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1. Introduction

This is the second part of a paper devoted to study of a free gquantum

motion on the simplest branching graph, which consists of three half-

lines, or "wires", connected in one point. In the first part/'/, here-
after referred to as I , we have constructed all admissible Hamilto-

nians as the self-adjoint extensions of a suitably chosen non-selfad-

Joint operator. A particular attention has been paid to the following

classes @

(a) the extensions whose domains contain functions continuous at
the junction,

(b) the extensions referring to wavefunctions which are continuous
only when passing from the first wire to the second one,

(c) the extensions invariant under permutations of the wires ;

each of them has been characterized by appropriate boundary conditions.
Now we are going to use these results to construct the S-matrix, or
splitte;, to each particular exténsion of the classes (a)-(c) ; -we
shall point out the cases when the splitters are momentum-independent
and/or reflectionless. '

Another problem considered here is how the results modify if some
of the involved wires is of a finite length. This is important b?cause
such three-legged graphs are used as building elements of more compli-
cated sfructures appearing in the applications. We show that the same
boundary conditions cen be used as far as we restrict our attention
to the extensions which are local in a sense.

Throughout this paper, we use the notation introduced in I as
well as the results of the first part freely.




2. Splitters

Now we want to exemine what will happen if we take one of the exten-
sions constructed in I as the Hamiltonian of a quantum particle
living on the branching graph. It is clear that the particle will move
freely except at the junction, and that its behaviour there will de~
pend substentially on the chosen extension. For the sake of brevity,
the junction corresponding to a particular extension will be referred

to a8 a splitter.
»

To each splitter a scattering matrix corresponds, and our aim is

now to find these matrices. We shall work in the time independent fra-
mework, i.e., we set

_ ~ik ik
f.(x) = aj,ine 1 x+aj,°ute X y J=1,2,3 (1)

and demand the vector f= {f1,f2,f } to belong locally te D(Hy) ,
where HU is the extension under consideration. We are looklng for
the matrix S , which acts as

Bout = “Byn ' (2)

where 8in1 8,4 B8Te column vectors made of aj,in and aj,out N
respectively. In general, S might depend on the momentum k ,

Consider first the case with partially continuous wavefunctions
discussed in Sec.I.6 , The stated requirement yields the following .
set of equations

81,0ut " %2,0ut = %2,in"%q,in
(A+1kB)a, yout ¥ 1kBay o = ®3,0ut = 1kBay 4, - (A-ikB)a, in* 83 45
(C+ik1))a'|’..Out +ikD32,out -ika3’éut = (3)
= ikDa, ;.- (C-ikD)a, , - 1ica3’in .
Solving it, we get the relation (2) with
S(k) = [C+1k(2D-4) + 2k2p] !
—C+1ikA 21k(D-1kB) -2ik (4)
2Uk(D1kB) . —CrikA -2ik
21k(AD-BC)  2ik(AD-BC)  -C-ik(2D+A)+2k°B

provided the denominator is non-zero. From what we know about phases
of the coefficients (I.29), this might happen only if A=2D and
c= —2k2B , however, such a possibility contradicts to the condition
(I.27b). Unitarity of S(k) can be checked by a straightforward way
with the help of the conditions (I.27) and (I1.30a). Notice that in
view of (I.30b), the tramsposed matrix differs from S(k) by phase
factors only. :

In what follows, we shall use the term "splitter® for the matrix
S as well. Though, in general, it depends on the momentum, some split-
ters can be k-independent. It is clear that such a situétion occurs
if B=C=0 . The condition (I.27a) then reads AD=-1 so

-1a)2 2 22
1 2 — ’
S = s 2 -la 24 ~ (5a)
2+ |Af 2
. 24 2A [Alc-2

corresponding to the particular form of the boundary conditions (I.24),

£3(0) = A£,(0) = Af,(0) ,
_ (5b)
f;(0)+f2’(o) = -Afg(m

for any A€ ¢ . Let us remark that the splitters of this type have
been used in Ref.I.10 . Another interesting subclass consists of re-—

"flectionless splitters, i.e., those which have no outgoing wave in

the incident "channel". If we choose the wire | or 2 as incident,

no solution exists within the class specified by the conditions (I1.24).
There is, of course, the reflectionless splitter with A=0 in (5a),
but it is not interesting since it refers to the situation when the
third wire is disconnected. On the other hand, the requirement
n},out=0 for gin=(0,0,l) leads to B=C=0 and A=-2D . Consequ-
ently, there is & one-parameter family of reflectionless splitters

in this case (when the third wire is taken as incident), namely

1 1 -1/2 -iw
-2 2 2 &
S(x) = % -% © /2 miw (6Y
m1/2 40 o1 /2 jiw 0

for a real w ; they refer to the boundary conditions (5b) with
= VZel? |



The subclass of extensions with fully continuous wavefunctions
considered in Sec.I.3 which is described by A=-D=1 , B=0 and
CeR , or by the boundary conditions (I.6) and (I.12), refers to the

splitters
-C+ik  -2ik  -2ik
! 5 ;
S(k) = 55k | 2k -Crik -2ik . (7
-2ik -2ik  -C+ik

A

Among them, there is no reflectionless one, and just one which is-
k-independent, namely that with C=0 . In the same way, one can treat
the n-wire spliftter characterized by the boundary conditions (I.14)
and (I.19). So}ving the corresponding system of linear equations, we
get ’

~C+(n-2)ik -2ik -2ik ... -2ik
- 1 =-2ik ~C+(n-2)ik -2ik ... -2ik
S0 = ok ®)
-2ik ~2ik -2ik ... =-C+(n-2)ik

N

Unitarity of this matrix is checked easily. As in the particular case
n=3 , there is no reflectionless splitter, and just one k-independent
one which refers to C=0 . .

Let us turn now to the permutation-invariant extensions discussed
in Sec.I.7 . The system of equations (3) is now replaced by

(‘-ikA)al,out"ikBaz,out"ikBaB,out =
= —(1+ikA)a1’in _ikBaz,in'_ikBaB,in ,
—ikBa1’°ut +(1'ikA)a2,out _ikBa3,out =

(9)

= -ikBa1'in-(1+ikA)a2,in _ikBaB,in ’

-ikBa1,out - ikBa at + (1-ikA)a

2,40 3,out =

= —ikBa1,in-—ikBaz,in -(1+1kA)a3’in .

Solving it, we find

s() = [1-31ka+ 362 (B%-22)+1k7 (A~ 3aB%+28%)] ] ( E E E ) , (10)
where

a = -1+1kA +k2(B%22) + 1k (a%-3a8%4287)

b = -21kB +2k°B(B-A)

-
it is easy to check that the determinant of the system (9) is non-zero

for any real A,B s0 S(k) makes sense. Unitarity of this matrix
verifies directly. Again, there is no reflectionless splitter in the

class (10). There is also no k-independent one, except for two limi-
ting cases referring to A=B or A=-2B with Be->»oo . However,
a brief inspection of the corresponding boundary conditions shows that
the first possibility represents the splitter (7) with C=0 , while
the other one refers to the second exceptional class with D=0 -
cf. (12) below.

Finally, consider the exceptional extensions of Sec.I.8 . By the
same procedure as above, we obtain foi the first class described by
the boundary conditions (I.42a) the following splitter

; 3ikC-1 2 2 !
S(k) = ——— | 2 3ikC~1 2 R (1)
k
 3(1+1kC) 2 2 3ikC-1

which is well defined and unitary for each real C .There is no reflec-
tionless splitter here ; the only k-independent one referring to

C=0 1is identical with (52) for C=0 (the two C’'s are, of course,
different). The second class specified by (I.44a) yields similarly

1-ikD =2 -2
-2 1-ikxD =2 . . (12)
-2 ‘=2 1-ikD

1
3-ikD

S(x) =

There is again no reflectighless splitter and one k-independent refer-
ring to D=0 as mentioned above. The remaining extension (1.45) is
easily seen to correspond to S(k) equal to the unit matrix, and
therefore k—independent; This case is, however, not interesting becau-
se it describes the wires which are disconnected, with Neumann condi-
tion at.the end of each of them.



3. Wires of a finite length

Description of real experiments requires the knowledge of the electron
' behaviour on graphs whose lines may be of
a finite length. In fact the semiinfinite
wires suit usually only as an idealized
description of the external leads. The
simplest. non-trivial graph of thie type is
sketched on Fig.t, where each 1 is
either a positive number or infinity ; it

Fig.1 Connection of
three wires - general
case.

can be used, of course, as a building
element of more complicated graphs.

In order to describe a free quantum motion on such a graph, one
has to proceed as in I . In the relation (I.1), LZ(R ) 1is replaced
now by L2(0 1 ) . The construction starts with the operator HO de~-
fined by the" relations (1.2)," where, however, D(H )— (0 1,) or
any other dense subset of AC (o, lj) containing the functions with
fJ(O)— £(0) =£41.) =fj(1 )=0 . The deficiency indices of this opera-
tor are (3+f,3+f) , where f is the number of finite-length wires,
and therefore we have many more self-adjoint extensions than in the
case f=0 . Fortunately, not each of them is interesting. We restrict
our attention to the Hamiltonians HU
which are locel in the sense that

obtained by extensions of HO

supp Hyf < supp f (13)

for all fe D(HU) s the -support of a vector fed 1is naturally defined
as Cartesian product of the supports of the fumctions f, .

Such extensions can be constructed with the help of separated
boundary'conditions. We fix the behaviour of wavefunctions on the loose
ends of the finite-length wires by standard boundary conditions

fj(lj)couzxj + fj'(lj)sino( =0 (14)

J
for some real «, . On the other hand, for behaviour at the junction
we can choose one of the following possibilities :

(a) the boundary conditions (I.6) and (I.12),
(b) the conditions (1.24),
(c) the conditions (I.36), or (I.42a), or (I 44&), or (I.45) .

In the same way as in Sec.l.7, one can check that together we have
a set of 3+f boundary conditions, which are linearly independent

e Do e

P el

and symmetric, and dofino thorefore a self-adjoint extension of HO
In the cases (a) and (b), those extensions are distinguished in
the same way as in I , namely by the full or partial continuity of
the wavefunotions. The third case requires a brief explanation. One
cannot speak now about the permutation symmetry unless the wires are
of the same length and oL1==o¢2=<x3 in (14). Nevertheless, any exten-
sion Hy of the olass (o) remains locally permutation-invariant in
the following sense : if fe¢ D(HU) has supp f < [0,1] x [0,1] x {0,1] ,

where 1% miE 1j , then ijfe D(HU) and P H f= HUPka for each

jryk=1,2,3 . One might say, that the particle whose evolution is gover-
ned by some of the extensions of the class (c) does not distinguish
the wires when it is close to the junction.

The described method based on adaptation of the “semiinfinite*
results has a drawback. One cannot prove that we have obtained all
extensions of a given class, e.g., all locally permutation-invariant
extensions in the case (c), without returning to the deficiency func-
tions. The latter are now more complicated, however, being combinati-
ons of two exponential functions with the coefficients depending on

“3 and lj .

Since the above described extensions are specified by the same
boundary conditions as in the semiinfinite case, one can use the split-
ters found in the preceding section when treating the scattering prob-
lem on a branching graph. Of course, not every graph is suitable for
this purpose. In the system of three wires, the scattering problem
can be formulated if two of them are gemiinfinite. If the third wire
is of a finite length, we obtain an interesting situation ; one can
study how the energy eigen&hlues for the particle living on the inter-
val disjoint from the line turn to .resonances when we "tune" the
Junction by changing the parameters specifying the used self-adjoint
extepsion. Up to our knowledge, such experiments have not been per-
formed but they are fuliy conceivable with the technology used for
fabrication of the metallic rings.

However, the_aplittera derived in the pregéding section can be
used for analysis of the scattering problem on a more complicated -
graph, if only the . latter is composed of two or more three-legged
parts. The simplest example is represented by a ring with two semiin-
finite leads ; in this case weneed two splitters to describe behaviour
0of the wavefunctions at the junctions. This problem will be discussed
in a suﬁsequent paper.
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CBo60oOHOe KBaHTOBOE OBHXKEHHE HA Ppas3BeTBIAKIEMCH
rpaduke. Pacmenuremnn

Mn paccMaTpuBaeM cBoGozHOoe KBAaHTOBOE€ OBHXEHHE HA rpaduke,
cocTosmeM H3 TpeX NONYNpSAMBIX, KOHIB KOTOPHIX COENHHEHH.
InmA Kaxgoro H3 [OONYCTHMHX I'aMHIIbTOHHAHOB, IOCTPOEHHHX B IepT
BOH 4YacTH 3TOH paboTH, MB BHUHCIIAEeM 30eCh S—MaTpHIly, KOTO—
pas ONHChHBaeT paccesHHe Ha KOHTaKTej Mbl BujendeM Te CIIy—
yaH, B KOTOPHX S—MaTpHla He 3aBHCHT OT HMIyJbCa u/unu omu-
chBaeT paccesHue 6Ge3 orpaxeHuss. OGcyxkpaeTcs Takke ciiydail,
KOTZa HeKOTOphle BeTBH rpaduka HMMenT KOHEeUHyK IHHY. Pe-
3ynbTaTH MOryT GOHITh HCIOIb30BaHb HaIpHMED UIA ONHCAaHHA He-
JaBHHX H3MepeHHil NPOBOOHMOCTH KpOmMEUYHHX MeTalUTHYeCKHX
Koner.

Pa6oTa sBeinonHeHa B Jla6opaTopHH TeopeTHUeCKHil GH3IHKH

OUAH.
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We consider free quantum motion of a quantum particle
on the graph consisting of three halflines whose ends are
connected. For each of the admissible Hamiltonians con-
structed in the first part of this paper, we calculate
here the S-matrix which describes scattering on the junc-
tion; we point out the cases in which the S-matrix is mo-
mentum-independent and/or reflectionless. We discuss also
the case when some branches of the graph are of a finite
length. The results can be used, e.g., for description of
recent conductivity measurements on tiny metallic rings.
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