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I. Introduction

The concept of Cauchy-Riemann analyticity has profound impli-
cations in gauge theory. The preservation of analytic representations
in a gauge field background 1s the leading principle in such classi-
cal problems as the theory of Yang-Mills (YM) instantons , Kihler
and hyper-Kidhler geometry,etc. [1-6]. On the other hand, it is re-
markable that the analogous principle of preservation of Grassmann
analyticity [ 71 governs the geometric structure of supersymmetric
gauge theories. The underlylng superspace constraints of these
theories can be viewed as the integrability conditions for the
existence of certain analytic subspaces. Passing to the basls where
analytieity is manifest automatlioally solves the constraints in terms
of several unconstrained superfield objects, the prepotentials. The
latter are natural carriers of the intrinsic geometry of a given
theory. It is essential that the vihile theory can be defined entirely
within the representation with a manifest analyticity. Receantly, a
deeper understanding of the role of Grassmann analyticity has-led to
important developments in the theory of extended supersymmetry. The
introduction of the cancept of harmonic superspace and harmonic ana-
lyticity made it possible to construct gnconstrained geometric formue~
lations of all the N=2 supersymmetric theories ts—ll] and of N=3 ¥M
theory [12].

The idea of harmonic sup rspaée is intimately related to the
famous twistor theory [l- 4]1 . The latter theory is widely employed
also in the problems mentioned in the beginning. This correspondence
has led us to realizing that these purely bosonic problems may have
a transparent presentation along the lines one normally follows in
supersymmetry. In the present and subsequent [15] papers we reformu-
late a number of these theories (self-dual Yang-Mills theory, K&hler
and hyper—Kahler gravities) in a way which-readers with experience
in supersymmetry will have no difficulties to understand. The general
principle we confess is the preservation of certain "flat" analyti-
cities in the full interaction case. That allows us to reveal a
fundamental role of corresponding analytic subspaces in the geometry

,1> Twistcr-like interpretations of the extended supersymmetry
constraints have been considered by Witten [13] and Rosly [14].



of problems in question. Surprisingly enough, almost all the notions
known from the geometric superspace considerations have immediate
analogs in ordinary spaces, thus demonstrating a deep affinity of
both classes of theories.

We use a down-to-earth language of conventional differential '
geometry, no advanced mathematical background is required including
the knowledge of subtleties of twistor formalism. Nevertheless, one of
our main incentives 1s to explain the relationship with twistors
[1-4]and some other concepts of similar nature {5]. In the process,
we .discuss a hard problem in twistor theory. There one has to solve
a non-linear differential equation for some basic object, out of
which one constructs the self-dual IM or gravitational field. We
propose an alternative way which consists in keeping closer to the
manifest analyticity underlying those theories. This way leads to a
linear differential equation. It was first suggested by B.M.Zupnik
[16] in the context of N=2 supersymmetry. Another main result of our
researchis a theorem [15]'establishing the explicit one-to~one
correspondence between the most general off-shell superfield Lagran-
glan for N=2 supersymmetric sigma models in four dimensions and the
unconétrained prepotentials bf hyper-Kéhler geometry. This relation~
ship i1s understcod as fully as the one between N=1 sigma and Kdhler
geometry[17]. The geometric meaning of the Kdhler and hyper-Kdhler
prepotentials is revealed in an extended space with extra central
charge coordinates. ' .

As we have already explained, the basic strategy we keep to con-
sists in searching for an appropriate space (or superspace) and its
amlytic quotient space (and/or a frame in the tangent space) where
the underlying analyticity becomes manifest and from which one may
induce in full the relevant intrinsic geometry. Actually one could
find such spaces by some reasonings and guess. 4 propos, Just in this
way the intrinsic geometry of N=1 supergravity (SG) and YM theories
were exposed [18,197] and for N=2 theories the harmonit superspace and
the harmonic analyticity were invented [6,9]. A more systematic method
is to start with the set of properly postulated constraints in some
space (or superspace) and then to interpret them as the integrability
conditions for the covariant existence of an analytic subspace« This
is precisely what we do throughout the paper and what allows us to
establish a direct contact with the conventional definition of the
problems we are involved in.

For a further use, it seems to the point here to recall the
definition of Kdhler and hypef—Kéhler geometries. Most appropriate

for our purpose is the definition via the restrictions on the
holonomy group of the manifold, that is the group generated by the
components of Riemann curvature tensor (see, e.g. [201) . The Kihler
and hyper-Kihler geometries are particular branches of general
Riemann geometry in real spaces ]2?nand an y respectively, with
the holonomy groups in U(n) and Sp(n). Since the Riemann tensor in
general appears in the r.h.s. of. commutators of covariant derivati-
ves with respect to the manifold coordinates, the above definition
amounts to imposing certain constraints on these commutators. As
we- shall see, those look very similar to the superspace constraints
defining the supersymmetric gauge theories and thus can be treated
in a similar way.

This work is divided into two parts. The present article has an
introduotory oharacter. Our purpose here is to introduce the main
concepts of analyticity and its preservation starting with the very
simple examples of Yang theory [6] and Kihler geometry. These have
direot analogs in N=1 ¥M and supergravity theories which are
based upon N=1 Grassmann analyticity (chirality). A further develop-
ment of the idea of analyticity is harmonic analyticity. It is de-
fined with the help of new harmonic variables and allows us to in-
terpret and solve the self-dual YM equations as integrability con-
ditions for this new analytioity. The complete supersymmetrio analog
of this theory is N=2 IM theory. We also discuss the relationship
with the twistor-type constructions of Ward [4] and Newman {5] .

In the seoond article [15] the idea of harmonic analyticity
is applied to the case of hyper-Kdhler geometry. The corresponding
constraints are rewritten once again as integrability conditions and
then solved in terms of analytic prepotentials. Then it is shown
that these prepotentials and their pregauge group have direct images
in the theory of N=2 supersymmetric sigma models. There they deter—
mine the most general Lagrangian for the off-shell hypermultilplet
Grassmann analytic superfields and its (hyper—Kihler) invarianoe.

II., Complex analyticity and gauge theories

In this section we shall discuss several examples of gauge
theories with intrinsic complex structure. We shall show that their
common feature is the preservation of certain apalytio representa-
tions in a gauge field background.

The general framework for Euclidean gauge theories is a real N
dimensional spaoce R":{X"’& ;m=4, N The fields defined in it form
representations of some internal symmé%ry group and of the (Euclidean)



Poincaré group consisting of translations ‘Pm and O(n)rotations.
The gauge theories are obtained by making a symmetry group (an inter-
nal one or the Poincare group itself) local, i.e. letting its para-
meters /¢’ ‘depend on X , T= ’t‘(x) « The principal geometric
objects are the.covariant derivatives tm + Their commutators de-
fine the tensors of the theory:

I_"Dm \bn] = Fmn or Rimn

(F is the field strength for M theories, R is the Riemann ten-
sor for gravity, with values in internal symmetry algebra and
tangent group algebra, respeotively). Note that the gauge fields -
the YM comnection A, and the metric gm,\(or vielbein €4, )= are
the unconstrained potentials of those theories.

In even dimensional space RZH one can introduce a complex
structure 1f one reduces the homogeneous automorphism group of th
from O(Zn) to U(h) . Then one can choose the following complex
basissi

xM= XM X, xt= (oA, (11.1)

where /;1-. i‘,__’n 1s U(n) index. Now it becomes possible to
define analytio flelds ﬂﬂ(x) which satisfy the U(h) covariant
Cauchy-Riemann (CR) condition

2 P(x,%)=0 > P=p@).

This concept has important implications in gauge theory.

(11.2)

I1.I, _Analytic YM theory ( Yang theory [6] ). Suppose that the
fleld ?(T,-f) transforms under a ¥M group with real parameters
T (x,X ), ’t::?) @Le'T . Then the CR condition (II.2) must
be oovariantiged:

@,,-Y’:o 7 ﬁ=%+,4/‘-(x,5c—:). (11.3)

Clearly, (II.3) can take place iff the following integrability con~
dition holds?

‘.27/7,«39]:'04:} \j“_w_—_o. (11.4)

So, the gauge potential A ,ﬂ is now constrained by eguation
(I1.4). This constraint has the general solution

Aq:e-twa‘_eaw’ (@fe‘iwade“”)’ N

where W(I)f_) is a complex Lie-algebra valued scalar field
transforming as follows:
: ’ . . .
LW’ ¢ LW oL (11.6)
etW'zeidotWeiT,
There arise new transformations with analytic parameters A

9/7):01 A= A¢x). (11.7)
Due to their analyticity they leave the connection A/T (11.5) in-
variant and, consequently, can be ocalled pregauge transformations.
The solution (II,5-7) admits the following interpretation.
Define the field

¢=eiWP ¢/=ei)¢' (11.8)

Then it is easy to cheok that the covariant CR condition (II.3)
implies

22'— ¢=0 = ¢= ¢(x) (11.9)

In other words, the new field ¢ is manifestly analytic whereas
P is covariantly analytic. This is comsistent with the new gauge
transformation law (II.8) with analytic parameters A .

This simple example illustrates an inportant phenom'enon in
gauge theories with constraints. There the potentials (e.g. /4/7 )
are expressed in terms of a new, unconstrained object (w ) called
prepotential. The latter has the geometric meaning of a bridge
between two gauge frames: one with real parameters ’Z’(.x,_f) and
another one with analytic parameters A (x) « In the T frame
reality is a manifest property, whereas in the ) frame analyticity
becomes manifest. In fact, the ‘¢ gauge freedom can be completely
fixed by imposing the gauge condition ReW=(. This makes ‘T
a (non-linear) function of X )_)' and V=TmW , and leaves Y as
the only gauge field in the theory:

eZV/____ e‘i:\- eZVeiA_ (11.10)

Oné can say that V parameterizes the homogensous space’ Gc/Gy
where Gc is the complexification of the IM group G . S0 the

above construotion can be interpreted as a kind of nonlinear sigmd
model defined on (/G , with V being a Nambu-Goldstone field
which gives a nonlinear realization of Gc (in a complete analogy
with the N=l supersymmetric YM theory [19)], see below). Note that

the theory can be formulated entirely in the ) frame. There

S5



the covariant 8erivatives are

N -V - D - (11.11)
D(= V_ RV BV a0 _\/p /.
=€ B9 ege’ yleVe- 5,
and the components of the )\ ~covariant field strength are
_ - RV _
F/;;—?;(e zvf}’qe )—‘E—,/q N E.,.\,-‘— E;;;=0- (11.12)

Recall that the Yang theory [6] was aimed at solving the IM
‘self-duality equations. What we have described here is a merely
kinematic part of the whole Yang construction which involves in
addition certain dynamical equations for )4/4 3 A; (and hence for

V ). Ve postpone a complete discussion of YM self-duality to

Sect.III where this concept will be entirely translated into a "kine-

matic" language with introducing the analyticity of a new type
(the harmonic one). ’

II.2. Kéhler geometry. Another, less trivial manifestation of
the principle of preservation of analyticity is Kdhler geometry.
Conside_r a 2n-dimensional real Rimmanniam space parametrized by
x’“,x"‘ (I1.1). The general coordinate transformation (GCT) group
is

§xt= THx,X), §xF= A TA= (TH). (I1.13)

In addition, one chooses a U("l) tangent space group with parame~
ters

/\o(ﬁ (x,x)=- ;d=—7\;g c UMm. (11.14)

Kihler geometry is specified by the following U(h.) covariant
constraints expressing the requirement that the holonomy group is -
contained in [J(N) (see Introduction):

[_DZ', b-};— ] =0 and c.c. (11.15)

These constraints look identical with the YM ones (II.4) (but
now transformations (1I.13) involve ocoordinates themselves)
Actually, they admit the same interpretation of integrability condi-
tions for the existence of analytic fields defined by the' CR condi-

tion
ab; P=0. (11.16)

This similarity suggests to use the same strategy for solving
(I1.15). We begin by defining an analytic basis:

XTp = oM+ UM, E) | o)F = (x) (Han
in which the GCT group has analytic parameters ;‘ﬂ(xA)
833}.“ - %’q(OCA)- . (11.18)

The function U'/" glving the coordinate change (II1.17) is a bridge
between the ‘T and A bases:

SUM(x,x) = W(xa) - T7(x,X)- (11.19)

In this case ?)'/u can be gauged away by T transfgrmations, arid
the ‘T° group can be identified with the A one 27,
The purpose of the introduction of the A basis was to make

‘analyticity manifest. Indeed, the condition 9/; © =0 (for a

scalar field) is now covariant. This suggests that the covariant de-
rivative DR does not contain 9/91/4 :

__ M0
@'o(‘ 2 ;BT"E\+ w&(" (11.20)

1] I -~
The vielbein e«? (,x)x) and the connection C\)D(<w'9algebra valued)
transform as follows:

o A _ A J m ‘
Sea, = Azﬁeﬁ + eo_‘\) 2, A (11.21)

8 w Y =- Al - - A=
PG %Aﬁa‘ +A7p 5 a7 Aﬁﬁwo?p7+Aipwjpﬁ-
Note the absence of vielbeins & A i (I1.20) which is a conse~

quence of the analyticity of the A group. The connections 6«.)0(
are determined by the usual Riemannian torsion constraint

T;Pf =0 —> &)07}3}-;..@07/“ 9_%:‘ evi ) (11.22)

Finally,one has to plug the conjecture (II,20) into the defining
constraint (II.15). The only independent part of it is

T;(-Frzo—> 9[71 9512= 01 ' (Ir.23 )

——— e

2Dlote that this is due to the accidental fact that in the
bresent case the A .group is a subgroup of the T~ group. In
all the other examples that we consider the bridge carries non-
trivial degrees of freedom.



where the metric 37 )\ is constructed from the vielbeins,

32 = Eyx €53 (1L.24)
Equation (II.23) is easily recognized as the Well-known Kzhlerian
condition on the metric. It has the following general solution?

gva = 917 9/\ K, (11.25)

where arbitrary function K = K(X,i) 1s nothing else than the
unconstrained prepotential of Kahler geometry. Obviously, (II.25)
is invariant under the pregauge transformations

§K=-£( A=) - A @) (33.26)
with an arbitrary analytic parameter A (.XA) .

Thus we have succeeded in solving the constraints (II.15). The
concept of the analyticity preservation proved crucial once again.
The .analogy with the Yang theory [6] reveals itself also in the
existence of manifestly analytic and anti-analytic world frames in
the present case. Converting, e.g., any index ;( with e"(qa_ndﬁ
with €47 s one passes to the frame'where the covariant derivative
with respect to x,ZT has no connection

A
(08)_ v _( )_ M opavy O aren

T > Cu Gop (D7 )y €= 8§ 553,

In this frame functions with arbitrary indices can be made manifestly
analytic. Instead of the tangent group U(h) with real parameters
one has now transformatlons induced by the world ones with parameters
9 1V (%), '

Comparing Kihler geometry with the Yang theory of Sect.lI.I one
can say that the analogs of the bridges e':w ’ e‘:W are the viel-
beins e:; , eo_/? . At the same time the Kihler potential K(X,X)
and 1ts pregauge group are new concepts without analogs in the Yang
theory. They have peculiar dimensions ([g]: o»[K]:[/\] =
= 1ength2), and thus do not naturally fit into the customary field
geometric framework.

I1.3. Central charge as the origin of the Kihler prepotential.
In dérder to incorporate K as a geometric object, we shall extend
RZYI by adding a new real coordinate Z=§ with dimension 1ength2 H
Rt = {(xA, x4, 2)}
In this space one can realize the following “"central charge" exten-
tion of the Poincaré algebrat

EBA,PV]=Z§}AVZ' (11.28)
(%2 1= (% 21= 1B R)= (B, Py =0

This algebra $till has U("\) as its automorphism group, with
central charge Z belng a singlet. The transformations realizing
(11.28) in Rzn'i are

-~ — — _ . (11.28")
§xl= a¥ §xM=at §z=a+i(axH-atx”).

2nd D
The covariant derivatives in R *"(they commute with P e P and
Z ) have the following form:

D= v cx? 0z \Dm=Gs-Lx"G D=2
and satisfy the algebra

[:D/1tbg]=-2i Suv D, - (11.29)
[Da ,22]= [D7,D: 1= [Ba Dy 1= Dz, D5]=0

The cruolal obsérvation is that the algebra (II,29) is still consis—
tent with the analyticity (II.2). This becomes obvious in a speoial
analytic basis in ‘RZh,‘l : '

XN =M XA Bp= 2+ XMAA

_ . (11,30)
S"If: aﬂ’ SIX’:Q’“ ’ .82A= a *354"'_3‘;&0 v

In other words, the subspace (‘I‘Aﬂ 1ZA) is invariant, and one can

define analytic functions P(IA‘ZA) . Of course, the ordinary

Z -independent analytic funotions (.2‘,4) are still allowed.

The next step 1s to generalize the above rigid framework to the
curved case. Since the znew coordinate R is auxiliary, and the
geometric objects of -Rzn do not depend on it, we ohoose the GCT

group in RZH“ to ve Z independent too. In particular, 2Z under-.

goes ‘¢ transformations $2= T(x,X), ’c"—.-?.

To make analyticity manifest we need a new basls in which én
analytio 2 group aots. In addition to (11.17-19) we change 2
8Z4 =2 (xa), SU=A(g) — T (x,X)-



Unlike'U”“CTri) (I1.19), the bridge U"  cannot be gauged away
completely ( UF 1is complex, while (T’ .is real). A possible gauge
is (cf, the Yang theory of subsection II.1):

ReU=0 > T(x,D=4 A@E)+I (X))  amm
The remaining part of ZF is
K=Twm U, §K=-£ (A=A (Ea)- (11.53)

Note that this is precisely the transformation law of the Kihler
prepotential (II.26).

To reveal the relation between v& and the metric we proceed to
the construction of covariant derivatives. We shall show that the
scheme developed above provides the solution of the following genera-
lization of the Rz" constraints (II.15)

Lb? 1@']=O @ (11.34)
LBx, Dpl=-Ri &0+ Ryp ()
[szai 9 42533-] {fzj;Z') ;Eﬁz ] o - (e)

The new torsion term in (II.34b) is prompted by the rigid space al-—
gebra (I1,29). In order to keep as close as possible to the original
Riemann geometry in F{ one is led to choose

,,B'Z = % : (11,35)
This option is allowed by the gauge group though is not obligatory.
The point is that any other choice would give rise to new tensors
which were not present originally., The analytic basis ‘form of /L
(1I,20) remains unchanged since ‘the gauge group does not require
a >%a term. Changing back to the 7’ basis we obtain (1in the gauge
(11732) )

. ‘2; ] .
b; (9— - 95 K ) + Wy (11.36)
In this basis 98'0( is the oonjugate of @— . Putting all this into
(II1.34b) we derive the old expression (I11.22) for the connection
C()Ez . Further,the relation

2 __ o _ (11.37)
T"(P ——2\. 80()3

is not a constraint .any more, it becomes the definition of the metric
uy  in terms of K exactly as in (II.25). The constraint
(II.34a) 1is now a consequence of the Bianchi identities.

10

In conclusion we can say that the extension of FZZ" to Fth'i
allowed us to find a formulation of Kidhler geometry in which the pre-
potential arises as an object with a clear geometric meaning. It
comes out as the imaginary part of the bridge from the original T
basis to the analytic ). basis (1nvolving 2§4 ) . The Kihler in-
variance 1s identified with the analytic GCT of the extra central-
charge coordinate. This is to be compared with the standard formula-
tion of Kihler geometry in ¥Z?” (see sect.II.2), where the prepoten—
tial and its invariance emerge as solutions of the constraint on
the metric. In accompanying paper [15] we shall extend this approach
to include the case of hyper-KzZhler geometry. The structure of the
latter becomes much clearer after introducing an SU(2) triplet of
central charges.

We would like to note that the central charge coordinate was
regarded here as purely auxiliary, and none of the fields and para-
meters depended on it. However, the constraints do not rule out that
some analytic matter fields with non-vanishing oentral -charge exist.
It is iInteresting to find out the relevance of such representations.

" I1i4. Analoples with N=l supersymmetry. The two exemples of
gauge theories based on analyficity in x-space considered above bear
profound analogies with Nx1 supersymmetric theories in four dimensions.
Those theories are formulated in superspace with th even coordinates
X™ and Grassmann odd coordinates 6% 60‘ (6"‘) . The algebra
zf the)rigid covariant derivatives:zl{r I)g( and 1)rn resembles

II1.34

{‘])O‘ ’-D)’} = {]_)o'( , ﬁp}= {:Dd ,Dmlz [507,3)»:]: 0 (11.38)
Dy, Ds}=21 65D,

€Clearly, it allows one to define Grassmann analytic superfields
satisfying the constraint

=y = II.
Dy ¢(xa9,9)=0' (11.39)
It is solved in a special left-handed chiral basis in superspace?
{(a = x"vi06m5,04); 8}
L= 16676,0%); (11.40)
where :Do( 9/2 and (I1.39) means that (P = ¢ (x,8)-

Note the close similarity of this picture to the one of subsection
IL3 with (XM X 2 ) replaced by (6%, 8¢ ™ J.

11



The Grassmann analytlc representations of supersymmetry (II.39)
are fundamental objects, N=1‘ matter 1s described by a_set of scalar
chiral superfields (P(IL,O) (and their conjugates ¢( Xp \6) §
xg._. ‘TL ). Their general self-coupling is given by the action

S= (dx L8046 Kee®)+
« ( déox, de P(@) + [dizm 28 P(9)

where K is an arbitrary real function of- CP and q) y and p
is an analytic function of . Note that the first term in (I1.41)
1s invariant unier the replacement I —> K"f (/\ (‘P)*/\(‘i))

since Sd‘ldzedzé A ((PGQ 0))=0.This resemblance of Kihler geometry
is not accidental. Indeed, as shown by Zumino [17] the action
(I1,41) contains the 'sigma model action

S= (Kx Gus(n, DOm0
Ay = PO, O) om0, PA=(P*) e

the metric is

(11.41)

where

2
(11.42)

é; - ( vl —Mm— _
5 (0= 50739 Jout-0
(ef. (1X.25)). Thus one observes the one-to-one correspondence

between N=1 supersymmetric sigma models and Kghler geometry. The
crucial point is that the fundamental characteristic of Kihler
geometry, the unconstrained prepotential comes out as the
leading part of the general unconstrained superfield Lagrangian

of N=1 matter. In [15] we shall extend this correspondence to the

case of N=2 sigma models and hyper-Kdhler geometrye.

N=1 supersymmetric YM théory is also based upon Grassmann
analyticity. The covariantization of (II.39) leads to the integra-
bility condition —

{080,‘ ,,b}:}- 0. ._ (11.43)
It looks almost identical with the conmstraint (II.4) of Yang theory,
and can be solved in exactly the same way. Once again, the prepoten-~
tial is the bridge between the real YM group and its: ohiral complexifi;
cation [19].

The preservation of chirality is the leading principle in N=1
SG as well {18]. There one repeats the main steps of the formulation

12
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of Kihler geometry in subsection II.3, the space~time coordinate X"
being now .an analog of Kihler central charge .coordinate :Z . The

, m . =
non-trivial bridge comnects JC,' ana X" C@Z: DCM-HHMQ’,@.G);

§ap= 2", 8§6%= A%(x.,0);

m N m Im .
5 H = = Z ()» - /\ . Once again, the vielbeins and
connections are expressed in terms of Hm and thus the oonstraints

of the theory are solved.

The conclusion is that all the fundamental objects of N=2
supersymmetry have direct analogs in the gauge theories with intrinsic
complex analyticity in RZh (or Rzn‘i). We shall see (Sect. III and
the accompanying paper [15]) that this close relationship persists
in the case of N=2 supersymmetry on the one hand, and self-dual YM
and gravity (and their higher dimensional gereralizations in ‘R4h)
on the other hand. (There, the underlying analyticity is the harmonic
analyticity). ’

III, Harmonic analyticity and Yang-Mills theory

In this section we shall consider an example of a gauge theory
based on a new principle of analyticity, which is intimately reldted
to the harmonic varigbles 'L(tl: parametrizing the sphere Sz . This
is the IM théory in the Buclidean space R“‘ with a constraint
generalizing the self-duality condition in R (and coinciding with
the latter for n=l).

We begin by ohoosing the group Sp(n) x 8U(2)c 0(4n) as the
"Lorentz" group of ‘R4"‘ » Then the coordinates of R4h can be
naturally denoted by x/""' where /“ is an Sp(n) spinor index
(H=4,...,2n ) and L 1s an SU(2) spinor index (1=1,2). The reality
condition on ‘I/"- is E/’"‘I'- 3.(2./4\:&'4' xVY4 where .XL/“) and é_',,J
are the antisymmetric invariant tensors of Sp(n) and SU(2) respecti-
vely (_Q_'“"SZVP= 3’}, &l CJ'k =-8;) . Next we consider matter fields

F(x) transforming under a IM group with parameters ’t‘(x) N

p=eTp.

The covariant IM derivative is

(111,1)

\ . : / N . - (111.2)
:@u.;z/uiﬂéq.;(x)j A/,;:%e T(/,L--n,g%) T, _

The purpose of the reduction from 0(4n) to Sp(a) x SU(2) is to be
able to impose the following-covariant constraint on the YM potentials

/>u£

13



[D/a.‘. ) DVJ' .]: c &y Fepoy . (111, 3)
To explain the meaning 6f eq. (III.3) we note that the general cova-
riant strength R = ]
reng [b— . ,bva}_ N F/“VJ‘. can always be decomposed as

LB, Duj1= ¢ €5 Frpoy + < Fapimvy -
Then (I11.3) is equivalent to requiring F("DU‘\"J to vanish:

T_b/"‘(f ) b;/,[)]‘ 0. (I11.3v)
In the case n=1,0(4) ~ Sp(1) x SU(2) and ﬁz‘J)[ﬁ,UJ = §uu I'(«‘d‘)
So (III.3) becomes the familiar self-duality comdition ‘
hed: Fajy= 0- ..
Note that (III,3) and the Bianchi identity,like in the conventional
case mn=l, imply the equation of motion ML =

i - D Fiyqu) 0,
b b= f é:‘)na'\)‘} .

Now the prodlem is to solve the constraint (III.3). Unlike the
Yang, theory of subsection IT.1, this constraint 1s net immediately
recognized to be an integrability condition. However, as we shall
see; 1t can be equivalently rewritten in an extended 'space, where it
does become an integrability condition.

II1.1. Harmonic space and harmonic analyticity. Along the lines

of ref. ‘[8-—12,21] s the space R‘" y where the problem was formula-
ted, can be regarded as the quotient:

fxr i} ~ ?/S_p(h) x SUE@) .

where (S) is the Poincare’ group with Sp(n) X sSU(2) as its lorentz
subgroup. Now we consider the quotient

- . n
{x,ul )u;u} ~ SP(n) (111.5)
Here the coordinites ¥l parameterize SU(2) (8]
TS = .—;‘—-‘ .
Uu ?,{L 1 s (-u l.)._ ul. &
The functions of U *L are defined as harmonic expansions in terms
of the irreducible products of UYL sa we call M*E{ harmonte
variables [8-12,21].
The introduction of the new variables L{*t: will help us to
reformulate the old problem (III,3) in a new, more transparent way .
To this end we multiple (III.3) by jAﬂ') u*j

LB, Byl=0 =04 b @)

(I11.4)

w (II1.6)

(IIL.9)
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Doing this we do not lose any solutions of (III,3)., Indeed, 'Z{*‘; uY
in (IIL.7) are arbitrary variables, so (III.7) simply means that
the part of the full field strength symmetric in its SU(2) indices
1;j vanishes, and we get just eq. (III.3') which is the same as
(I11.3) . Remarkably, in the form (III,7) our constraint is nothing
but the integrability condition for the existence of analytic fields
satisfying the covariant CR condition

ab;:- Cx,u)=0- (III.8)

In the rigid case the analyticity condition

af =0 . (II1.9)-
simply states that (P= ‘F(?C-", l() s where DCr./“-E Z(E.X’u': .
This property 1€ natural to call harmonic analyticity, because its
definition essentially involves the harmonic variables (like the
complex analyticity which is associated with the imaginary unit i ).
Note that the analytic harmonic space

{'xﬂ-#- u:kl.}
)

is closed under the full Poincare group. This space is not real in

the sense of ordinary complex conjugation (OC* =X~ , see (II1.6)),

However, one can define another conjugation -~ (in[8—12,21] conju-—
gation of such a kind was denoted by -’—“—) ;

(111.10)

Fri= SR Gk el peo_ak . Gma
L 3 L

M

which leaves (III1.10) invariant. This will allow us to define real
analytic functions in what follows.

The covariantization (III.8) of the new kind of analyticity
(111,9) gives the clear meaning to the constraint (III.7) and suggests
the way to solve it, much like the analyticity (II.3) which underlies
the Yang theory. Moreover, the same concept will turn out to be in
the basis of ‘hyper-Kdhler geometry too (see accompanying paper [15]).

I1I.2. Harmonic_derivatives and analytic prepotential. The
general solution of the constraint (III,7) is

LG 0=-1e V0 Ve

where ?)‘(x‘u)is an a;cbitrary\’(for the time beingz) real scalar
field. The reality of (& , 37 =7F , follows from the property
c)=- A"“‘(x) and (III,11). However, the original connection
/&"' in(III.7 ) 1is a linear function of 'L{*; //1:': 2{*‘4‘“(‘1) .

(111.12)
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This is not automatically so in (IIX,12), therefore we have to
impose oertain restrictions on ?J’(:r‘u) « To this end we consider
the derivatives with respect to the harmonic variables. There are
three operators consistent with the SU(2) defining conditions
(111.6): : 7

O . 4+ -
Dtt= u+?u - D =uw L’Bu*“ , D= U ';9%-11 8_9__- - (111.13)

: 'I‘Ixey satisfy the SU(2) algebra
[D++’ -D-j:':DO’ [:DO)DH-J:Z]Y: [D01D-= ="ZD.-.(IIL14)

Since the gauge parameters T(I) (I11.1) do not depend on ux , one
needs not to covariantize the harmonic derivatives (III.13).
Further, the original derivative (III.7) obviously satisfies the
relations ‘

I_:DO) b/: ] = ‘b/: @) (1I1.15)
D", dul=0 - . (®)

. R +
Moreover, 1f (III.15) holds, one can show that the connection A/L‘
1s lihear in Y t¢ . First of all, (III.1%a) yields

])°A+ (@, u)~ A+ (cu) . o (111.16)
+

which means that 1s an eigenfunction ofD o Then, taking +
account 0f the expliocit form of mo the hamménio expamsion of
is as 'follows .~ '

A+ (x, %)= A Lx)u*‘aa/yc k,@un‘ u*qu"‘+i,‘;A (11t.17)

It 1s mporta.nt, that the number of Ut exceeds that of 2~ by 4
in each term. In other words, 4;: is a homogeneous funotion of ut
of degree +1 } ‘ '

A+(~T e‘4u+ ""’(u) e""A* (x, u)

This means fchat 18 actually defined on the. quotient
8U(2)/0(1) ~ .92 . In what foliows we shall deal only with such
functions on ,Sz (which can be viewed as functions on S3 SU(Z)
but having definite U(I) charge)s

Given the expansion (III. 17), one 1mmediately sees that the
condition (III,15b) (D++. O ) leaves only the first term

16 .

A/q('(f,l) Zl“ . So, we have recovered the connection A L‘@t).
The conclusion is that,the full set of constraints (III,7),(III.15)
is equivalent to the original constraint (III.3).

Now we have to study the consequences of the constraint (III.7).
For this purpose we shall define a new gauge frame where the gauge
parameters are the analytic ones ,“\(_ad u) (compare with the Yang
theory, (I1.5-9 )). The bridge between the ‘T° and A frames is
the quantity U‘(:I,u) (II1.12) which transforms as follows

. / . N .
e ?.)' _ L A t U”e‘L‘t' (111,18)

Here ) 1is a real ( ) 1 ) analytic parameter related to'the
freedom of the cholce of e"v in (III 12). In the new frame all the
matter fields are redefined: ¢b = etv"?? ¢ = IS Q.
Correspondingly, the covariant derivative %/‘: becomes simply 3""

+ +
o@/q = aq (111.19)

so the analyticity (III.8) is manifest. On the contrary, the harmonic
derivative 'D'H’ acquires a connection term (the parameters A (X% u)
depend on ¥ unlike T (x) e
o%++ :D+++ VH- _‘) (1IL.20)
V++ ____LeLA(J)-b +0 V++)e t ,
where

AR _(leCU'D++e‘L'U'1 ‘ (I1L21)

Putting this into (IIL,15b) one proves analyticity of V++
A + + (111,22)
9 V=0 > vyt ).

In what follows we shall use a natural gauge where in the ) basils
the. connection V° of covariant derivative 08'0 vanishes and both
the bridge {J° and the parameters )\ have zero U(I) charge

Vo=-{ elv- oe™ U 0 D°U= D°A=0. (2
In*this gauge all the quantities in the theory have a definite U(I)
charge, e.g. D° V++=;2 V1t ete.

So far we have assumed that the bridge U~ was given, and
everything else was constructed from it. However, unlike the Yang
theory; the bridge is a constrained object, since V¥ (III.21)
must be analytic. In fact, the genuine prepotential of the theory
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++
1s the unoconstrained connection V « The relation (III.21) should
be considered as an equation for U' in terms of V++ sy rather 4
than as a definition for \/*+ (as in the N=2 YM theory [8,9])

(D+++ Lv++ eiv= 0'

i -+ — . .
. Here V ) =V (xHM uf y uf) etc.; the harmonic
' distributions (Ut UY )—l,etc., are defined in [9] and obey the

,; following relations:®
¥

|

.

¢ ! N++_A - (£ 5] U, Uy

(111,219 i D (rug) $ C ) (111.27)
If one is able to solve this equation, one can construct the full ) ++ 4 - tD-- 8(2’-2J (u ui) )
solution of the constraints (III,3) by going back to the original D (‘ufu'i)l >
T frame . In principle, it is always possible to solve (III,21).
The way to find a pertrubative solution was discussed in [9]. How- i 0f course, it is difficult to judge the global properties of sucf:h
ever, this is in 5zn)nera.1 a very difficult task. Bqugtion (III,21) is i a perturbative solution (III.25). Il}stead, one can try to s(solveth e
highly non-lineari’Note also that its solutions are defined up to linear differential e‘quation (IT1,25) non-perturbatively see e
T" gauge freedom. example at the end of this subsection). .

Here we are going to follow a different line advocated by Finally, connection A— of the covariant derivative ,b-/: is
B,M.%upnik [16]. After introducing the prepotential V++ as the A ! defined by the relation ”
frame connection for ,;D'H' » we will not go back to the T frame. - - Ab_-i- — A_ :_2* V"— (111, 28)
Staying in the A frame we will be able to comstruct all the ) 9%;« = [ﬂ% 1 &M ] M A ’
other connections and tensors directly in terms of V++, without Then the field strength E“\) (I11.3) is
referring to'the existence of the bridge U~ . (II1.29)
I11.3. Analytic frame_geometry. .= To complete the A frame F\,‘: - L(b+ ‘b_ ]: —-9* a; V'",
formalism we need expressions for )  and b/:‘ . The connection V™ 3 a s Y .
for b" can be found from the constraint i The field strength in the T frame does not depend on the harmo-
[b‘H’ )b"’_]-- Do . (111.24) nic variables. In the A\ frame this independence becomes covariant
In the ‘T’ frame it 1s automatically satisfied (see (IIX.13) ), . 0%++’/_:\)= 0 (111.30)

_but in the A frame it reads: which can be checked using (III,29),(III,25),(II1I.22). Rowever, the

I++ V-_‘ D_- V+++ L[V++, V'—J'—' O - (111,25) Lagrangian density ¢i’= ‘t'L U/:"N)Z is manifestly u*- independent.
{ The reason is that the ) and ¢C frame fiei.d strengthi age rela~
‘ ted by F)‘ze‘\rF’te‘f.V‘ s 50 1 (FA) = t» (F‘-) .
The oonclusion is that one can indeed work entirely in the ) basis
thus avoiding the necessity to solve the non-linear bridge equation
(II1,21). This especially concerns the calculation of the topological
1nvar1ar\1t S= ga\mx 't'L 0;1\,)2, which is frame independent.

We illustrate the above approach-.on the very simple example of

Once again, this is a @ifferential equation for V-- in terms of V**
However, unlike the bridge equation (III,21), this one is linear

in V_-. Moreover, 1t has a unique solution (because the ¢
equation P**V""= 0  only has the trivial solution V™ "= 0 ).

The perturbative solution of (II. 25) was found by B.M.Zupnik [16]:

V" — " al ,l .vH(i)VHCZ)..- V++<“) the one~instanton solution in R4 for an SU(2) YM group [21]. Ve
T U =Z Uy--A U . . ++) | in thé form
( N ) o LN n (u+uz)(u1u;)(u: Zl+) (1II.26) choose the prepotential (v f.J n 1) (111.51)
h : ' v A 1 !
' ++) ) - xt 2 consk (Lp): em )
i (v );J‘ yzxtxd 9 uy
3)witn respect to U itself. Though eq. (II.21') is linear with ) The solution of (IIL.25) is easily found
ieias]piegt toe)rg{cv_?, itﬁ s;lution is not automatically of the exponen— : . X T 1-—4’
a orm and one should worry about this by imposing the nonlinear N/ t ! 2 X T
taitarern end one she y imp g (_V ~)‘.J - L xZ= 3tYXT . (111.32)

x4+ p2 ’

|
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Finally, from (III,29) one gets:

be B2 o 30
MY (x2+p2)h
which coincides with the well-known one-instanton result [22]. .
It would be most interesting to try to find the prepotentials
\/++ which generate the multi-instanton solutions of [23]. This might
help to get an insight into the analogous but muoh more difficult
problem of finding all hyper-K&hler metrics.
In conclusion we point out the similarity of the problem discus—
sed 1n this section with the N=2 supersymmetric IM theory. There one
has the constraints [24]

(B \Bi}- gie,w
{3, 2;3= 85 2

(I11.33)

which look very much like (III.3). Actually, they can be solved in
precisely the same way 18,9]. The crucial concept now is that of
harmonic Grassmann analytic superfields ¢(x ,6,6 ‘u)

%;(P:ECP:O, ﬁi,f;ﬁut&ia'

The unconstrained prepotential of Ns2 SYM is once again the analytic
connection V + of the covariant derivative 8++ in the analytic
A frame.

( 111,34)

I1X.4. Relationship between harmonic_and twistor_ space
approaches. 4As mentioned in the Introduction, there is a close
relationspip between our approach to the self—dual YM equations (and
their higher dimensional generalization) and the construction of
¥ard [ 4] (which 1s an application of Penrose's twistor program [1)
to the YM case). Common for both approaches is the interpretation
of the self~dual YM equations as integrability oonditlons obtalned
with the help of additional varlables related to the sphere Sa . Ve
desoribe Sz globally by considering functions defined on
SU@)= {’Uf} , and requiring them to possess a definite U(I)
charge. Thus we avoild using an expliocit parametrization of ,32 .
Another advantage 1s the manifest covarlance with respect to 5U(2)
acting on the indices, C,J, ~++, It allows us to easily control the ,
patterns of SU(2) breaking.
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In the twistor approach one considers functions of two complex
variables Wi‘ (1"1,2), which are analytic (i.e. do not depend onﬁi)
and homogeneous, so they effectively depend on, e.g., $='Hi/'ﬁz .

This clearly provides a parametrization of only one part of ,SQ
(leaving out the point TF2=0 ). In our language this would corres-
pond to using only the single complex variable E: ?A"i/?«("z
(but not U~ ) and replacing the U(I) charge by a degree of homogenei-
ty in 7/(‘“.- . Consequently, we would lose the possibility to use the
derivative 'D"'*: uts T N’D/a? . Therefore the way in which
we introduce the prepotential V/**(x* 2t U7) as the oonnection
for ﬁ'H' , and the basic equation (III,21) determining the bridge
'U'(.Zl*\ Zl*) in terms of V'H' are not directly applicable in tt,le
twistor approach. Instead, there one does the following. The self-
-duality equations imply that the comnection A/;:: A JIt can be
/'h.
represented in the "pure gauge" form
+ _ i gt
Au=H2TH.
The condition that A+ d d n 'JT‘: just linearly (which in
P epends o Yy
our language has the form of a differential constraint)b‘“’Ai' =0 )
is now formulated as the condition that AY 1is regular in’ i
(ta.king into account the homogeneity in don the whole sphere Sz.
Such a restriction imposed on would be too strong( “H would
become a gauge transformation and A+ would be empty). Therefore it
is weakened by requiring that H should be analytic (regular) only
on one part ﬂi of SZ (the approximate equivalent in our language
1s that we do not require DV*U(a,u)=0 ). However, the
presenta.tic:\n (II1.35) is not unique, since one can consider another
function H  glving the same

A A
s=HiOTH
A/d é"‘ 2 — 2
but analytic on another region..ﬂ_2CS ’_Q.jufl;s,comparing (I11.35)
and (IIX.36) one concludes that

G=HH*,06=0

(111,35)

(111.36)

€111.37)

i.e.,G— 1s analytic in Ji on _Qin_Qzand depends on JMT= AT only,

G= G (1*','3{) . The argument can now be reversed: given a prepoten-
tial G(_:x+)q|‘)A one may try to perform the "splitting" (I1I.37 )
into | and H with overlapping regions of analyticity (a variant
of the.famous Riemann-Hilbert problem), and subsequently construot
the connection A/t (I111.31) or (III.32) which will automatically
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satisfy the self-dual YM equation. We conclude that this procedure
1s analogous to ours, with replacing the bridge U™ , C;repla-
cing the ' connection V** , ana the splitting (IIL.37) repla-
cing the nonlinear differential relation (III.21) between V' and
U .

Closest to ours seems to be the approach developed by Newman
. [5]) in parallel with the twistor one. Its central point is the
reductlon of the above splitting problem to that of solving certain
differential equation (referred to in [ 5] as the Sparling equation),
The latter looks almost identical with our eq. (III.21'), involving
harmonic differentiation ])+ and unconstrained YM prepotential »/++
denoted, respectively, by and /4 + Accordingly, an essential
ingredient of that approach is the use of harmonic expansions on
sphere S? ( with the term "spin - welght" Standing for the U(I)-
charge and with the vector harmonics instead of the spinor ones in
our formalism). Though refs.[5]actually treat the case of Minkowski
dpace, all the things are easy to continue to,the Buclidean case.

It would be of interest to establish a step~by-step correspondence
between Newman 's construction and the one presented here.

We have already mentioned that the problem: of solving the non-
linear differential equation (III.21) is difficult. We believe that
the problem of finding the splitting (III1,37) is of oomparable
complexity. However, in the harmonic space formulation there is a
different approach which only involves the geometry of the )
(analytic in X%, but not in U¥ ) frame. There the central problem
1s to solve the linear differential equation (III,25) for V™~ . We
hope that this path may prove easier {(all the said equally concerns
the Newman approaoh which 1s based on the nonlinear equation of the
type (IIL.21)

We conclude this paper which largely has an introductory and
illustrative nature. The concepts and methods developed here will
be applied in the second part of this work [15] . They will help to
define the novel notions of the unconstrained prepotentials of
hyper-Kihler geometry and to establish their one-to-one 0orrespon—~
dence with N=2 off-shell supersymmetric sigma models.
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Fanenepuy A.C. u np. E2-87-263
leoMeTpHH KAJHMOBPOBOUHKX HoOJlell H3 KomnneKCHoﬁ
H TapMOHHYE@CKON aHalmUMTHYHOCTeEH.
Kanmepos H caMomyanbHbilt AHI—MHIUICOB CJIIYUau

Hexomna M8 npHHUHNA COXpaHeHHA aHAaNUTHYHOCTH, MPOOEMOH—
CTPUPOBAHO EOHHCTBO IIOJIEBBIX TEOPHHA C BHYTPeHHeH KOMIJIeKC—
HOl CTPYKTYpOH M CymeprojieBeIX KajIMOPOBOUYHBIX Teopuii. CBA3H
3THX TeOpHHi HHTEPNPETHPYWOTCS KAaK YCJIOBHSA HHTerpHpYeMOCTH
011 CYmMEeCTBOBAHHUA AHAIHTHUYECKHX MNOONPOCTPAHCTB H PEemanTCcs
nepexonoM B aHajiluTHUecKHit 6as3uc. IpomeMOHCTpPHpPOBAHB yno6—
CTBAa HCHOJBLSOBAHUA 3Toro 6asuca. B uvacTHocTH, ymaeTrcsa 3a-—
MeHHTBb npobiieMy CINIHTTHHTA, XapaKTepHyl [Ajid TEOPHH TBHC™
TOpPOB, pemeHHeM JIHHellHOrO ypaBHeHHHA.

PaloTra BhinmonHeHa ‘B Jla6opaTopuH TeopeTHuecKod GH3HKH
ousAu.

Ipenpint OGbenueHHOro HHCTHTYTA ANEPHBIX HCcnemoBanuit. Jly6Ha 1987

Galperin A.S. at al. E2-87-263
Gauge Tield Goomotry from Complex and
Harmonic Analyticities.

1K&dhler and 8clf-Dual Yang-Mills Cases

The analyticity preservation principle is employed to
demonstrate an impressive affinity between the field
theories with intrinsic analytic structure and superfield .
gauge theories., The defining constraints of the former
theories are interpreted as the integrability conditions

| for the existence of appropriate analytic subspaces and

are solved by passing to the basis with manifest analyti-
city. We prefer to work within the analytic basis. This
allows, e.g., to replace the nonlinear splitting problem
of twistor approach by solving a linear equation.
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