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I. !!m:2duQll9.B 

The concept of Cauchy-Riemann analyticity has profound impli­
cations in gauge theory. The preservation of analytic representations 
in a gauge field background i8 the leading principIe in such classi­
cal problems as the theory of Yang-Mills (YM) instantons , Kãhler 
and hyper-Kãh1ergeometry,-etc. [1-6]. On the other hand , it is re­
markab1e that tbe analogous principIe of preservation of Grassmann 
ana1yticity [7] governs tbe geometrio structure of supersymmetric 
gauge theories. The underlying superspace constraints of these 
theories can be viewed as the integrab11ity conditions for the 
existence of certain analytic subspaces. Passing to the basis where 
a~lyticity is manifest automatioally solves the constraints in terms 
of several unconstrained superfield objects, the prepotentials. The 
latter are natural carriers of the intrinsic geometry of a given 
theory. It is essential that :t;h'e v.ilc!l.e theory can be defined entirely 
within the representation with a manifest analyticity. Recen~ly, a 
deeper understanding of the role of "Grassma:I).Il anal'ytici ty has- -Led to 
important developments in the theory of extended supersymmetry. The 
introduotion of the concept of harmonic superspace and harmonic ana­
1yticity made it possible to construct unconstrained geometric formu­
La t Lons .of alI the N=2 supersymmetric theories 'tS-ll] and of N=) YM 
theory [12]. 

The idea of harmonia sUP5rspace 1s intimately related to the 
famous twistor theory [1- 4]1 • The latter theory is wide1y employed 
also in the problems ment10ned in the beginning. Tbis correspondence 
has led us to realizing that these purely bosonic problems may have 
a transparent presentation along the lines one normally follows in 
supersymmetry. In the present and subsequent [15] papers we re~ormu­
late a number of these theories (self-dual Yang-Mills theory, Kãhler 
and hyper-Kâhler gravities) in a way which-readers with exper1ence 
in supersymmetry will have no difficulties to understand. The general 
principIe we confess is the preservation of certain "flat" analyt1­
cities in the full interaction oase. That allows us to reveal a 
!und~~ta~ role of corresponding analytic subspaces in the geometry 

. 1) Twist~r-1ike interpretations of the extended supers~etry 
oonstraints have been oonsidered by_Wi~ten [I)] and Rosly (~4~. 



of problema in queation.Surprisingly enough, almost alI the notions 
known from the geometric superspace considerations have immediate 
analogs in ordinary spaces, thus demonstrating a deep affinity of 
both classes of theories. 

We use a down-to-earth language of conventional differential 
geometry, no adyancedmathematical background is required including 
the knowledge of sub'tleties o.ftwistor formalism. l'levertheless, one of 
our main incentives is ~ó explain the relationship with twistors 
(l-4]and some other ooncepts of similar nature [5]. In the process, 
we .discuss a hard problem in twistor theory. There one has to solve 
a non-linear differential equation for some basic object, out of 
which one constructs the self~ual. YM or gravitational field. We 
propose an alternative way which consists in keeping elo ser to the 
manifest analyt1city underlying those theories. This way leads to a 
linear differential equation. It was first suggested by B.M.Zupnik 
[16] in the context of N=2 supersymmetry. Another main result of our 
research is a theorem [15] .e stablishing the explicit one-to-one 
oorrespondence between the most general off-shell superfield Lagran­
gian for N=2 supersymmetrio sigma models in four dimensions and the 
unconstrained prepotentials of hyper-Kâhler geometry. This relation-. 
ship is understood as fully as the one between N=l sigma and Kãhler 
geometry[17]. The geometric meaning of the Kãhler and hyper-Klihler 
prepotentials is revealed in an extended space with extra central 
charge cpordinates. 

As we have already explained, the basic strategy we keep to con­
sists in searching for an appropriate space (or superspace) and its 
analytic quotient space (and/or a frame in the tangent space) where 
the underlying analyticity becomes manifest and from which one may 
induce in full the relevant intrinsic geometry. Aotually one could 
find such spaces by some reasonings and guess. A propos, just in this 
way the intr1nsic geometry of N=l supergravity (SG) and YM theories 
were exposed [18,19J and for N=2 theories the harmoniC superspace and 
the harmonic analyticity wer~ invented [8,9]. A more systematic method 
is to start with the set of properly postulated constraints in some 
space (or superspace) and then to interpret them as the integra~ility 

conditions fo~ the covariant existence of an analytic sQbspace. This 
is precisely what we do throughout the paper and what allows us to 
establish a direct contact with the conventional definition Df the 
problems we are involved in. 

For a further use, it seems to the point here to recall the 
definition of Kahler and hype;-Kãhler geometries. Most appropriate 
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for our purpose is the definition via the restrictions on the 
holonomy group of the manifold, that 1s the group generated by the 
components of Riemann curvature tensor (see, e.g. [20]) • T,he Kãhler 
and hyper-Kãhler geometries are particular branches of general2" 04nRiemann geometry in real spaces 'R and r-, , respectively, with 
the holonomy groups in U(n) and Sp(n). Since the Riemann tensor in 
general appears in the r.h.s. o~ commutators of covariant derivati­
ves with respect to the manifold coordinates, the above definition 
amounts to imposing certain constraints on these pommutators. As 
we· shall see, those look very similar to the superspace constraints 
defining the supersymmetric gauge theories and thus can be treated 
in a similar way. 

T.his work is divided into two parts. The present article has an 
introduotory oharacter. Our purpose here is to introduce the main 
concepts of analyticity and its preservation starting with the very 
simple examples of Yang theory [6] and Kahler geometry. These have 
direot analogs in N~l YM and supergravity theories which are 
based upon Nal Grassmann analyticity (cbttality). A ~urther develop­
ment of the idea of ana1yticity is harmonic analyticity. It is de­
f1ned with the help of new harmonic variables and allows us to in­
terpret and solve the self-dual Y.M equations as integrability con­
ditions for this new analytioity. The complete supersymmetrio analog 
of th1s theory is N-2 IM theory. We also discuss the relation8hip 
with the tw1stor-type construct1ons of Ward [4] and Newman r5] • 

In the seoond artiole [15] the idea of harmonic anal!ticity 
i8 applied to the oase ~f hyper~áhler geometry. T.he corresponding 
oonstraints are rewritten once again as integrability conditions and 
then solved in terms of analytic prepotentials. Then it i8 shown 
that these prepotentials and their pregauge group have direct images 
in the theory of N-2 supersymmetric sigma models. There they deter­
mine the most general Lagrangian for the off-sh~ll hypermultiplet 
Grassmann analytlc superfields and its (hyper-Kãhler) inyarianoe. 

11. QQ.I1m1J!~-1I1g!ll..~d-8ªM~....1h~Q.!:ill 

In this section we shall discuss several examples of gauge 
theories with intrinsic complex 8tructure. We shall show that their 
oommon feature i8 the preservation of certain analytio representa­
tions in a gauge field background. 

T,he general frame~ork for Euclidean gauge theories is a real n 
dimensional spaoe"Rt'\={Xt'\1\,h\ .. i, ... n.Tlte fields defined in it form 
representations of some internal symmetry group and of the (Euclidean) 
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Poincaré' group consisting of translations 'Ph'\ and OCtt)rotationS. 
The gauge theories are obtained by making a symmetry group (an inter­
naI one or the Poincar~ group itself) local, i.e. letting its para­
meters rt'depend on X ,'<:= 't(X). The principal geometric 
objects are the.covariant derivatives ~~ • Their commutators de­
fine the tens~rs of the theory: 

ll>m ,1>n] = fY\'\Y\ OY' "R l'\1 n 

(F is the field strength for YM theories, ~ is the Riemann ten­
sor for gravity, with values in internaI symmetry algebra and 
tangent group algebra, respeotively). Note that the gauge fields _ 
the YM connection Al'\1 and the metrio 8rru,(or vielbein ea m )~ are 
the unconstrained potentials of those theories. 

Zt1 In even dimensional space R one can introduce a complex 

R2 h structure ·if one reduces the homogeneous automorphism group of 
from 0(2h) to V(h.) . Then one oan choose the follovl1ng complex 
basis: 

~ v- h • x)#+ Yl :x..fi = (X.A) tX == ft.F· + L (II.l) 

where )1-=.1. ,-.. ,n is U(n) indexe Now it becomes possible to 
define anakyt í,c fields <P(X) which satisfy the U(h.) covariant 
Cauchy-Riemann (CR) condition 

(II.2){xl' !f(X,X)== O ~ (0== ~(~). 
This concept has important implications in gauge theory. 

11.1•. Analytic YM theory ( Yang theory [6] ). Suppose that the 
field <f>(X,:x:.) transforma under a YM group with real parameters 
rt: (:::t,:X ), r"f;=-7::, Cf'=e'T:tp • Then the CR condition (11.2) must 

be oovariantized: 

~.fi ~ == O lJ.-::= ()- + A- eX ,x). (Ir.))
/1 /' Y1 

Clearly, (II.)) can take place iff the following integrability con­
dition holds: 

(11.4)L?J- ])-]:: o ~ ~\T = o . 'fi) v 
So, the gauge potential f\~,~ is now constra1ned by e~uation 

(11.4). This constraint has the general solution 

A- ::: e-i W~_ e LW (~=e-iW~eiW), (II.5)
~ /i , 
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where W (x").x) .is a complex Lie-algebra valued scalar field 
transforming as follows: 

e i. W I =e t·). e LW e-i.rr: . (II. 6) 

There arise new transformat10ns with analytic parameters À 

~ À= o 1 .À =,À (;x:). (11.7) 

Due to their analyticity they leave the connection A~ (11.5) in­
variant and, consequently, can be oalled pregauge transformations. 

The solution (11.5-7) admits the following interpretation. 
Define the field ~ 

I ."'\ (II.a)
</> == e~ W<p ep=e L A cp. 

Then it 1a easy to cheok that the covariant CR condition (11.)) 
implies 

(II.9)~ <P= O ~ 1> = cp(~)· 

In other words, the new fie~d ~ ia man~festly analytic whereas 
~ is covariantly analytic. This is corrsistent with th~ new gauge 

transformation law (II.S) with analytic parameters À 
This simple example 1llustrates an inportant pheno~enon in 

gauge theo~ies with constraints. There the potentials (e.g. ~ ) 
are expressed in terms of a new, unconstrained object ( VV ) called 
prepotential. The latter has the geometric meaning of a bridge 
between two gauge frames: one with real parameters ~(~)jC) and 
another one with analytic parameters À (Je) • In the 1; frame 
reality is a manlfest property, whereas in the ~ frame analyticity 
becomes manifeste In fact, the '7: gauge freedom can De completely 
fixed by imposlng the gauge condi tion Re W= O. Th1s makes '7: 
a (non-linear) function of À ,"1 and V= k W, and leaves V as 
the only gauge field in the theory: 

e 2 v /=e -, 'X e Z v e i. ). (rr.ro) 

~e oan sa,y that V parameterizes the homogeneous apace ' Ge! G, 
where GC Ls the complexification of the YM group G . 80 the 
above construotion oan be interpreted as a kind of nonlinear sigma 
model defined on (;';1(; ,with \f being a Nambu-Goldstone field 

, Gc! ( ,whlch gives a nonlinear realization of . in,a complete analogy 
with t~e N-l supersymmetric IM theory [19], see below). Note that 
the theory oan be formulated entirely in the À frame. T-here 
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the covariant õerivatives are 

bO)=e'-v~ V:t') -zv~ ,eV()h.OL -VA- V_f) (11.11) 
/'l ~e ~+e ~e ,~-e ~e-~ 

and the components of the ~ -covariant field strength are 

Z
~\i =di'(e-2V~ e v)=_ rV,/1 ) ~v= !Av = O. (11.12) 

Recall that the Yang theory [6J was aimed at solving the Y~ 

self-duality equations. What we have described here is a merely 
kinematic part of the whole Yang construction which involves in 
addition certain dynarnical equations for A~, A)1 (and hence for 
\f ). We postpone a complete discussion of YM self-duality to 

Sect.IIl where this concept will be entire1y translated into a "kine­
matic ll language with introducing the analyticity of a new type 
(the harmonia one). . 

11.2. ~~hlc!_~~i!~. Another, less trivial manifestation of 
the principIe of preservation of analyticity i5 Kâhler geometry. 
Consider a 2n-dimensional real R1mmannian space parametrized by 
JC~ 

) 
~)U(11.1). The general coordinate transformation (GCT) group 

1s 

SX/~ = 'T..M{:x. ,.i:) s.x.)t :: rrA , roé fi = ('7:/i) (II.IJ) 

In addi tion, one chooses à. U(n) tangent space group wi th par-ame-. 

ters 

Ár;.fl (x)~)=-"'Jo(==- A,;;.. € U(n.). (11.14) 

Kahler geometry i8 specified by the following l1(n) covariant 
constraints expressing the requirement that the holonomy group is ' 
contained in LT(h) (see 1ntroduction): 

[bõ(, 17ft]= O and c. c. (II.15) 

These constraints, look identical with the ~4 ones (Ir.4) (but 
now transíormations (11.1)) involve ooordinates themse1ves~ 

Actually, they admit the same interpretation of integ~abi11ty condi­
t10ns for the existence of analytio fields defined by the' CR cond1­
t~on 

(11:16)
rb~ ~= q. 
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This similarity suggests to use the sarne strategy for solving
 
(11.15). We begin by defining an analytic basis:
 

~:: X)A+ V-f1(x) X) xA'fi:: (x.~) (II.17)1 

in which the GC'l' group has analytic parameters í\)"(XA) 

SX:=À~(XA). (n.18) 

The function Lr~ giving the cpordinate change (11.17) is a bridge 
between the 1: and .À bases: 

S V-Jf (X)X)::: '>teX A ) - '7:'~ (x ) x:) . (ri.19) 

In this oase Ir~ can be gauged away by ~ transfQrmàtions, and 
2) , , 

the ~ group can be id entified w1th the À one • 
The purpose of the introduotion of the À basis was to make 

'analytia1ty manifesto Indeed, the oond1tion ~ <p = O (for a 
scalar field) is now c ovar-í.ant , Tbis suggests that the oovariant de­
rivative:b(l does not contain 'OI /Ox..Jof : 

Ã ()'l!J ::: e;;( ~ ~ + Wd. . (11. 20) 
O'~A 

'l'he vielbein e.: (.:t)X) and the connection C-Jo«(VCttalgebra v.alued) 
transfor.m as follows: 

& eõl fi = t1~ fi e/ + e.;< "J t)ii X'" (lI.2l) 

&W,,} f =-e()À~ I\pr + t\JJ' Wjj!>( -t\jjW"'PJ +t\i.l'úJ"ln . 
Note the absence of vielbeins ~~ in (11.20) which 1s a conse­
quence of the analyticity of the À group. The connections ~o( 

are determined by the usual Riernannian torsion constraint 

'"""'\-.8 ~ - O ~ r: i., -. - e fi () e: e (11.22)'~r Q -, VV~j3r -- ~ ~ ~. vf'-;--r 

F1nally,one has to plug the conjecture (11.20) 1nto the defining 
constraint (11.15). The only independent part of it 15 

T;;lpr =O ~ d[}1 ~\)J À = O, (U.2J ) 

2)Note that this is due to the aocidental fact that in the 
present case the Ã -group is a subgroup of the "t' group , In 
alI the other examples that we consider the bridge carries non­
trivial degrees of freedom. 
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where the metric is constructed from the vielbeins,3v) 
~\J À = evo{ e À õ(,. (rr. 24) 

Equation (11.23) is easily recogn±zed as the weli-known Kâhlerian 
condition on the metric. It has the following general solution~ 

3vÀ = OyÔ" K 1	 (1I.25) 

.	 where arbi trary function K=. KeX 1 x) 15 noth1ng else than the 
unconstrained prepotential of Kahler geometry. Obviously, (11.25) 
is invar1ant under the pregauge transformations 

S K::: -i (/\ (XA) .- À (~))	 (~:r.26) 
with an arb1trary analytic parameter ~ (JCA) • 

Thus V/e have succeeded in solving the constraints (11.15). T-he 
concept of the analyticity preservation proved crucial once again. 
-The -ana'Lo gy with the Yang theory [6 J reveals i tself also in the 
existence of manifestly analytic and ant1-analytic V/orld frames in 
the present case. Converting, e.g., any index ;< with ~ and)B 
With~)B , one passes to the frame'where the covariant de~ivat1ve 
~vith respect to has no connectionX: 
(lJ;7) - ~e V e - (b-) - e:_ &;4 qvii L . (11.27)

'f3r oi f f3 cJ.",1 r - ~ () ().:l:~ 
In this frame funct10ns with arbitrary indices can be made manifestly 
analytic. Instead of the tangent group LJ(n) with real parameters 
one has now transformations induced by the world ones with parameters 
~)V(.x~).	 . 

Comparing Kâhler geometry with the Yang theory of Sect.l1.I one 
can sa.:! that the analogs of the bridges e l W , e iW are the viel­
beip.s e~, eff . At the sarne time the Ká:hler potential K(x)"X.) 
and its pregauge group are new concepts without analogs in the Yang 
theory. They have peculiar dimensions ([~]:=o~[k]=[,x] 

= length2), and t hus do not naturally fit into t he cus t omary field 
geometric framework. 

11.3. ~~~!~~h~g~_ª~-!h~~~!g-2~_ihe_Kãhl~!-~~~i~. 
In ôrder tb incorporate V\ as a geometrio object, we shall extend
"Rl J1 by adding a new real coordinate "Z= '2 with dimension length2 : 

R2 '-' li =:: {(~)I .. XÃ, 2)} . 
In th1s space one can realize the following "central charge" exten­
tion of the Poincaré algebra: 

'8 

L~ )P\i ] = 2 ~~ Z (11.28) 

l~ .. l]:: [~)Z]= L~, Pv] =L~) Pv]= Q. 

This algebra st1l1 has U(h) as its automorphism group, w1th
 
central charge ~ being a singlet. The transforrnations realizing
 
(11.28) in R2n.1 are 

(11.28' ) 

&x fl :: a"; ôxÃ :::: aÃ ) &E = a + i:. (a!ix.Ã.- a/'x J4 ) . 

R2I1
The covariant derivatives in ,:i( they cammute VIi th P " p and 
~ ) have the following form: 

]))'1:: ~ ... L :x.~ iJ;i! l])j1 = ~ - i X~ O2 )J)i! -= O~ 

and satisfy the algebra 

LJ)j","lv] = -,2L ~~ ])2 ' (11.29) 

['Dji )J>;Z] =: L~ ,:Dz ]::: [l>~ lDv] :: llfi.,])v}= O· 

The cruoial obsérvation 18 that the algebra (11.29) i5 st1l1 cons1e­
tent with the analytioity (1I.2)~ Ttis becomes obv1ous in a speoial 
analytic basis in "R2"',1 :' 

:x~ =X)4) X~.::x.); 1 2A =2 ... i :x)-l.x.,Ã 
(1I.3Ó)' 

bx::: a", Sx{~ aJi ) ~ 2A :: a + ~ I. aÃ xf e ' 

In	 other words, the subspaoe (xl') ZA) Ls invariant, and one can 

define a.IÍ.alytic functions r'(XA , 2A) • Oi' cour-ae , thé ordinary 
Z' -independent analytic funotions ,~(X,4) are st111 à,11owed. 

The next step i5 to generalize the above rigid framework to the 
cUrYed' case; Sinoe the De. coord1naté ,2 Ls aux:Ll1ar;r., and the 

.	 ,R2t1 
geo~etrio objeots of do not qepend on it, we ohnose the GCT 

, 2'" ! 
,group in 'R ' to be Z. independent too. In ,pt:l.rtioular, Z q.nder-, 
goes tt t::ransformat1ons S 2 :. rc: (x J X) ,7,":. 'l: . 

To malte analytlQ1ty manifest we need a new basâ.s in whioh an 
analytio í\ group aot a, In addition to (íI.17..19) we ohailge 2 
2,4 =. 2 ,-t tr eX ,x.) 

(I~. J1)

ÕZA c') (oXA) 8''lr=; ~CXA) -~(X,X).
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Unlike 1J"fI(x) x) (11.19), the bridge tr cannot be gauged away 
oompletely (Lr is oomplex, while ~ ,is real). A ~oasible gauge 
is (cf. the Ya ng theory of subsection 11.1): 

~1r= O ~ rr(x)~)=1 (Â(XA) +1 (XA)) (11.,32) 

The remaining part of Ir is 

(11.,3,3)K=1~ 1r ) S K = - i (~ (xA) - ). (XA )) . 

Note that this is precisely the transformation law of the Kãhler 
prepotentia1 (11.26). 

To reveal the relation between ~, and the metrio we proqeed to 
the construction of covariant derivatives. We sha1l 'show that the 
scheme developed above provides the solution of the following genera­
lization of the

. 1<2~ 

constraints (11.17): 

(a)lbõi:}lJ}1=o (11• .34) 

L17~, b}1=-~~ Ôol} 17z~ Rol} (b)
 

[:boi, b z 1:= [b~, b 2 J=O . (c)
 

The new torsion term in (11.,34b) is prompted by the rigid space al ­
gebra (11.29). In order to keep as close as possible to the original 

R2n Riemann geometry ~n one is led to choose 

(11 • .35) 172 : ~ 
This option is al!owed by the gauge group though is not obligatory. 
The point is that any other choice would give rise to new tensors 
which were not present originally. The analytic basis 'form of 1:;;;.. 
(11.20) remains unchanged since ·the gauge group does not require 
a {ZA termo Changing back to the YL baaã,s we obtain (in the gauge 
(11. ,32) ): 

(11.,36):b- =e ~ (d- - L d- K L ') -+- w~ . 
ol. ç(. /" /1 "O z 

In this basis bo<. is the oonjugate of b;;z .' Putt,ing af l, thi s int o 
(II.,34b) we derive the old expression (11.22) for the connection 

t<.) õ( • Further, the relation 
i! (11.,37)To<J: =- iZ \. Sol} 

is not a oonstraint ,any more, it becomes the definition of the met~i~ 

3ft~ in t.erms of K exactly as in (11.25). The constraint 

(Il.,34a) is now a consequenoe of the Bianchi identities. 
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211 02"',:1
In conclusion we can say that the extension of R to ~ 

allowed us to find a formulation of Kãhler geometry in which the pre­
potential arises as an object with a clear geometric meaning. 1t 
comes out as the imaginary part of the bridge from the original 1; 

basis to the ana1ytio À basis {involving ZA ) • The -Kâhler in­
variance is ldentified wi th the analytic GCT of the extra central, 
charge coordinate. This is to be compared ~ith the standarn formula­
tion ofKã.hler g-eometry in 1<2t1 (see s ect , 11. 2), where the prepoten­
tial and its lnvariance emerge as solutions of the constraint on 
the metric. In accompanying p~per [15Jw~ sha11 extend this approach 
to include the c.ase of hyper...Kahler geometry. ,The structure of the 
latter becomes much clearer a~ter introducing ali SU(2) tri~let of 
central charge-s. 

We would l1ke to note that the central charge coor~inate was 
Tegarded here as purely auxiliary, and none ~f the fiB~ds and para­
meters depended on it. However, the constraints do not rule óut tnat 
some analytic matter f18lds with non-vanishing oentral -char'ge existo 
It ls fnteresting .to find out the relevance of such representations. 

. 1I~4. ~al2.&!~e-!!ll!!.li:ll..J!~!:~.J!try. The two examples of 
gauge theories based on analyticity in x-space considered above bear 
profound anatogies with H-I supersymmetric theories in four ~imensions. 

Those theories are formulated in superspace w~th even coordlnates 
~, ~ -. - ­oc and Grassmann odd coordi-nates e 'l.6 õl : (6 eJi ) • The algebra 

of the rigid covariant derivatives '])ot ' D~ and Dm resembles 
(11.,34) , 

{])'" ,J>, }={])oe , ])f} =[]).,.. ,])".,] =: [:Do\' ,])t>rl= O (lI. 38) 

{no(, Dj} =!Z L d~~])~ . 

~learly, it allows one to define Grassmann analytic superfields 
satisfying the constraint 

(11.,39 ) J)Õ{ cp (X-,8 l 6 ) =O· 
It is .solved in a spech.l left-handed chiral basis in super spaceI 

{(X """ =XJ"1 +'i. o~~e- ~ol.). fji/} ,L o U , \7 -). ( I I ..4 O) 

where J)'ó' == d/d-8oC and (11.'.39) means that cp = cp (X~ )a) . 
Note the close 151milarity of this pi-cture to the one of subsection 
11.3' with (X)4) XÃ) 2. ) .replaoed bl (6-<1 8~ :>.xtrJ ). 
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T,he Grassmann analytlc representations of supersymmetry (11.39) of Kãhler geometry in subsection 11. J, the space-time coordinate XI1? 
are fundamental objects. N=l matter is desoribed' by a set of scalar being now ,an analog of Kãhler central charge .coordinate :2 • The 
chlI:al superfi~lds 1>(X.L , é) (and their conjugates <PC.::tR l e) • non-trivial bridge connects .x~ and.xm (:::r';= .:x~i HWI(:XP;-e)j 
~ - ~ ). Their general self-coupling is given by the action-.AR - oÁl... . _ 

S = )J4x JlteJ2e k (CP ,4» + ,__ 
(11.41) I;~.;

1I
.~ -t ~ J4.):L J. 28 PCeJ» + F4X R d2 e P(CP). I 

1/ ' 

whe r e K Ls an arbitrary real function of'· <p and cp , and P
 
i5 an analyticfunction of cp . Note that t~e first te~ ~n (11.41)
 
is invariant under the replacement ft< ~ K-r (/\ (Q» -I\(c.p))
 
sinoe SJ...(x tA,zeJze A(<P C:tL l»)=O. This resemblance of Kà.bler geometry
 
is not accidental. Jndeed , as shown by Zumino [17J the action
 
(11.41) contains the -sí.gma model action 

wheres= ~A4 oi j~~ (lp) {t?)dyYl tp.A am cp V, 

!fÃ(X) = <p)/(XL) e) le=o, Cp); .; (~fi) ànd 

the metric is (J2. k \ 
(11.42)~\i (!f,~) == ;} Q:>M 77 lplJ &= e= o 

(cf. (11.25)). Thus one observes the one-to-one correspondence
 
between N=l supersymmetric sigma mode1s and Kãhler geometry. T,he
 
crucial point ia that the fundamental characteristic of Kahler
 
geometry, the unoonstrained prepotential k comes out as the
 
leading part of the general unconstrained Buperfield Lagrangian
 
of Nsl matter. In [15J we shall extend this correspondence to the
 
oase of N=2 siê'}J1a models and hyper-Kálller geometry.
 

N=l super8ymmetrio YM theory 1s also based upon Grassmann
 
analyticity. T,he covariantizat10n of (11.39) leads to the integra­

bi11ty oondition
 

{oeól ,1>'j} = O, (11.43) 

lt looks almost identioal with th~ conatra1nt (11.4) of Yang theory,
 
and can be solved in exactly the same way. Once again, the prepoten­
 III 
tial 1s t~e bridge between t he real D4 group and its',phiral complexifí ­
cat í.on [19]. 

The preservation of chiraIity Ls the leading principIe "in N=l ~ 
SG as we11 l18]. There one repeats the main steps of the formulation 
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t"t 01 ol .:

S ..c:l: ~::.- À (XL, e) ) 8 e = À (XL) e) ;
 

<5 HWI = - i ()...W) - 1l-\1) ). Once agat.n, the viel beins and 
connections are expressed in terrns of H~ and thus the oonstraints 
of the theory are solved. 

The conclusion is that alI the fundamental objects of N=2 
supersymmetry have direct analogs in the gauge theories with intrinsic 
complex analyticity in R2 h (or l(2n,f). We shall see (Sect. III and 

the accompany±ng paper [15J) that this close reIationship persists 
in the case of N=2 supersymmetry on the one hand, and seIf-dual YM 

and gravity (and their higher dimensional generalizations in 1(4h) 
on the other hand. (There, the underIying analyticity is the harmonic 
analyticity). 

111. .Harmonic anaIyticity and Ya.ng-Mills theory 

In this section we shall consider an example of a gauge theory 
based on a new principIe of analyticity, which is intimateIy relâted 
to the harmonã c vaz-Labâ e s U±i. pararnetrizing the sphere S2 . This 
is the D4 t hé or y in the Euclidean space R411 with a constraint 
general1zing the, self-duali~y condition in R4 (and coi~ciding with 
the latterfor n=l). 

We begin by ohoosing the group Sp(n) x SU(2)C:O(4n) as the 
"Lorentz" gzoup of' "R4h' . Then the coordinates of R~J1 can be 
naturally denoted by JC~l where ~ is an Sp(n) spinor index 
(jt=f.- .. ,211 ) and i. 15 an SU(2) spinor index (i=1,2). The reality 

condition on ~i. is :::if1. =.íl./,,,Eii xvi where ,SL.)-tv and E.'i 
are the ant1symmetric invariant tensors of Sp(n) and SU(2) respecti ­
vely (~lJSl..lIf:[/}) [fiEjk='8~). Next we consider matter fields 

f(x) transforming under a IM group with parameters 7 (~) , 

~ '= eL'rr~. (IlI.1) 
The covariant YM derivative 1s 

(IlI.2)
~ n .Á ') A I ~ ;,'T ( ') .A )'rJ..fti, =5Li. + (. 'ri. (::t ') ri. =ye ~i. -tI. )'4'L. e-L'T .. 

The puryose of the reductibn from O(4n) to Sp(n) x BU(2) i5 to be 
able to impose the following,covariant constraint on the YM potentials 

Afii. 

]3 
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D01ng this we do not lose any solutions of (Irl. )). Lndeed , U+1') u+i 
': in (111.7) are arbitrary variables, so (111.7) s~ply means that

[b}4': 11Jvi] z: l E.J' F(f'v) .' (II1.)} the part of the full field strength symmetric in its SU(2) indices
 
To explain the meaning of eq. (111.3) we note that the general cova­
 :. i; j vam.she s , and we get just eq. (III. ).') which 1s the same as
 

riant str.ength [q..... ~, ] ::: l. -F . .. can always be decomposed as 
l' (111.)) • Remarkably, in the form (111.7) our constraint is nothing
 

. (()~ l. l,uVJ J'4&'VJ 
but the integrability cond1tion fo~ the existence of analytio fields

[b)'f a: l :bvi ] =: l [j'J' r_LMv) -t i f(/j) ~ lJJ . 
\1 

satisfying the covariant CR conditionJ 
Then (111.3) is equivaLent to re~uiring ~lj)f~,~J to vanish: I ~+ rC:;(I:Ü ) = O,	 (III.S) 

[~(, ,:bvJ")]= o, . _(IH.)') In the rigid case the analyticity condition
 
i'f


In the case n:zl, 9(4)'-" 5p(1) x 5U(2) and F(JJ )[)4,"'J :: ~UJ r{(~) . ~ Cf=- O . (111.9)' 
80 (111.)) becomes the familiar self-duality condition 

, 
Hsimply states that Cf= Cf (X+, U) ,where X i · :; U! xfll.. . 

h=i: fUJ) =O' This property ie natural to oall harmonic analyt1city, be cause i ts 

Note that (111.)) and the Bianchi iuentity,lfke in the conventional definition essential1y involves the harmonic variables (like the 

case ri=l, imply. ~he equation of motion lJ~i. F(ffIJ) = O, complex analyticity which is associated ~ith the imaginary·unit i ). 

l)JA L =- ~v E.'J JJvi .	 Note, that the analytic harmonic sp ace 

Now tne problem ls to solve the constraint (111.)). Unlike the {X.-l-t+) Ui:L} (111.10)
 
Yang.theory,of sub.section 11.1, this constraint 15 ngt immed:Lately
 

is closed under the fuI l' Poincare' gr-oup , Tllis space is not real in
recogn~zed to be an integrability condit10n. However, as we shall 

I: the sense of ordinary complex conjugation (X-+ = X- ,see (III.6)).see , it can 'be equivalently rewritten in an ext ended'<spaoa , Wnerê it 
However, one oan define another conjugation ('.J (in (8-12, 21] conju­does become an integrability condition.
 
gat í.on or such a kind was denoted bY..:::t.) .­

1I!.1. &!m....2!!~.Q_§.Eª&~~-ª-!!!H~2!!!~Lª-nallti.Q!1IAiong
.. the lines 
R4n	 /"'v J. • -"-."""- .'-- ()of ref. 18-12,21] , the spac e ,V/here the pr-o b'l-em was formula­ :X;l. = Xf'i. U~ ='F1U±L. U±i =-1{~ 111.11
 

ted, can be ,regarded as the quotient:
 L , L 

{~i.} /'" ~/S,pCn) X S U(2 ) , (III.4) whioh leaves (111.10) invar~~t. Th1s will allow us to define real 
analytic functions in what tollows. 

where Cf? i5 't he Poincar{ gz-oup wUh Sp(n) X SU(2) as i ts x,arentz Tlle covariantization (111.8) of the new kind of analyticity 
subgroup. Nowwe consider the quotient (111.9) gives the clear meaning to the constra1nt (111.7) and suggests 

the way to solve it, muro like tb;e analyticity (11.)) which unde~lies{X"ul 1 U±~} ,,-- Tj5pcn) .	 (III. 5) 
the Yang theory. Moreover, the same c~ncept wil1 turn out to be in 

Here the coordinates U±i. parameterize 5U(2) [8 J the basis of 'hyper-Kiihler geometry toa (see accompanying papar [~'J). 

u:' U-: -= i .(U~L) z: u"7 JL, ,	 (III.6) 111. 2. ~!!!l2.!!iQ_~~ivàt!.YJHL~n-ª...êl!Ê:1;ztifLjH:~te~tial. Thel. 
:(i~ 

general solution of the co~stra1nt (111.7) is 
The functions of U %~ are defined as harinonic expansí.ons interms 
of the irreducible products of ur! 8Q we call Ui:i harmcní.c ~ (:l' \~): -; e-,lr(:l', 'li) ~ e "V-(.2, 4) , (m.12) 
variables [8-~2,21]. 

The introduc'tion of the new variables lA.~~ will hel·p us to	 whera 1f(X,U)is an afbitrary (for the time being) real scalar 
'7 r- ~.refonnulate' the old problem (UI.)) ina new, more transparent wa.y • field. The rea~i ty of v ,1.f =7J , fol10V/ s from th'e property 

,To this end we multiple (111.,3) by lA. 1""') u+i !l ~~ (;()-= - A""I.(X) and (In. 11). However, the original ~onp.ectionAJ in(III.7) is a line'ar function of u +, ~+ =U'"t~c: (X)I	 .
[~ 12J~] = O l~;;= lt'(~i T"~L(2V' (IH.?) i 
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This is not automatically 50 in (111.12), therefore we have to 
impose oertain restrictions on lf('X

1
u.). To this end we ccnsãder 

the derivatives with respect to the harmonic variables. T-here are 
th~ee operators consistent with the 5U(2) defining conditions 
(111.6): 

1"\++= U+':' d_. ])--= U-i. ~ 1)0= u-ti.L -u-L' 9 . (111.13).u '"du L } dU+&' , ()ll·i. ÔZ/c. 

They satisfy the 5U(2) algebra 

(1)+-+") lfJ -=])0 J [])O} ])++J= Z])..~ [DO1n-J==-ZD--. (111.14) 

Since the gauge parameters t7;'.(X) (111.1) do not depend on U r , one 
needs not to covariantize the harmonic derivatives (111.13). 
Further, the original derivative (111.7) obvious1y sat~sfies the 
re1ations 

(a)l])O 1~] = »; (II~.15J 

""-n++ ;b+ ] = O . (b)
L , í" .+' 

Uoreover, ii (III.~5) holds, one oan show that the connection ~ 
is l~near in Zl+~ • First of ali, (III.1~a) yie1ds 

]}OA~ (.X,l.()::::: ~ (X') u) (111.16) 

wh1,ch;uielUls'that ~ ' iS" an eigeriflUlct10n of,"l)0. Then, takiIlg ... 
~cc0t:Ult o'f -tl:le ~xp1ic1t fo'rID of ".])0,' the h~ón1o expansio;n of, A; 
i5 ae ':to11ows 

(~It.17)A,; (X, Ú}~ ~i (x)itL... ~l~'1<)<X)~"'L u+i ~-k ~ " : 

It ã.s ~port~t, that t~e number ~f lA.+ 8xceeds th~t of 'U- by 1­
in eaoh ~e~. In. other word~, ~ -1s a homogeneous funotion of U~ 
of degree +1 ~ 

, ' í'''''' -t«... i .. ,· ,'ri.. A'+- ( .,),A+ ~ e.·~·llt- e zr)= e· ,~' x.,~ ,.­
.".) ,1., /', 

A~'This meane- ,that ~18 actu~lly defined on 'the, qUot1ei'lt 
SU(2)/U(1) "" S~ « ,tn what follows we shall deal only w1th suoh 
functicins on 8 2 '(Wb;ich 0an be~1ewed as' funot-ion~ on S$.- SU(2) 
but havirig def1niteU(I) çhar~e). 

Given the' expansãon (1J::t.17), one 1mmediately se~8' that the 
condition (III.15b) (])++~:=- O ) leaves on1y the first term 
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A,.M~ (~) u'! . So, we have recov'ered the connection A,..t4L eX).
!j The conclusion is that,the full set of constraints (III.7),(III.,15) 

is equivalent to the original constraint (111.3).:j 
Now we have to study the consequences of the constraint (111.7).

~ I 
For this purpose we shall define a new gauge frame where the gaugeli.. parameters are the analytic ones À (x·r1'z.l) (compare wí.t h the Yang!~ 
theory, (11.5-9 ). The bridge between the '7: and 

!~ the quantity l>(X lU) (111.12) which transforrns asl! 

e ~ u- I=. e i ~ e . tre·-L'l:". 
~J 

11 Here "À is a real ( ).::::). ) analytic paramet er 
" freedom of the choice of e=Ltr in (111.12). In the 

matt ar fi elds ar e redefined: cP = e ~ tr' cp, cp /-= e l' Ã cf> . 
Correspondingly, the covariant derivative ~~ becomes simply 9L~ 

~; =: ~ (111.19) 

50 the analyticity (III.S) is manifeste On the contrary, the harmonic 
derivative 1)++ acquires a connection term (the parameters À eX-#; U) 

À frames is 
follows 

(IH.lS) 

z eLat'ed to' the 
new frame alI the 

depend on U:!: unlike '7: eX) ): 
i6++ = ])+++ C. V-r+­

V++ I.:: -: e t À(J)+++l v++)e-L.A, 
where 

v++ = -l, e~1r ])++e-i ~ 

Putting this into (III.15b) one proves analyticity of 

'à+ V++= O ~ V++= V+-tCX+)U). 

(111.20) 

(111.21) 

V ++ 

(111.22) 
~ 

In what follows'we shall use a natural gauge where 
t he. connection VO of covariant derivative])O 
the bridge 7r and the parameters). have zero 

in the) basis 
vanishes and both 
U(I) charge 

1 VO= -L e L1T]/>e-':lJ'~ O "])°11=])° .À = O. (II!.2J) 

In"this gauge alI the quantities in the theory have a definite U(I) 
charge, e.g. :1>0 V-r-l'=t2 V++,etc.

,I So far we hav e assumed tha t the bridge ir was given, and 
everything else was constructed from it. However, unlike the Yang 
theory, the bridge is a constrained object, since \I+f (111.21) 
must be analytic. In fact, the genuine prepotentjal of the theory

l-
I 
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i5 the unoon5trained connection 
be considered as an equation for 
than as a definition for \/+~ 

(1J++ + 

If one is able 
solution of the 
~ frame • 
The way to find 

lo V+-+) e ~ 1T = 
to solve thi5 equation, one can con8truot the full 
constraints (III.J) by going back to the original 

In prinoiple, it i8 always possible to solve (111.21). 
a pertrubative solution wae discussed in [9J. How­

V++ 
• The relation (111.21) should :1 

1) in tema of V+i-, rather li(as in t he N=2 YM theory [&,9]) I 
, ~ 

O· / !i(111.21 ) 
11 

ever, this i5 in ~)neral a very difficult task. Eq~tion (111.21) is
 
high1y non-1inear. Note also that its solut1ons are defined up to
 
~ gauge freedo~
 

Here we are going to follow a d1fferent line advocated by
 
B.M. Zupnik [16J. After 1ntroduo1ng the prepotential V++ as the Ã 
frame connect1on for b++ , we will not go baok to the 7: frame. 
Staying in the )l frame we will be able to construct alI the 
other oonneot1ons and tensors d1rectly in terrns of V++, wi thout 
referring to -the existence of the bridge 1.T • 

111. J. ~ã!llli_!!:~~Q!!!etu:' To complete the /l frame 
forma11sm we need expr a s sí.on a for :t;-- and~; • The conne ct í.cn V-­
for 1)-- can be found from the constraint 

[2)++ )2)-j = DO . (III.24) 

In the ~ frame it 1s autornat1cally sat1sf1ed (see (Ill.1J) ), 
but in the,À frame i t reada: 

])++- V-- - tr: V+-+ + .:. [ V++, V--J= O . (111.25) 

Once aga1n,. this 1s a differential equat í.on for V-- in terma of V"~ 

However, unlike the bridge equation (111.21), th1s one i8 linear 
in V--. Moreove~, it has a unique solution (because the ------ ­
equation ])++V--: O only has the t:r:ivial solution V--= O ). 
The perturbative solution of (~I.25) was found by B.M.Zupnik [16J: 

~ • ., \ ·V++(1)VH (2) V++(I1)
V-(X,U)=L" olUi"..Aun (U+U~)Mbi) (u; .. 

k= i. (III.?6) 
,
\ . 

J)With respect to lr 1tself. Though eq. (11.21') i8 linear with 
respect to(rpf'~~ its solution is not automatically of the exponen­
tial form and one should worry about thia by imposing the nonlinear
unitarity oon~traint. 

18 

V1-'+ i- . 
Here (1.) = V" (.x~L u.t~ ) üt) ) 
d1str1but1ons (1..<+ U~ )-1, etc., are def1ned 
following relations: 

. +-+~:::: ~ O,-:1) ('lA, U:1.)
]) (~i-U~) 

++ ~ == J)-- S(2 )-Z) (U) Ui)
D (U+U~}a 

etc.; the harmonic 
in r9] and obey the 

(III.27) 

Of course, it is diff10ult to judge the global properties of su:ch 
a perturbat1ve solution (111.25). Instead, one can try to solve the 
linear differential equation (IiI.25) non-perturbatively (see the 
example at the end of this subsection). 

Finally, connection A; of the covar1ant derivative b- is 
defined by the relation ~ 

(nl.28):/l- =- [l:J-- 1;;.+J --+ A: = - à" V-­
. /" 1 1't / . ?' 

Then the field streng,th ~J (111. J) 15 

(II!. 29) 
~v ~ - L(~ ,~~ J== _~T dy+ V'--, 

T-he field strengthin the ~ frame does not depend on the harmo­
nic variables. In the À frame this independence becomes covariant 

;b++E": =0 (111. JO)/",V 
which oan be checked using (111.29),(111.25),(111.22). However, the 
Lagrang1an denslty :t =. t "l.. (~,,)2 t s man1festly U± - independente 
The reason 18 that the :;x and rc: frame field strengths are rela­
ted by f>'=€.i.\J~'te-~V" , so i~ (fÀ}~;: t~ (Fl:')~· 
The oonclusion 1s that one can indeed work entirely in the ). basis 
thUB avoiding the neoessity to solve the non-linear bridge equation 
(111.21). Th1s espec1ally concerns the calculation of the topological 
1nva1."1a~t S:: ~~~\1.x 1:.1. l~v)2, which is frame independente 

We 11lustrate the above approach'on the very simple example of 
the one-instanton solution 1n 1(4 for an SU(2) 1M group (21J. We 
choose the prepotent1al (V...-t). j in t hê forro 

I V++).J
• 

-= _ i.- .xi:" x-t
L i ~ 0:: o~.;t CC!); c~i.) (III. Jl)

\.. ~ f' I. ) 

The solution of (111.25) is easily found 

l .)(~ -:x-i(v-~). J ~ :::tZ = .1-f"(~Z (r rr, )2) 
l .x~ -+ )'2 

]9 
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Flnally, from (111.29) one gets: 

S'4 (III.JJ)
t'l. ~~ OC (x2.+.fzy, 

whlch ooincldes wlth the well-known one-lnstanton result [22J. 
It would be most lnterestlng to try to flnd the prepotent1als 

V..... 
whlch generate the multl-lnstanton solutlons of r2J]. Thls mlght 

help to get an lnsight into the analogous but muoh more diff10ult 
problem of flndlng alI hyper-Kãhler metrics. 

In conclusion we point out the sim11arlty of the problem dlscus­
sed 1n this section wlth the N=2 supersymmetric Yl~ theory. There one 
has the oonstraints [24] 

r:J1~ 'ÀJ'} - c'i E. W­1. Ol 1 r/J} - c, do, 

{ III :tJ .. }: ~ 1.: ~o<' á 
Oi 1 'JJ J) 

wh1ch look very much 11ke (III.J). Actually, they can be solved ln 
preclsely the same way [8,9J. The crucial concept now is that of 
harmonic Grassmann analytic superflelds cp (X )8,6 \U) 

~; <P -: l>; cp == O) ~;,d:: u: b;,Õl ' ( 111.34) 

The unconstrained prepotentlal of N~2 SIM is once agaln the analyt1c 

V++ ~++connectlon of the covariant derlvatlve ~ ln the analyt1c 
~ frame. 

111.4. ~~12.t!;.Q.!!2h!lLBetw~~~~....Qn1Qand t.1!!tor~ 

ª~~he~ As mentioned in the lntroductlon, there i5 a close 
relationshlp between our approach to the self-dual YM equatlons (and 
the1r higher dimensional generallzation) and the construction of 
Ward L4] (lt'hlch 15 an appllcatlon of Penrose r S twlstor program [1] 
to the IM case). Common for both approaches ls the interpretation 
of the self-dual IM equatlons as lntegrabillty oonditlons obtalned 
,,1 th the h~lP of addl tional varlables reIated to the sphere S 2. • We 
desor1be ~2. globally by conslderíng functlons deflned on 
SU(2) =- {ut} ,and requlrlng them to possess a definite U(I) 
oharge. Thus we avold using an exp l t.cã t parametrization of 3 2 • 

Another advantage i8 the man1fest covarlance with respect to tiU(2) 
ac t í.ng on the Lnd í.ce s L) i 1 ~ ~'. It allows us to eas1ly control the 
patterns of SU(2) breaking. 

In the twlator approach one considers functions of two complex 
variables C;; ~ (ial, 2), which are anaIytic (i. e. do not depend on JíL) 
and homogeneous, 80 they effectlvely depend on, e.g., ~ =1i:l./jj2. 
This clcarly provldes a parametrization of only one part of ,s2. 
(leavlng out the point 112.= O ). In our language this would corres­
pond to us1ng only the single complex variable ~= U+~/u.+2 
(but not t{- ) and replacing the U(I) charge by a degree of homogenei­
ty in U+i.. Consequently, we woul d lose the possibility to use the 
derlvativej)-++= U.T~OU_i.r-dlJf . Therefore the way in wh í.ch 
V/e introduce th e prepotential \1++ (.:x"t", U-r, U -) as the oonnection 
for ~+r , and the basic equation (111.21) determining the bridge 

1)(.l.±", 'Zt*) in terms of V++ are not directly applicabl:e in t~e 
twistor approach. Instead, there one does the following. The self ­.+ . 
-duali ty equations imply that the c onne cti on A,A:: A)"i7l t. can be
 
represented in the "pure gauge" form
 

(III.J5)A; = HH-i ~ 
.A+ 

The condition that ~ depends on lIL just linearly (which in 
our language has the form of a differential constraint) n++A; = O ) 
is now formulated as the condition that A+ i6 regular in 9f 
(taking into account the homogenei ty in ;; ) on the whole sphere S~ 
Such a restriction imposed on H would be toa strong ( . H wouLd 

become a gauge transformation and ~ V/ould be empty). Therefore it 
16 weakened by requiring that H should be anaIytlc (regular) only 
on one par-t .J2i of S2. (t.he approximate equivalent in our Language 

is that we do not require 1)++ 1r(::l,u) =O ). However, the 
presentation (111.35) is not unique, slnce one can consider another 
function H giving the same A; 

-+ A i AoA = l-r a+ H (111. J6) 
/" /" 2 .. 2 

but analytic on another region .SL2 c S 'r'.n..1 UJl,2=S. Comparing (111. J5) 
and (III.J6) one concludes that 

G::: HH-{ ") ?: G- = O , (111.J7) 

i.e.,G is analytic in CJI on JL~nJ2. Zand depends on .x!t~:2Ai.JI.'
~ 

only,
 

G -:::. G(X+,Ji:). Tb.e argument can now be r eve r s ed t given a prepoten­

tial G(;X"') 1i) A one may try to pe rform the "spli t t í.ng " (111. J7 )
 
into H and H V/Uh overlapping regions of analyticity (a variant
 
of the.famous Riemann-Hilbert problem), and subseqnently construot
 
the connection A~ (III.Jl) or (III.J2) which will automatically
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satisfy the se1f-dua1 YM equation. We conc1ude that this procedure 
is ana1ogous to ours , wi th H rep1acing t he bridge tr ,G rep1a­
c ing the 'J)++ connection V++ ,and the sp1itting (111.37) rep1a­
cing the non1inear differentia1 re1ation (III.21) between V++ and 
V­

C10sest to ours seems to be the approach deveLoped by Newman 
. (5] in para11e1 with the twistor one. Its central point is the 

reduction of the above sp1itting prob1em to that of solving certain 
~ differentia1 equation (referred to in [5J as the Spar1ing equation). 
~e 1atter looks a1most identica1 with our eq. (111.21'), invo1ving 
harmonic differentiation J)++ and unconstrained YM prepotentia1 \1++ 
denoted, respective1y, by ~ and A . According1y, an essentia1 
ingredient of that approach i5 the use of harmonic expansions on 
sphere $2. ( with the term "spin _ weight" àtand í.ng for the tJ(I)_ 
charge and with the vector harmonics instead of the spinor ones in 
our formalism). Though refs.[5Jactua11Y treat the case of Mink~ski 

~pace, alI the things are easy to continue to.the Euc1idean case. 
It wou1d be of interest to estab1ish a step-by-step correspondence 
between Ne~~ 's construction and the one presented here. 

We have a1ready mentioned that the prob1e~ of solving the non­
linear differentia1 equation (111.21) is difficu1t. We be11eve that 
the prob1em of finding tae sp1itting (111.37) is of oomparab1e 
comp1ex1ty. However, in the harmonic space formu1ation there is a 
different approach which on1y 1nvo1ves the geometry of the À 
(ana1ytic 1n X+ , but not in U± ) frame. '!'hera the central prob1em 
is to s-olve the linear different1a1 equation (111.25) for V-- . We 
hope that this path may prove easier (alI the said equa11y concerns 
the Newman" approaoh which is based on the nonlinear equation of the 
type (111.21')). 

We conc1ude this paper which 1arge1y ~as an introductory and 
i11ustrative nature. The concepts and methods deve10ped here wi11 
be app1ied in the se cond part of this work [15] • They wil1 he1p to 
define the novel notions of the unconstrained prepotentia1s of 
hyper-K!h1er geometry and to establish their one-to-one oorrespon­
dence w1th N-2 off-she11 supersymmetric sigma mode1s. 
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fanhnepHH A.C. H ~p. E2-87-263 
reOMeTpHH KBnHepOBOqHWX nOneH H3 KOMrrneKCHOH 
H rapMOHHqeCKOÜ aHanHTHqHOCTêH. 
K3nepOB H cSMoAyanbHbrn HHr-MHilnCOB cnyqaH 

HexoAn H3 npHHQHna coxpaHeHHH aHaHHTHqHOCTH, npo~eMOH­
CTpHpOB8HO egHHcTBO noneBb~ TeopHH C BHYTpeHHeH KOMnneKc­
HoR CTPYKTypOH H cyrrepnoneBMX KanH6pOBOqH~X TeopHH. CBH3H 
3THX TeopHH HHT~pnpeTHPYIDTCH KaK ycnoBHH HHTerpHpyeMocTH 
AnH aHanHTHqeCKHX rrogrrpocTpaHCTB H pemaroTcHcy~ecTBoBaHHH 

II
 nepexogoM B aHaITHTHqeCKHH 6a3HC. TIpogeMoHcTpHpOB aHbI YAo6­


'\
 
CTBa HCnOnb3QBaHHH ~Toro 6a3Hca. B qaCTHOCTH, ygaeTcH 3a­

MeHHTh npoõnexy CrrJlHTTHHra, xapax'repayio AJlH TeopHH TBHC­

TOpOB, pemeHHeM nHHeHHoro ypaBHeHHH. 

PadOTB DbInOJlHeHa'B lla6opaTopHH TeOpeTHqeCKOH «PH3HKH 
OIDIH. 

npcnpmlT 06..0,nlUleHHOro HHcrHTyra ~ePHLIX HccnenOB8HHH. Jly6Ha 1987 

GaIperin A.S. at ali	 E2-87-263 
Gauge Field Goomotry from CompIex and 
Harmonic Analyticities. 
KãhIer and Solf-Dual Yang-Mills Cases 

The annlyticity preservation principIe is empIoyed to 
demonstrate an impressive affinity between the fieId 
theories with intrinsie analytic structure and superfieId 
gauge theoriea. Tha defining constraints of the former 
theories are interpreted as the integrability conditions 
for the existence of appropriate analytie subspaces and 
are solved by passing to the basis with manifest anaIyti ­
city. We prefer to work within the analytic b~siB. This 
allows, e.g., to replaes the nonlinear splitt~ng problem 
of	 twistor approach by Bolving a linear equation. 

The investigation has been perofrmed at the Laboratory 
i of Theoretical Physics, JINR. 
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