup of

SP(n), in accord with the general definition of hyper-Kahler manifolds.
From the Bianchi identities it follows that the nonvanishing part

of the curvature R rs) is totally symmetrio . In the case of

R4 it is just the self-dual half of the Weyl temsor, so in four

dimensions the hyper-Kihler constraints are equivalent to the condi-

tion of self-duality for the Riemann tensor. 3
The problem now is to find a way to present (1.3) as integrability

conditions, which will lead to their solution. This can be achieved

in the extended framework of harmonic space.

I,2. Hyrmonic_space and analyticity. We ©begin by adding
*; U2 £ R4h
harmonic variables U¥t € S(/(2) to the coordinates o )
[ M )’Ll*!:} . Then the constraints (I.3), (I.3’) can be rewritten
in the following equivalent form (see the discussion of the self-dual
M constraints in[1 ]):

N NP, - )
[0y Dp)= 0> Rpg=tsRyp ;=0 @

2,857 =0 < L =uiy, W

L

(1.4)

Here %++‘—‘ 9++E 'M*"BI/QZ(-‘: is the harmonic covariant derivative
(in this case it coincides with the rigid one, since the gauge
parameters (I.1) do not depend on 2¢*t ). In addition we require
that all harmonic functions have definite U(I) charge, i.e. they are
eigenfunotions of the operator B°= ?,('H%M*“ - ?,4"‘2/9?[‘ .
Obviously, (I.4a) now has the meaning of the integrability
condition for the existence of harmonic analytic flelds defined by

+ —
x,u)= 0 -
@"( (63{ & , (1.5)
As we have seen before[ 1], the way to the solution of such
constraints goes through the introduction of an snalytic basis in
harmonioc space, where the amalyticity (I.5) becomes manifest. It is
defined with the help of bridges YAt (7, z()

oA = MU + VA (1, u)
SX/';“’: )’“*(:(,f,’u)
SN = W (X %), dur=0-

In this basis the analyticity of scalar fields simply means that they
do not depend on ‘I/“' - This statement is covariant under the

group (I.6). In other words, the covariant derivative %z can be
chogen in the form

L]
* = + + x.7n
By = Ef 2‘*/4 + Wy -
However, the tangent space group is still the original one (T.1),
and 1t violates the explicit amalytioity of tields with,SpP (n)
indices. However, just as in Kxhler case (see disoussion in [1] after

eqe (II.26)) the basic oconstraint RE}‘ 1= 0 (I.4a) guarantees the
existense of analytic tangent space. Indeed, it fallows from this

(1.6)
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constraint that the (Z',/ oovariant conneotion 5(); oan be presented
in a "pure gauge" form:

w;ﬁr-. (M'i)ﬁs Ezﬂ %/: MSJ’T (1.8)

Symplectic matrix M,/ﬁ(—?xu) provides a bridge to the tangent space
with manifest analyticity:

Py = Mo 6 () | M HT= &
MM E
SRR SR AT RO U

The new Sp(n) parameters )a( 7 are analytio , )d.r—“’ )0‘ da(l,':,?{)-
Correspondingly, in this analytioc tangent ) frame there will be no
oonnection (,();'(

(+d”‘_ P -)(+w AW ol h Nt
030, ’ )/\- f?d MI’ bf’ V)(T’l )P- 8/‘5 M I, M= §g Ef%;j&:((.l.lw
Note an important difference with the Kadhler ocase. There, the analytic
tangent frame group was induced by the analytio world transformations
and was essentially complex. In the Present oase, this group is again
SP(n) with real parameters )dﬁ(_xl ‘L() (reality is defined now with
respect to generalized conjugation A,]'_l] which has no analog in
Kahler case). :

In what follows we shall work in the analytic basis (I.6) and
frame (1.9), so we shall often drop the identifiers A A . The new
vielbeins E':‘ transform as follows k

(1.9)

S Eﬁ(/l: )d /éE/sM + E, v 9: A (1.11)
They are still subject to the constraint (I.4a):
M
*L"_o( Eszo_ (1.12)

It 1s not hard to find the general solution of (I.12), but we post—
pone this until we introduce some other useful objeots.

I.3. Harmonigc covariant derivative 08++ « Going to the analy-
tic basis (I.6) and frame (I.9) we have made the derivative X
-almost simple. Instead, the harmonic one acqulires vielbeins and
connections?

D= DT HIT QLI P e 0= AL 0t an

Here
HYAt = B8 T UMY Hropes arvqppe. g it

W P= M,V At

(I.14)

S H¥x _ A—l—-’-)/‘t) Sw-*;ﬁ:_ A++)p{ﬁ_

The parameter )/4_(.1:1 'l() is a general function;so one 1is able

to gauge the vielbein H*"’/“ into its flat space limit .‘I‘ﬁ* :

HI7% X' & ey )= ) s

This gauge will be always implied henceforth.

Recall that in the IM theory ]’_1] the bridges connecting the )
and ¢ frames were secondary objects, they could be expressed in
terms of the analytic comnection |/t of DT, The latter was the
unconstrained prepotential of the self-dual YM theory. The situation
here is different in that it involves one more step. The coordinate
and frame bridges DAY and Mdﬁ can be found as solutions of
(I.14) given the A world ( = frame and basis) vielbeins and
connection of @'H' (1.13). Howevery, the latter are not unconstrained
this time. As we shall see in sect. I.6, they will be expressed in
terms of some unconstrained analytic prepotentials.

We remark that tke equations (I.14) relating the bridges to the
vielbeins and connection of 08++ are highly nonlinear because U
and M are defined in the ‘T basis, while H¥Yana cu*t are
analytic (see (I.16) ) fields defined in the 2 basis. Under
certain simplifying assumptions they can be solved (see an example
in sect. III,2), but it is hard to deal with them in general. There
is an alternative approach which requires living only in the A world,
thus avolding the use of the bridges to the T world. I, this
approach one has. to deal with linear differential equations
(see sect. I.4).

We return to the discussion of the constraints (I.4b). We have
to insert the expressions (I,10) for b:( and (I,13) for %++
into (X.4b) and examine the oonsequences:t



DHE /’ = 8" E v wt PEL= 0

P (a)
Ay H*Mr =0
(b)(I.l_ﬁ)
+ ++
By W =0. ()

First we consider (I.16a). Note that it 1s covariant because the
parameter 2‘;" ;\/“‘ in (I.11) has the property A'H'(af Xq—)= 9,
in the gauge (I.15) (taking into acoount (I.16b ) ). From (I.16a)

one can express the comneotion £JVt in terms of the vielbein E;/': ’

- +
wr Ap = E(a( N E-L ) - (1.17)
2

Here the SP(n) indices of UVt and E"i are lowered with the
help of th o= + -
ﬁ-: e symplectic tensor _(La( ( wa(ﬁ _jZ)ganCU p{f’,eic))
w of 1s symmetric in 0( beocause 1t takes its values in

the algebra of Sp(n) The antisymmetrio part of (I.16a) remains as

a constrailnt which will be solved later on?
(I.18)

Secondly, (I.16b) means that the vielbein H¥'M*¥ nust ve
analytic, H¥W* = H¥¥9+(x% U . Finally, the anelyticity
of L{)‘H’ (1.17) (following £rom I.16c) ) will be a consequence
of the explicit expression for Ea‘ in terms of independent pre—
potentials (see eq. (I.27) below )

I.4. Harmonic covariant derivative 08-— « As in the case of
Y.M, self-quality the vielbeins of ,® ~ in the A  world will
prove essential in the construction of the differential geometry
formalism. In the (T world @ "= 2 "= ¢ 5 dute
Passing to the )\ world, it becomes '

%"f 2+ H T+ H'V"af 02 AW
SHAS = AW Sw A==t 5. (2293

As in (1.14) the new vielbelns and connection can be expressed in
terms of the bridges U~ and M . However, following B.M.Zupnik[t’:]

we prefer to find them directly from the relation
- - I+ :
[_25'” D)= D= 2™+ x4 *9 - x4 g (1.20)

o__
This relation 1s obviously true in the fZ: world (there 8 3

= utt /22(*‘— _La/ﬁ'll ¢ ). Note that D° 1s not cova-

rilantized in the ) world. The reason 1s that every obJect in our
framework 1s an elgenfunction of s as we have stated abdbove.
In the A world, from (I.13), (I.19) and (I.20) ome gets

ATTHH - NTHYAT = - gt

- e e (1,21)
- LttM

A H - A H /‘1 —_ D(A\ .

In addition, the curvature term in (I.20) must also vanish. This

becomes true after deriving from x""”E M= (1.16a) the relation

%“ E /" ¢ (it can be proved by going back to the ¢¢ world).

Then w" 1s expressed in terms of _E

ww) = E(ﬁl A"’E/ﬁ) (L.22 )

which together with (I.17) implies RTT = 0.

The equations (I.21) are linear differential equations for
H /'” . Their solution always exists and is unique. One way
to see this 1s to comstruct the solution perturbatively [67]. To this
ond onme introduces an auriliary basis: Zg''= b AT 1/‘ 24+C

There the operators A'* and A~ become

20+++ A++ , A= 20--+ A—-,) 3t kt:'/n‘&“_ )
Rose qrmtart ) A (HAR Q)W - 77Ut

Then (I.21) takes the same form
- -] +¥ + )= _
k=% k[ hNT]=0

as the YM equation (III.26) from [ 1] and 1s solved in the same way.
0f course, one should try to solve (1.21) nonperturbatively. In seot.
III.1 we give an example.

Construotion of the viel Now tt 1s easy to
#ird an expression for Ea‘, whioch aatiafies (I 12):




£/ ej (9H)_iyﬂ', (H))'= o5 H L Atel=0.a.

In fact, the matrix (5H)"i alone does satisfy (1.12). However, it
transforms as follows (see (1.6),(I.19))

S @H); ":- -\ (9;:)‘1 v (2.&()’i f’)* plad (1.28)

The second term here corresponds to the seocond term in (I.ll), but
the first one is different. Therefore one introduces the new object
eof‘ which is analytic (so it does not spoil (I.12))and supplies
the correot tangent group transformation:

36’“:)/3 A eo(') 2;/\/"'-

The solution (I. 23) of (I.12) 1s unique. Indeed, 1f here were

(1.25)

another solution E Wl , the combination E’ MEA would be
a dimensionless tensor, the only such tensor in the theory is Sol
After constructing E we can find a new expression for
wH‘ £ (117
(1.26)

f" €nae f)+e(a/' (QHL{UA”QI H 7™ €ppy -
Further, using (I.16b), (I.21), (I.19) one finds _
A RHP Y= 5 (Rt 5HW)= DG HTH G T
so (I.26) simplifies to

(I.27)

a):('} = e(ﬂ‘ﬂA++e/fdf-)+e(A A%—H-H—V-revﬁ) .

In this form the analytioity (I.16b) of Q%+ 1s obvious.

I.6, Hyper-Kghler prepotentials. So far we have been able to
solve all the oonstraints folliwiag from (I.4) except for (I.18).
Here we shall solve this oonstraint by expressing the two basic
analytic quantities ed/‘ and H'”/“'* in terms of unconstrained
prepotentials.

Repeating the steps (I.26,27) one oan rewrite (1.18) in the
following ‘:oml

e[,tPA4+efP]+ e[dpa); H‘H’?*eA}i] =0- (1.28)

|

Next oge multiplies (I.28) by & deﬁ and introduces the nota-
tion %

Hus = €ug @y = = Hyy - (12
after whioh (I.28) vecomes o
A H /N -2 3[/1 had o HV]P 0. (1.30)
This equation implies
H/WR‘ 2l.'/1 HV)«]"O %' /M\I é)/‘f : .51y

To see this one differentiates (I.30) with 9;\ and uses the rela=—
tion (recall definition of A3*T (1.13) and property JtH, =0):
P Juv

05 &* /w = 005 Huw +0, NP % F
The result is
B Hooxt 3200 K7 Hypp=0 @22

This 1s nothing but the covariant (under world transformations with
paramet er 9 )‘H' ) derivative, P+ /N =0 . Returning to the
T world this equation reads 't Hi, =0 which implies
(1.31) (the reason 1s that in the harmonic expansion of H—
there are no terms va_nishing under 9** e

The new objeot OZ in (I.31) should transform under the world °
(9 ')\ U+ ) tra,nsformamns as a vector so that H/N will be a pro-
per world tensor (see (I.29) ). In addition, ol 1s defined up to
terms of the type ?“ At*  (a pregauge freedom of (I.31)). So, the
transformation law for M is

g x+ J+0iy

Without loss of generality both (Z and ) can be taken to de
anglytic

)++ (1.33)

1) Hote that the "vielbeins® can be obtained from (1,29)

8 Ysquare roots" of the "metrf““ y up to the tangent space
8 (n) freedom A,‘ (much liks the relationship between vierbeins and
metrie in general relativity/.




?*X* = X'+ o (T.34)

(the nona.na.lytic R - b dall dependent part of DZ;« must be of
pregauge form, because H V 1s analytic; then it can be gauged
away by the corresponding part of tt ).

The next step is to plug (I.31) in (I.30) and rewrite it in the
following form:?

O (47 Ly« 3 HI7 L3 ) = 0
This equation implies

A++£++ 9 H+«H)x'-o\f+

Once again, one can choose the new object H'H(‘H') to be analytic.
Taking into account (I.33), (I.14) it oan be ohecked that

H++(++) (1.35)

5 HH (++) - A—H- /\++. (1.36)

Finally, one introduces yet another analytlc object:

C%C-M) H++(++) ++/4+0\£/:— ) a:—olfcu): 0
SLED= o X DTN

This makes it possible to solve (I.35) for Hth+

R e LUP05 200DV LE) HHe 84 @

(T.37)

Summarizing the above dlscussion we can say that all the
constraints of hyper-Kidhler geometry have been solved in terms of two
unconstrained analytic prepotentials of"“- and OZC'M) Like the
Kzhler prepotential K (see [1] ), they have thelr own pregauge
transformations with the analytic parameter A*". The dimension of
these prepotentials and pa:cameter are peculiar ([,‘f/"*] CM’

2(*4)]- [X] = on 2), their geometric meaning is obsoure 1n
the present scheme. The origin of those objects will become cl2ar in
an extended framework involving central charge coordinates (see
sect, 1I).

Wo would like to point out that the approach to hyper-K&hler

10

geometry developed here 1s closely related to the twlstor approach
to the self-dual Einstein equations (in R4) [2,3,5]. This relation-
ship is analogous to the one we discussed in[1] in the context of
self-dual IM theory. Here we shall only recall the fact that the
twistor approach makes use of the /7 basls and the central problem
there 1s to solve the nonlinear bridge equation (the "splitting
procedure® in the twistor language). In sect. III.2 we present the
Ansatz due to Ward [57] which allows to solve this problem in a cer—
tain class of cases. In the harmonic framework we suggest an alter-—
native way which is confined to the analytic A world. The prodlem
in this case is to solve the linear differential equation (I.21), We
hope that this task may prove easler. 4n example is worked out 1in
sect. IIX.1.

I.7. The hyper-Kiéhler metric in the analytic baslis. To comlete
the differential geometry formaiism we need the covarlant derivative
@;{ « It 1s defined by the conventlonal constraint (which obviously
takes place in the ‘T world):

Vg =[R2, Y= A +ws = (1.39)

<M g ALY ALz F 5

Taking into account that 20( el (,)/., "1\) E+d—9+
one derives the contravariant components of the hyper-—Ka.hler metric in
the .,\ basis:

g/hhh -0
g/(“‘)'.-.-, 307‘“: - o E*‘}'z - H/")(BH)';' J (1.40)
gH e BFPTED 4 (s )=

= 2HPE (DM, > (D), V' L H™ )

The transformation law for the metric (which is a world tensor) can dbe
read off from the law for a-world veotor A"H) A’“‘ . The ) basis
is asymmetrio ( }(“" is analytic, but )"" is not), therefore A/‘*
transforms homogeneously

A/A-O-: AJ+ -),LH
while SA/M involves both A’“ and AA+.'

SA/= AT X T+ AT X

11



A peculiarity of the metric (I1.40) 1s 1ts dependence on the
harmonic variables, lg g (1" x- 2(*) . This is quite natural
in the ;l basis, where we now live. However, it is covariantly
independent of ’u* in the sense of the following relations:

%-ﬁ“g/{ﬂ)_: 2!—1' g/rw—: 0
%++yﬂ—d-:j,u+\)— +j//-u-* .

Here D't contains suitable Christoffel terms.

I.8. (auge choloes and normal goordinates. In addition to the
gauge (I, 15) which: fixes the parameter )\’q' one can impose three
further gauges on the parameters )/’”' Ao(ﬂ ana )\t*

From (I.33) and the fact that is analytic and has the
flat space 3imit _YL/N one conclides that the following
gauge is possibdle:

t_

= %5, Huo

This implies /4 2‘4 )\)f‘xAV + 9- }\**:

the new analytic parameter

1++: 1+++ ‘)\)-rlA-:) (1.42)

+

= —Q‘/u\) : (I.41)

« Introducing

A
one can express );; in terms of )++

A
+_ 3" yt++ N = Nt (I1.43)
;\ = 9« ) = v ) 7= 0
M . M “4)
Under these ocircumstances the remaining prepotential o\f trans—
forms as follows:

§ okf(ﬂ) = 9++/)\+* . (T.44)

The ssoond gauge fixing concerns the SP(n) parameter ()ﬁ .
Using (I.41), (I.29), (I.25) one can demand:
H_ oM - - )t

ep, = soé — )’(f = - ’9(0( lﬁ) . (1.45)

The third gauge corresponds to finding a normal set of coordi-
nates in the analytic basis. This means that one uses the full
remaining gauge freedom (in our case (1.44) ) to gauge away whatever
possible from the prepotential CY(M) The remainder is a coordimate

12

‘point. Still in ?24
“(2 from Xt + 2 from U~ —1 from UCI) charge) 27 , as predicted in

¢4)
expansion of x at a given point, where the coefficients coincide
with the values of the nonvanishing tensors at this point. To achieve
this one conslders the expansion of a function of charge+ S
<D

F&S)(I* u) = Z_ x/u._. 2 Ul u?’mu;*,---u:'m -

W*'V\>$

S/h M Uiy e ¢ (1.46)
A
+
Comparing the expansions of o%( 4) and jﬁ +, from (I.44) one derives
the following normal gauge form of 0(((*4)‘

O‘Z’(M) Z ey /"n4 U, -

Note the absence of 7/1;_ in (I.47).In the case of ?4 the coeffi~
olent C/’""/ql‘ is the value of the self-dual Weyl tensor at the
point 7= , and the higher rank coefficients correspond to the
totally symmetrized covariant derivatives of the Weyl tensor at that
6*4) 1s. & function of three complex variables

oA Hars g Cpy o CTedT)

fg] .From the reality of the analytic space ( DC"" UE ) under the
conjugation (see[l]) i1t follows that the coefficients ¢ are
pseudo-real (since O'ﬁ(*ﬂ is real). The generalization of the above
interpretation to the case of ,4” is stralghtforward.

In the gauge (I.47) a few constant paramet ers survive in the

expansion of ’j"’*:

At xnay Y« 2hut at . wiur wd s (1as)
where ;\’u are rigld Sp(n) rotations aft are rigid translations.
The meaning of (W' ([w]= om® ) will ‘become clear in the next
section.

Note an intersting correspondence with the self-dual YM problem
considered in {1] . 4s follows from .eq. (I.38) 0‘8&4) enters YA+
and hence all the other geometric objects including the metric,via
a derivative ’B;&fc‘*ﬂ . Clearly, at least in the normal gauge
--Qne may write

2)Recall that X1, UNL U™ are real in the sense of operation <~

but e _complex in the conventional sense (1] . The same regards also
the I)—pa.rameter. An fact, one has no ‘need to require Lt and 2¢—
to be niutually conjugated, it suffices to keep them real under ~~ .

13



M

WA= (V)L

where (Vﬂj‘)ﬂis defined by OY&‘{) (up to a gauge freedom). 4s a
matter of fact , (V*')f can always be regarded as some particular
case of unconstrained self-dual YM prepotential in ﬁf‘" for gauge
gro up Spﬁn),with the internal and space Sp(n)—indibes identified.
Thus, we observe a surprising isomorphism between the complete set
of hyper-K&hler metrics in Rﬁ”(given by Afﬁ%)) and a subclass of
self-dual solutions of sp(n) M equations in FZ‘“ (given by »/+f D.
This isomorphism deserves a further study.

(1.49)

II. Central charges and the geometric meaning of the hyper-Kihler
prepotentials

In sect. I we. have presented a solution of the hyper-Kahler
constraints. We saw that all the objects of differential geometry
(vielbeins, connections, etc) could be expressed in terms of two
analytic prepotentials OZ+ and OZ(+4) with their own pregauge
freedom with analytic parameter At+ . However, neither the pre-
potentials nor the pregauge group naturally fit in the existing
geometric framework. A similar situation was observed in Kihler
geometry [1] . There we found an extension of the space R3N witn
a new central charge coordinate Z [Z] = cmz. Then it became
possible to interpret the Kahler pregauge parameter as a local
translation of Z , and the Kihler prepotential as the dbridze
between the (T and N\ coordinates Z and 2, . In this sectlion we
shall develop an analogous interpretation of hyper-Kiahler geometry in
an extended harmonic space with an SU(z) triplet of central charge
coordinates.

IT.I. Central charge extension of flat harmonlc space. Wé begin
by considering the following extension of the Poincaré algebra
(with SP(n) x SU(2) as an autemorphism group)?

[ E}4; ,}%y'] :'<2£>-§;7AV EZ%J ,
[P Zji)= [24, Zkel= O

Here Z.J = ZJL 1s a real SU(2) triplet of central charge gqurators.
This algebra oan be realized in the space R4"'3; ,{I"'“, 2 };

(11.1)

14

where [x3= cm, {Z] = cm? . The derivatives covariant with respect

to (II1.1) are
? v 2 < _ 2

Further, adding harmonic variables Ut to ?4"‘3 we Ffind an analytic
subspace

foxM*r= xMiut ztt=zid Uy W, us )

. (11.2)

(11.3)

which is closed under the action of the full algebra (II.1). There
we can introduce analytic fields defined by the conditions

+ 2 1 2 -
D= (oo 2 %o+ Zisg=) =0 auw
9;+P= szkz 0

The solution of (II.4) is

F = @ (M zrr utd).
4n,3 .. .

II.2. Curved R and hyper-Kdhler geometry. Next we shall
discuss the curved versien of the space 1introduced above and locate
the places where the hyper-Kihler prepotentials occur as geometric
objects. Our discussion will be brief, we shall only point out the
modifications to the scheme developed in seoct.I.

Pirst we extend the “T° group by adding local translations
of 2%, 8§24 =Y (x) + A3 1in the case of Kdhler geometry [1],
neither the gauge group nor the gauge fields will depend on Z‘J' .
Only matter fields are allowed to do so. The requirement that matter
2 -dependent aralytic fields (II.5) should exist in the curved case
has important consequences for the geometry. In order to make the )
analyticity (II.5) manifest we introduce an analytio basis and )
group with the following new (in addition to (I.6) ) elements:

SZ;+= }++ ('.I"'\.'u) 5 SZ,&-: X’" (’1*) -u)' SZ;‘—= A—-—(:t_*) ?{) '(11.6)

(11.5)

This gives rise to several new vielbeins in the ) world covariant

harmonic derivative D%+ (¢ £. (1.13) ):
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®+*: A*-f + H+*(++)BZ~~* Z;* 9;-"’ ZZA- 22.+++ [()++ ‘ (II.?)

: X e A
For simplicity the vielbeins of 2 and ZJz have been gauged
into their flat space values and the corresponding parameters have
been fixed:

A RT= X A= 20 e

bJ

The vielbein H++(++) transforms as follows
g HYTG) A++ )++ (11.9)

which coincides with (I.36). This reveals the meaning of the prepo—
tential &Y which 1s related to HYY ™) uy the f1ela redefinition
(I1.37). We stress that the vielbein H™'C"*) as well as all the
other new vielbelns appearing below have no need to depend on the
central charge coordinates.

The next step 1s to expreas the new vielbeins in a&":

1.10)

B 7 (w2 ) LB

in terms of H++ as solutions to the differential equations following

from (I,20). Furthex, the covariant derivative ab; becomes

D= B ELIL - BN o

++
Note the absence of a 92 term in (II,11), which is due to the
analyticity of the parameter AYY¥ (X*)2¢) (II1.6). Finally, the deri-
vative b; 1s defined as before (I.39) and has the following new
terms? '

D= Oy 83 O+ (87 ES¢ - AL HTE) ™

- .12)

+ A"E;(“)- A; H"(“'))3;++ Wy - (1.12
Here

&= ejo\f/:’ - —"Z-AL P H ez EXG) (113
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and one obtains (see (I.25),(II.6) )

Sog:= - 9‘:/‘)"‘"0‘(’:— - 9,4_)++ @.14)

which coincides with (I.33). Thus we f£ind a natural place for the
prepotential g“ also.

The set of/::ova.ria.nt derivatives shown above must satisi"y a num-
ber of constraints. They look the same as the ones considered in
sect.I with the exception of

[2%.251=-2 s 25"
[D%,2p]=-224d + Rl
(2%, 075}3 =-Z Sy 2%

(11.15)

The se reproduce the £lat space commutatien relations of the derivati-
ves (II.2). The essential new point is the presence of new torsion
terms in the constraints, related to the central charge coordinates.
They naturally give rise to a number of relations which were derived
in sect. I as oonsequences of higher-order differential ocoanstraints.
Thus, the vanishing of the torsion

Til1“2= 0

.'.-
yields the analyticity of ‘%/4 (1.34). The relation

+ |+ (- .

* =0 .
explains why H/AJ (1.29) 1s expressed in terms of 0‘(/,‘ (1.30).
Further,

'Tl-\'+ ;l(—i—*r): O

implies the analyticity oz HYYE*) (and thus of o‘(’,@‘)). Finally,

the relation (I.35) which allows us to express HY'Mt in tems of the

prepotentials is now equivalent to the torsion constraint
TH2|E9=0.

S0, we have seen that the introduction of the auxiliary central
charge coordinates proved very useful in the geometric interpreta-
tion of the hyperlxéhler prepotentials and their pregauge group.
‘However, none of these objegts depend on the new coordinates. Ay
the same time, the geometry permits the existence of analytioc matter
fields with non-trivial central charge dependence. It is intriguing
to find out the meaning of such fields.

17



ITI, Examples of explicit construction of hyper-KZhler metrics

In this section we shall give two rather simple R4 example s
in which we shall explicitly carry out the procedure for construction
of hyper-Kshler metrics. They illustrate the two aiternative approa-~
ches to the problem. The first is to work in the ) world and solve
the linear differential equations for the vielbeins H™~ (I.21). The
second 1s to find the bridge to the T world by solving the nonlinear
equation (1.14). This seocond approach is analogous to the one of
Newman, Penrose, Ward and others [2-5].

I11.1. The Taub-NUT metric in the analytic basis. We consider the
harmonic extension of R4 with coordinates

ME ¥ _F & EFI
XM= (x*-X*) U
A1l the gauges discussed in Sect,1,8 are assumed to be fulfilled.Our
choice of the prepotentials is prompted by the results in L?] where
the Taud-NUT metrioc [8] was obtained from an N=2 supersymmetric .

sigma model (the precise relationship between hyper-Kihler prepoten—
tials and N=2 supersymmetric Lagranglans will be discussed in Sect.IV):

oLCG/') - ;‘Zj (2*)2 (Et_"’)z .

(111.1)

Yox* (111.2)

M Van
This cholce corresponds to an SU(2) x U(I) isometry of the manifold
(SU(Z) follows from the absence of explicit harmonic dependence in
(I11.2), UCI) rotates X > ' %X, X -=» € XX ). It is worth
remarking that the form (III.2) is the simplest example of prepoten—
tials in the normal coordinates of sect.l.8, where all the symmetri-—
zed covariant derivatives of the Weyl tensor vanish at the point
x = 0, except for the Weyl temsor itself.

"The next step 1s to calculate H"”%"' according to (1.38) and
write down the differential equations (I.21) for H™ - (H-, -T{‘)

and M A= (HED _RED)
[X*%+e X+ D% v+ T+ (x+ =X 07 ) | H =
= Xt 2ot X+ H+ (X7 A
[xtD*+ XX 3t o ocr T (xt9=- T+3 V) HED =
= —-XT4+H.

It is not hard to cheok that (III.3) has the following unique solu-
tiont .

(I11,3)
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H™= = & 0a(d-a) [4+ 6. (4+6)]

KED=- G X );i' On (4+ [ + 6 (4- )] (11.4)

— ~— O~
A= "Xt = x*x =-a.
Finally, a stralghtforward calculation using (I.40) and (I.23) pro-

duces the metric in the ;\ basis. For instance:

Lery= 8 Ba(1-a) ({H+€) [+ n (1+¢)]
A+ n(A040)] 4+ Ln(d-a)(A+E)

A= _crdrr) yiv_
=-§"NH) =

d * | -a)8u-a) S Ar)alist)

. 1+ (1) @+¢) G [1+ 6n(-a)a+)

As follows from the computation in ref.[ﬂ, the 7" basis form of the
metric indeed coineides with the standard Taub-NUT one(8s].

This example, although rather simple, 1llustrates the main
advantage of the analytlc basls approach, the linearity of the diffe-
rentlal equations which determine the metric.

I11.2. The_ MAnsetz of Ward and the bridges to the ‘T world. As
we explained, the main obstacle o6n the way to constructing a T
basis hyper-K&hler metric from the prepotentials is the nonlinear
differential equation (1.14) for the bridges. The nonlinearity is due
to the faot that the prepotential F™4)(x} %) 1s naturally definea
in the A basis, whereas the bridge U/ﬁ'(i/u')‘u) has natu-
ral /7 basis ooordinates (for the purpose of calculating the T
metric one does not need the symplectie bridge M (1.8) which affects
only the vielbeins). Nevertheless, a clever trick proposed by Ward L5]
makes 1t possible to avoild this nonlinearity in a class of examples
(1n four dimensions), The idea (in our notation) 1s to choose a
speclal dependence of a‘(&‘{) on its argument ..XZ :

&9&4): OZ(H) (P"”x,;, ,u).

= DU+ : .
Here PMT= PAiut where PML (#=0,2, 1= 1,2) 18 a constant real
vector “/. Then from (I.38) one finds

3) This choice 1s simplest though not unique. Original Ward's
Ansatz [57 corresponds to using three-rank spinor p/4++_ p,l.n‘J wtut
= Ut

rather than PAT | d

(111.5)
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M+ + o+t ot +r_ Dx@'“)
H A P’“j CPI ) g DCP-I,I*) (111.6)

Further, in, €U basis the equation (I.14) for the bridge YA* now

becomes? “

a""f 'U'/‘H‘(J‘ZO- - P/4+ g*’*(P*at\ '7/{) . (111.7)

By inspection of (III.7), one concludes that U can ve sought in
the form

VMUY = P (x, ).

(111.8)

The advantage of this Ansatz is now clear. With a bridge like (III.8)

one has ,
r
P-ﬂ-/" /4 Pf/.' (x/,:ut) ) (_PV‘ P/::- O) (111.9)
so the equations (I.14) for the bridges become linear. In particular,
eq. (III.7) ot .
2T U (2,%) = 3++Cwlx+’u)
has the solution

THT = A+ de in’; 3”(,}{5;{* 2w).

(I11.10)

Here J{ and W are two sets of harmonic variables, UTZU™= 'l(*‘w"’

the harmonic distribution (’u*’w‘*) has the property [9]
++ -
Ot (wtes+yis g D) (u, ).

Analogously, in the gauge (I.15) one finds

T = pA* &alw 7:’: ;;’; 3“* (p+x+,'w‘)‘ (I11.11)

Having obtained the bridges, it i1s a matter of tedious calculations
to £ind the expression for H A= 7" v+ 4 e u7
and then to evaluate BAV;)()"‘ and O}OV DAJ H-;a+ =

- Avi 'a?kH“ +-‘

20 !

I A (884 + PHY, ) urt

Ok H7 - AP(X)(S}‘U P (1 'u))

’9 g++
2 (P*l*)

% ()= Sﬂlw' wi P:ﬂ , 3
I;(x;u)-: g

A (x)=

P
im (8 +q/ @’-)R’) (af. arg.. )

Next one finds the vielbein */‘k ( H ) -:-) x wk
(sée Appendix) using

-4 4 =) 44V
(JH)dV; (&‘P+1+PVPP Id)Aip .

Finally, the vielbein E /'k equals (aH) '9-- I\)‘xﬂk

and one 1s able to compute the metric

LR VYR Sy S
¢ M(E, Ep - EZVESY)=

= (1+ PY) i{g,u U /'kPV (//I)[P/‘/( (¥y) P/{kp\)fl

S0, the above Ansatz works for this class of hyper—Kghler metriecs.
However, we ate not aware of any suitable &nsatz of this kind which
would make it possible to find the most general hyper-Kdhler metrics.

IV. Hyper—Kihler geometry and N=2 supersymmetrioc sigma models

There 1s a remarkable one-to—one correspond ence between the
most general N=1 supersymmetric sigma model in 4 dimensions and
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Kshler geometry [10]. The superfield Lagrangian for such a sigma
model 1s just the Kihler prepotential K (‘P,@) of the manifold with
chiral (i.e. N=1 analytic) superfields as 1ts: coordinates. The rela-
tionship between N=2 sigma models and hyper-Kihler geometry has been
‘investigated in [11]. It was shown that the metric of an N=2 sigma
model is necessarily hyper—K&hler and vice versa, given a hyper-
~Kihler metric one can always construct an on-shell N=2 silgma model.
However, unlike the simple case of N=l, 1t was a nontrivial problem
to give a recipe how to explicitly construct N=2 sigma models. Jhe
solution to this problem involves finding an adequate way to formu-
late N=2 off-shell matter multiplets in superspace. This was
done in [127 using harmonic superspace. Here we briefly review this
approach and establish the precise one-to-one correspondence between
the N=2 sigma model superfield Lagrangians and the hyper-Eghler
prepotentials introduced in segt.I.

A N=2 supersymmetry 1s usually realized in the superspace

{\xd&, LY ,5"7‘: }- ( XAR 15 the coordinate of 4 dimensional i
ﬁinkowski space and should not be confused with OC/J of the previous
sections). A3ding harmonic coordinates ZL*L' one becomes able to j
define analytic superfields satlisfying the constraint '

D;Qt’: j-);¢=0, (v,1)

+ +nt
where :Do((g)zu‘: Do((;() are the + projections of the spinor
covariant derivatives. This constraint is naturally solved in the
analytic basls in harmonic superspace:

X = ox*H7¢ oLk g u'{,;ud‘) , Bieny= By u¥. (v
There “_DJGO: ’3/950((5/)-

(p: ¢C1A,9+;§+; 2‘_4:). (1v.3)
If turns out that the N=2 matter multiplets (hypemultiplets)
are adequately described by analytic superfields 1"”(&‘,\,6*’@* Zt)
with U(I) charge +L. Here is an Sp(n) spinor index, and LL.}"‘
satisfies the pseudo-reality ocondition

A%
Q= = Loy 174, =1y 20

Mt
The superfield 7, ; a8 it 18, oontains an infinite number of
fields in 1ts harmonic expansion. However, its free equation of
motion

and (IV.1) simply means

(Iv.4 )

22 . .

DY 0, D D2, an

cuts off the infinite tail of auxiliary fields. The remaining 4n
real soalar filelds (q{’“ = iﬂ“(x) ?,l;_f'-f-‘_ , ) and the same number
of fermions satisfy the Klein-Gordon and Dirac equations. The
equation (IV.S) oan be, derived from the following action

Sfuz: - Sa“lA A%+ A5+ du CL;DH&L/H“. (1v.6)

The above pilcture can be generalized to include self-interac—
tions of the hypermultiplets. The most gene§a1 action propagating
4n scalar fields has the following form 4

S= §dixe dt6r dg* du Hre o)

Iv.7)

(1v.8)

B0 T (e D7 9000 ).

This action is invarlant under reparametrizations of M+

S‘L’W = )ﬂ*(qj-,u) pravided OZ:; ana PCH) transform

as follows?
Sy == Ry s Ly AT

Here 2,4——'- 9/9i/“‘ and 9++ is the partial derivative
acting on the argument 2 of A"'H-(’i.u)(but ignoring the
dependence of the argument ?j‘ ). In addition, the action does
not change under the following redefinitions ( \*7¥= ,\'“(‘?fl?())

80\9::‘24- )1-1‘-, (ch-l%): 9++)+-r' (1v.10)

(IV.9)

Indeed,
S H++(++): DN :D*ﬂL/“f g: Xt DY (1v.11)

and the integral of such 2 total derivative in (IV.7) vanishes. Here

4) In [77 we have proposed a form of the action which could contailn
more t one derivative . The corresponding equations of motion
are of higher order inH++ (although not in /92X which 1is
equlvalent to propaga.tin% more _than 4n scalars. So, one can restriot
oneself to the action (IV.7,8) without loss of generality. We are
grateful to 0.0glevetsky for pointing this out to us.
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one may recall a similar phenomenon in N=1 sigma models, where the
action 1s invariant up to a total derivaetive unier Kiéhler transfor-
mations of the Lagrangian.

The variation of the action (IV.7) with respect to z/‘“ ylelds
the equation of motion

—\p+ -+ +rgVt_ = (4 ++ o+
(XS~ L) D= 2D+ O (17.12)
By now the reader should have recognized the remarkable similarity
of the theory of ‘L’* hypermultiplets with the description of
hyper—¥&hler geometry given in sect.I. The analytic basis coordina-
tes :I/“"’ are replaced by Grassmann analytic superfields ‘[/”' s the
hyper-Kahler prepotentials OY/: ’ XC’M) determine the self-
interaction. The on-shell derivative D-H‘Z/H- expressed from the
equation of motion (IV.12) is exactly the same as the vielbein HYA*t
(1.38). Finally, the Lagrangian in (IV.7,8) coincides on —shell with
the vielbeln HYYCH)  (1.37) 1n front of 9/22%% in the covariant
derivative .8++ (I1.7). Thus, the invariance (IV.11) of the sigma
model action is assoclated with the transformations of the central @
charge coordinate Z}"*,

We stress that it .1s the on—-shell hypermultiplet action which
corresponds to a hyper-Kihler sigma model. The reason i1s that off-
~shell the hypermultiplet superfield 9Mt  contalns an infinite
number of auxlliary fields of the same dimension as the physical
ones. The role of the equation of motion (Iv.12) (which corresponds
to the hyper-Kihler constraint (I.38) ) is to eliminate those
auxiliary fields in favour of the physical ones. For the latter the
equations with the famlliar slgma model type of self-interaction
emerge. we recall that in [7] we used just this procedure to obtain
the Taub-NUT metric. In [7] we also gave another interpretation of
the equation of motion for ‘y‘” which was inspired by the constralned
superfield formulation of hyper-EKzhler sigma models of {13]. This
equation ;an be viewed as the definition of a bridge to a certain

C basis. Indeed, in the gauge x*: i"' the equation of motion
(IV.12) reads el
- +
D gats _% DM P~ HT % (4% ) - (I7.13)
Making the change of variables
+ .
cL/" = QM ut + UA*(Q, %) s (1Iv.14)

where (M= QA (%, 6% §44) (I¥.13) becomes
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DU (8, 0) = K [Q+ U@, 2,1 ]
This 1s nothing but the bridge defining equation (I.14). So, we
conclude that passing to the new variables Q/“L (which involves
solving (IV.15) ) we have eliminated the infinite set of auxiliary
fields. However, in the new basis the condition of Grassmann
analyticity (IV.1) for LL/‘* becomes covariant:

i A+ . . (IV.16)
xR UL+ LTy o9 s

:>(2JJ A () Cl
This equation generalizes the flat—space equation for the hyper—-
multiplet

A
Dy @77 =0
proposed in [14]. Comparing (IV.16) with the definition of inverse
vielbein (A.6) we see that this equation can be written as

+ + v

vj'q Q=0
that differs from the equation given in [13] merely by a rotation
of the tangent space index M with the SP(n) bridge M/, (,n)
("E$/ﬂ is covariantly {{ -independent). M
fo avold a possible misunderstanding, we point out that there
is no direct correlation between choices of bases in the target
harmonic space {q,l’u and in the harmonic superspace {J‘,Q,u}'

where ‘f, (a.nd Q are defined as superfields. For instance, we
might stay in the ~world with manifest analyticity as regards

]+ a.nd’ at the same time, choose the central basis in superspace
where P** equals 2%' and Grassmann harmonic analyticity is non-
manifest. It is crucial that both manifolds, {q,, 'L(} and {1,6‘,?4},
intersect by the pure harmonic part {'M}, having the common set of
harmonic variables.

Our next remark concerns an alternative way of describing
off-shell hypermultiplets ]’_12_]. It makes use of chargeless analytic
real superfield (W (X, ,01, 0%, 'u) satisfying the second—order
equation of motion

@*)w = ¥ (w,n).

(xv.17)

In fact, the (J description can be obtained by a duality transfor—
mation~ from the ¥ one [15]. To this end one decomposes ‘l,'*' into
(we consider the case of R4 )
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(VH: UMt 0+ u,u-tg-f-r

and “inserts It int (IV.7). Eliminating the auxiliary superfield 4% .

one obtains an action for (U alone, from which the equation of
motion (IV.17) follows. It is remarkable that (IV.17) looks almost
identical with the "good cut" equation of the so-called "H-space"
approach to self-dual Einstein equations[47].

In conclusion we point out that besides hyper-Kzhler manifolds
in 'Rl'n one may conslder quanternionic manifolds as well. According
"to a theorem in. {16], such manifolds necessarily emerge when
coupling N=2 supersymmetric sigma models to N=2 supergravity.
Recently the general N=2 supergravity-matter couplings were
explicitly constructed employing harmonic superspace[17]. In a separa-
te publication we shall describe how this coupling gives rise to
quaternionic sigma models and shall find the prepotentials for
that kind of quaternionic geometry.

Acknowledgements, Authors are sincerely indebted to
Q. Oglevetsky for numerous debates and comments and to A.Perelomov
and B,Zupnik for useful discussions.

APPENDIX, Vielbeins and metric in the ‘¢ world

The /T basis components of the vielbein ocan be read off from the
expressions for covarilant derivatives 9:, , 2‘; (1.10), (1.23),
(1.39) by passing in the latter to central basis coordinate Jfk
(we impose the gauge (&45)):

EFfk= (0w} #tacrk | v Ek= 0,

(A1)
E7*< DTEN*=- 0 xrk (uyd e 2 D XM 2Pk
= (WL YD It xPk, a2

Here 311: Qt!"’ wtt where cU X2 are given by eqs. (I.27),

(22) ant (D)L = ZHH™72 Qo 3. v

Note the useful relations
DT 0 > ()2 QraPk - o (a3

whioch follow from the analyticity of H'""* and from the gauge
onoice (I.15). The metric is defined as
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3”(,15'(1): (E;ME/;“_ E;”E/;”S)JZE"‘. (A.4)
It involves no dependence on U+ '
Pias j/!k,/\,s = 0 (4.5)
that oan be oheoked by using the equationr (A.1) together with
D%hrE—}/c - E+fl< .

Recall that the Sf,(n)—conu'ections of the “( basis derivatives
%H)ﬁ can be entirely removed by rotating tangent space indices

with the help of the Sp(n)-bridge Ma‘j‘ (x, %) (the latter drops
out from the metric (A.4) ).

It is useful also to quote here the vielbeins which are inverse
to (A.l),(A. 2) and produce the conventional metric (with covariant
world indices):

ndh O A
Epe =~k X*

— -« - +3 /3L Y- s T2y .
Epi = %A X (OR) = P (O Pipxﬁ‘fsc;* W”%ﬁg »

A LI = - =52 DI Y
E/’/‘ Eﬁ +€’f£}3 "Sf‘gk»

-P -k - A .
E/}kE"‘/ ; 9, tf*/f E/*= 0, -
- +8 b — -
E¢' E)’k i} S{f) E.;f Ejfz 50/5,

M = X R -
A
It 1s easy to check that the metric
_ _)B -+ 4,/3 - (A.S)
j//(,,\s = Epp £ 4 ok Cas g
is 7{ -independent, 2+*$’/<V\S= O , eand 1s indeed inverse to

g/*) Ag (A.4).

As a final remark, we point out that the shew~symmetric twofold
charged object
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++ _ amn (4.9)
_(_L ifl()AS]‘ .SZ J

tat +
(yl(‘ '\S]ZL;ZL;- = E'\'F

Pk TAs g

contains just the triplet of covariantly constant l-forms the
exlstence of which is characteristic of hyper-Kghler geometry [11,1?].
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Fanvnapun A.C. ® ap.

FeoMOTpHKR KANMHOPODOWHMX noneR us
KOMILMAKCHOR ¥ IMApMOHMYECKON aHalTHTHUYHOCTEeMH.
M'mnopxancpon cnyuatt.

E2-87-264

[IpyHUKn CcOXpaHeHHs TapMOHHYECKOH AHAIMTHYHOCTH NpHMe-—
H@H OA HaAXOKOEeHHMsT NpeInoTeHIHalIOB THIEepK3JIepoBod reomer—
pHH., Hx reoMeTpuyeckuil CMpICNI BhISIBJIEH B paMKax pacmHpeHHO—
r'o npoCcTpaHCTBa C KOOpOuHATaMH LeHTPajIbHOI'O 3apaga. ycra—
HOBJIEHO B3 aMMHO—OAHO3HAuyHOe COOTBETCTBHE Mexay TIHIepKsJje-
POBBIMH MpenoTeHUMalnaMd U Haubonee oOmMUM narpaHxmMaHoM d=
=4, N=2 cynepchme?panoﬁ 0 MoOeJi BHe MacCOBOM OOOJIOYKH.

Pabora BhmmonnHeHa B JlaBopaTOpHH TeOpPeTHUYECKOoH GH3HKH
OHsAH.

ITpenpunTt OGbenMHEHHOr0 MHCTHTYTA ANEPHBIX HCclefoBaHuii. [ly6ua 1987

Galperin A.S.et al.
Gauge Field Geometry from Complex and
Harmonic Analyticities. Hyper-Kihler Case

The concept of preservation of harmonic analyticity is
applied to find unconstrained prepotentials of hyper-Kdh-
ler geometry. The geometric meaning of prepotentials is
revealed with introducing extra central charge coordinates
Finally, we establish the one-to—one correspondence bet-
ween hyper-Kdhler geometry and off-shell d=4, N=2 super-
symmetric o-models. Their most general Lagrangian is shown
to be uniquely composed of hyper—Kdhler prepotentials,
with the analytic space coordinates replaced by analytic
hypermultiplet superfields defined on the same set of har-
monic variables.

The investigation has been performed at the Laboratory

of Theoretical Physics, JINR.
Preprint of the Joint Institute for Nuclear Research. Dubna 1987
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