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I. Introduction 

For many decades, the motion of a quantum particle on a line represen­
ted a useful abstraction and an introductory chapter to textbooks 
rather than a real problem. The situation changed during a last few 
yeara when the techniquea became available which allowed to produce 
on a substrate thin metallic "wires" whoae width waa mere 250 ~ ,/11 
By the same devioe, however, one can draw not only lines, but aegmenta, 
circles,etc. aa well . Thia opens a new frontier ; in order to give in­
t erpretation to the wide variety of conceivable experimenta, one ahould 
build guantum mechánica on graphs and examine ita implicationa, 

At present, the experiment ia clearly ahead of theory. A lot of 
conductivity measurements have ~een performed on the systems consisting 
of one or more metallic rings or ~imilar struoturea/ 2-6/, A particular 
attention has been paid to the Aharonov-Bohm effect manifeated by mag..· 
netoresiBtance oscillations. The size of involved graphs isso small 
t ha t the phaae deatroying elaatic Bcattering haa a weak impact only ; 
in the neareat future, experimentB with electrona in a purely balliatic 
regime are expected/6, 7/. This ia ~ne reason why we sháll discusa here 
the free motion. The other reason is thst it represents the simpleat 
poae1bility and a na~ural starting point for analysia of more compli­
ca t ed situations. 

If we want to describe motion on a graph, it is crucial to know 
what happens at the branohing points. In this paper , we are going to 
discuss this queBtion for the simplest nontrivial graph that consists 
of three branches joined in one point. Since we have in mind mainly 
the electron mot ion in the metallic structureB mentioned above, we 
retere to the branches as to wires in the following. 

Shapiro/ 81 proposed to associate an ideal device called "split ­
ter" with each branching 'poi nt , however, he did not explain how it 
Bhould be understood (see aIso Refe.9-11). Within the orthodox inter­

9tloe~h l1eJíHhi ~\ RHCTh"'rf'l1 
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pretation of quantum mechanics, two possibilities arise : either the 

splitter is a measuring device or a part of the system. The first pos­
sibility requires that we are able (at least, in principIe) to deter­

mine which wire the electron has chosen after passing the junction. 
This is difficult, but conceivable. What is worse, state of the elec­
tron mhich went through such a device w~uld be a mixturelt2,t3~ In such 

a case, however, the interference effects on the rings and similar 

structures will be impossible, and this contradicts to experimental 
evidence.	 . 

Hence the splitter must be a part of the system, and the time 
evolution of electrons passing through the junction must be described 
by a Hamiltonian. Then there is no necessity to introduce an extra 
device associated with the junction, because the information about the 

splitting process is contained fully in the Hamiltonian. The behaviour 
of a particular junction depends on the way in which it is fabricated, 
impurities of the material and other factors. They should be, taken 

into account in a microscopic theory of such a contact. li is a diffi ­
cult problem, however, and we are not going to disCUSB it here. 

Instead, we shall discuss the abstracted situation in which the 
w~res are supposed to be infinitely thin. In that case one can construct 
the class of alI admissible Hamiltonians. Each of'them is characterized 
by simple boundary conditions containing a few parameters. In turn, 

this makes it possible to calculate the m~trix which describes scatte­

ring on the junction. It seems appropriate to us to reserve the term 

"splitter" for this matrix. The method of constructing the Ham~ltonians 

is based on the theory of self-adjoint extensions·). We start with an 
operator which describes motion on the considered configuration mani­
fold (three wires) with the connection point removed. Mathematically, 
t~e last statement is realized by choosing the initial domain as consis­

ting of the functions which are zero on some neighbourhood of the junc­
tion. The operator obtained in this way is not essentially self-adjoint, 

and we shall construct its self-adjoint extensions. Similar ideas have 

been used recently within a different context in Refs.t5-25., 
Let us describe briefly the contents of the paper whose results ~ 

have been announced in Ref.13. In the following section, we formulate 
the problem and construct the most general nine-parameter class of ad­

missible Hamiltonians for the junction of thfee semiinfinite wires. We 

select here some important subclasses specified by the requirements of 

.) The neceasary information about the theory of self-adjoint extensi­
ons can pe found in nearly alI books on Hilbert-space operators ­
see, e.g., Ref.14 or Ref.27 • 

2 

the wavefunction continuity or invariance with respect to permutations 

of the wires. They are discussed successively in Secs.3 and 5-8 • 
In Sec.4, we present a generalization to the case of n wires. The 
second part of this paper/28/ is devoted to calculation of the S-matri ­
ces, or splitters, for the Hamiltonians of the subclasses mentioned 

above. We shall discuss there also how the conclusions modify for 
wires of a finite length. Applications of the results derived here to 
analysis of the interference effects in metallic rings will be given 
in a subsequent paper. 

2. Three semiinfinite wires 

We shall bé concerned mostly with the simplest nbntrivial case when 
the configuration manifold consists of three halflines (Fig.1). The 

state Hilbert space of the problem is 
1 of the form 

df= L2(R+) E!l L2(1R+) 61 L2(1R+) (1)~ 
Following the philosophy sketched in the 
introduction, we beg~n the construction 

Fig.1 Connection of of admissible Hamiltonians with thethree semiinfinite wires.
 
operator
 

HO = HO, 1 (& HO, 2 e liO, 3	 (2a) 

where each acts aeHO,j 

HO, j f j = - f j'	 (2b) 

with the domain D(HO,j) =C~(R+) . Up to a certain deg!ee, the choice 
of the domain is a matter of	 convenience ; one might take some larger 

- { 2+ . , 1one which is contained in D(HO .) = f. € AC (IR ) : f 
j 

(O) = f. (O) = O J • 
2 + -, J J	 2J +

Here AC (IR) denotes conventionally the set of alI fj €L (IR )which 
are absolutely çontinuous together with their first derivatives and 

N 2 +'	 .,
fj €L (IR,) , furthermore, the values fj(O) and fj(O) are understood 
as the limits from the right. 

In order to see what can happen at the junction, one has to con­
struct alI self-adjoint extensions of the operator H Since each

O• 
adjoint operator H~ j Bcta again according to the formula (2b) and 

2 ' its domain i5 AC (IR+) , the deficiency subspaces ~re easily found : 
one has 

3 



I
, (IJJ(±) UJ(±) IO(±)Z (3)

~± - Ker (H* O ~ i) l.nl. f1 ' rz ' r» J 

where 

(+) ( 7. "(4a)
~1 = "7. f + , O, OJ 

and similarly for j = 2,3 , 

f+(x) = e-ex (4b) 
I> 

wi th e = e:J1~/4 and 

Ifj(-) - tp(+) (4c)j=1,2,3Tj - j 

Consequently, the deficiency indices of HO are (3,3) and one has
 
a nine-parameter family of self-adjoint extensions. Since'the ~~±)
 
are of the same norm, one can characterize the exteneions by 3x 3
 
unitary matricea U. Each extension HU represente a restriction
 

of HÓ' i.e.,
 

HU{f1 ' f 2 ' f 3 1= f -f;', - f ~', - f;' 1 , (5a) 

and it ia specified by its domain 

( 3 ( +) 1. (_»)
D(Hu) = 1. f = 'P+ ~, c j 'Pj + ~, Ujk~ : c 

j
E 11: , CP€D(H O)J. (5b) 

The relations (5) represent a complete solution to our problem 
in terms of the von Neumann theOry/14,27/. From the. viewpoint of prac­

tical applications, however, the specification of the domain by means 

of the matrix U is not very suitable. Fortunately', one is able to 
classify the extensions alternatively by boundary conditions ; it will 

be done in the following sections. 
Before proceeding further, let us mention some restrictiona 

which might be imposed on the set of alI extensions H
U

• The latter 

represente a nine-parameter family, being therefore a bit toa wide. 

Some interesting subfamilies are the following : 

(a) the extensiona that require the wavefunction to be continuous at 

the junction, 

(6)f 1 (O) =f 2 ( 0 ) =~3(0) 

(b~ a wider class than the preceding one the extensiona that require 

4 

the wavefunction to be continuous when passing from wire 1 to 

wire 2, 

f , (O) = f ( 0 ) (7)
2 

(c) the extensions invariant under permutations of the wires. 

3. The extensione with continuoue wavefunctions 

In this section, we are going to discuss the first one of the above 

named classes of extensions. Let us substitute for f from (5b) to 
the continuity condition (6). Since the equality must hold for alI 
complex c , we getj 

1 + U Uu ,2 o 
1 + u " u u (8)

2 2 2 1 23
 
t + u u u


33 3 1 32 

Hence the matrix eLemen't s of U can be expressed by means of' u , 3' 
u and u The unitarity conditions then read23 33• 

2 
j =1,2 (9a)3/Uj 3 1 - 2 Re u j 3 = ° 

2
31u + 4 Re u33 + 1 = ° (9b)33 1 

3 u O u23. - Uo - u23 = ° (9c) 

3 u - 1 o j = 1,2 (9d)u j 3u33 + 2 u j 3 - 33 

Subtracting the last two of them, and taking into account that 

3 u.,3 + 2 f ° in view of (9b), we. get u • Then i t ie sufficient
' 3 

=u23 
to conaider j =1 only in (98), (9d), while (9c) is equivalent to 
(9a). Of the remaining three conditiona, one is atill superfluoua : 
if we exprese u from (9d),

33
 
_
 1 - 2u , 3 
- - 1 _ 3ü13 ' ( 1Oa) u33 

and substitute it to (9b), we arrive after 8 short calculation to (9a). 
The last naaed condition ia solved by 

2 ift u '= "3 e cosp P€o [O,Jr) ( 11a)
' 3 

5 



substituting it back to (10a), we obtain 

u = u - 1 ( 1Ob)
33 ' 3 

Summing the above argument, we see that there is a one-parameter family
 
of extensions H with continuous wavefunctione, which correspond. to


U 
matripes of the form 

li 

u -1 u
13 ' 3 13 

u u u -1 uu ) ( 11b )
13 13 13 

( u u u -113 13 13 

where u is given by ("a). This matrix has a particular symmetry ;
' 3

it means"as we shall demonstrate beiow, that the extensions with con­

tinuous wavefunctions are permutation-invariant. 
Now we would like to characterize the extensions under considera­

tion by suitable boundary conditions. Since the deficiency indices are 
(3,3) , the extensions are specified by three linearly independent 
conditione/26,27/. We try the condition 

f;(O) + f;(O) + f;(O) = Of(O) ( 12) 

where f(O) denotes the common boundary value of the functions f j •
 

Sub19tituting from (56) for f and using (11b), we get the relation
 

-f-EC3u , 3 - ' ) = CU • In combination with (1'a), it yields

' 3 

cos(j3+!!.) 
_ 3 ' 4 ( 13)c 

cosp 

Hence the extensions with cóntinuous wavefunctions are characterized 
by the boundary conditions (6') and (12) wi th a real number O. We 
inqlude conventionally the possibili ty C = 00 that corresponds to 

the boundary conditions f , (O) =O • It Ls easy to see= f 2(0) =f 
3('0)

tha t the c orr eapondence O~ U is one-1;o-one 50 the condi tione (6) 
and (12), characterize uniquely alI extensions of the class (a). The 
derivatives on the lhs of (12) cannot enter with different coefficiente; 
it is one more 'manifestation of the fact that the extensione under 
consideration are permutation-invariant. 

6 

4. A diggression : 'the case of n wires 

We have Been that the continuity requirement (6) reduceB Bubstantially 

the number of free parameters. In order to illustrate, how strong this 
requirement is, let us discuss the analogous situation for n semiin­. 

fini te wires (Fig.2).' The relations (1)­
-(5) are easily adapted to this case. The 

n 2 ' operator HO has now deficiency indices 
2-parameter family(n,n) so it has a n

n:2 of self-adjoint extensions. Each of them 
n-1 is specified by (5b) with replaced~ 3 

by n. Let us demand now the wavefunc­Fig.2 C~nnection of
 
n semiinfinite wires tions to be continuous at the junction,
 

Le., to fulfil 

f ,(O) = "0 = fn(O) ( 14) 

It yields the relations 

u j 1 ••• = U j , j _ 1 = U j j + 1 = U j , j + 1 = u.
Jn 

(15) 

for j= 1, ••• ,n , which makes it possible to express the matrix ele­
menta of U by means of u , n, ••• ,unn• The urritarity conditions then 
read 

nl U j n l
2- 2Re = O , j= 1,.o.,n-1 (16a)u jn
 
2
 n lu 1 + 2 (n-ORe u + n - 2 = O ( 16b)nn nn 

nu. ' - u , - u = O , j , k ::: 1 , ••• , n-1 (16c)
j n ukn Jn lrn 

n ujrru + (n-1 )u j n - u -1 = O , j =1, ••• ,n-1 ( 16d)nn nn 

Now one has to subtract the conditions (16d) for different j,k 
since nu + n - 1 = O contradicts to (16b)" we get u. = uk for nn Jnn 
j,k= 1,o •• ,n-1 o Next one may use (16d) to express 

1 r (n-1 )u
u ' n ( 17a)nn 1 - nU , n 

The condiiion (16b) then reduces to (16a) as well as (16c) ; we are 
left therefore with the condition (16a) for j =1 alone. It is sol­
ved by 

7 



u = g ei f3 cos p-. fe [O,1f) ( 1Sa) 1n n r 

substituting it back to (17a)" we ge t 

unn = u - 1 ( \7b)
' n 

Hence the extensions that obey (14) are characterized by the matrices 
" 

c08f - ~ e-1P co s ft . cosp 

cosA' n _-IAcos!' cosflg ei !> r -'2 e "'" u (18b)n 

cos& n -i.f.cosJ cos! r -'2 e T 

with fte[o,~) • We see that the continuity requirement selects just 
2-parameterone-parameter family of extensiona out of the n one. These 

extensions can be again chárac~erized by boundary conditions. We set 

fiCO) + ••• + f~(O) = Of{O) (19) 

~here f(O) is the common value of fj(O) • It yields the conditions 

-t-e~uj1+"'+Ujn)=OUjn for j=1, ••• ,n-1 and -t-S(un 1+··· 
•• + u ) ' but in viev.: of (18b), alI qf them reduce to a singlenn = OUn 1 
condition which ia solved' by 

o -n ,. (20) 

The coreepondence O~U is again one-to-one, i.e., each extension 
HU with continuous wavefunctions is characterized uniquely by the 
boundary conditions (14) and (19), with a real number '0 • 

5. Three wires : another approach 

Before examining the class (b) of Section 2, let us oonstruc~ the 
extensions with continuous wavefunctions in another way. We are moti­
vated by the fact that dealing. with 3x 3 matrices i8 not so simple, 

and that it ie worth to formulate the problem in terms of 2x2 matri­
ces when it is p08aible. We shall build now the junction successively, 
first joining the wires 1 and 2, and afterwards attaching the third 
one to them (Pig.3). 

8 

T 

The fir8t two wires together form a line. 
The free motion on i t i8 ,qescribed by the 

3 
Hamil tonian which corresponds to 0= ° , 
or ft =1l/4 , and n = 2 in the relations 
(18)-(20). In order to join the third 

Fig.3 Successive joining wire to the first two ones, it is neces­
li of three wiree sary to "disconnect" them partially by 

setting f. (O) = ° fOF j = 1,2 • The starting ope rà to'r will therefore­
,.., J 

be ' where is the restriction of HU{~/4)'HO = HO,1+2 G HO,3 HO,1+2 
the free Hamiltonian on the line, to 

2(1R+)= ff= í f f , f ,{O) =f2(0) =0 ,D(HO,1+2) 2 l : f jE:A0
" (21a) 

fiCO) .-f~{O) J. 
The deficiency indices of the operator HO are (2,2), and the defi ­

ciency subspacee are spanned by the vectors ~;±) defined in Sec.2 

and by ~b±) given by 

2-1/2{f+,f+,01'P~±) (22a) 

with f+ given by (4b) and 

//)(-) - /0(+) (22b)
~: TO - ro 

In order to check thie assertion, one has to realize, that the wires 
and 2 are now only partially dieconnected, since the derivatives 

at O are allowed to be non-zero (and mutually correlated) within 
• An easy integration by parts shows that the boundary con­D(HO,1+2) 

di tions in (21 a) yiel.d 

2(1R+)D(H~,'+2) ={f= íf f 2J : f j €A0 , f , {O) =f2(0) J . (21b) 

" 
Hénce the solutions to the deficiency equations must be joined conti ­

nuously at O. In turn, it implies that the wavefunctions in the do­
~ ~ 

main of any extension H of H are continuous when passing fromU O
 
wire 1 to wfre 2 , because
 

,v ( ')' (+) ~ (_)
D(HU ) = l f = 'P + L.., c.( I{J. + L..J uJ'ktk ) c j E: C , epE D(lIo)5' 

j=0,3 J J k=0,3 (23a) 

where U is a 2x 2 unitary matrix whose rows and columns are inde­

xed by ° and 3 , and 

I, 9
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D(jiO)	 = í f = {fO,f3J : fO~ D(HO, 1+2) , f 3 e D(Ro, 3) 3 . (23b) 

Mimicking now the argumen~ given in Sec.3, one can show easily that
 
imposing additionaly the continuity requirement on the joint of the
 
third wire, we arrive back at the one-parameter family of extensions
 
characterized by the boundary conditions (6) and (12).
 -, 

~	 6. The extensions with RartiallY continuous wavefUnctione :1 t
~ 

The extenaions of the class'(b) are therefore fully described by the
 
relations (5a) and (23a). Now we want to characterize them bY.Buitable
 
boundary condi~ions. We choose them in the form
 

f; (O)	 = f ( 0 ) ( 24a)
2 

f	 = Af 1(O) + B(f,(O) + f~(O» (24b)3(0)
 

f,(O\) = ?f1(O) + D(f,(O) + f~(O» (24c)
 

where the'first condition representa the requirement (7). Substituting
 
from (23a), we get the following set of equations
 

1/22 U = A( 1 + u ) - ~B(E +~ u )03 OO OO


21/2 ( 1+ u = AU - 2BtU

33) 30 30 (25) 

-2 t/ 2EU = C(1+uOO) -2D(f+EUOO) 30
 

~21/2(i +fu = cU -2D~u30
33) 30 

which	 is solved by 

-1A = E u30( 1 + iuOO + u +i det U ) ,	 (26a)33
 
i -1
B = 2	 u 30 (1 + tr U + ,det U ) , (26b)
 

-1
O = -u30(1 +i tr U -det U) ,	 (26c) 

E: -1(D = -	 '2 1 + uOO+ iU +i det U) (26d')u30 33 

i;if only +O • The remaining exteneione must be characterlzed In
 
a different way, but it can be ea8ily done. If u the matrif U
30=O, 

u30	 

li'ia diagonal and the two parte of·th~ configuration manifold remain 8e­
parated as it can be seen from (23a). The Hamiltonian ie then of the ,f

form ~ = H12 6 H3 ' where H12 describes motion on the line with a 

S-interaction situated at O (cf. Refs.16,19), while, H is one of3 
the standard free halfline Hamiltonians - cf.Ref.14, appendix to Seco 
X.1 

The complex coefficients A,B,C,D in (24) ahould parametrize the 
family of extensionsgiven by (23a) with a non-diagonal U " and there­
fore they cannot be fully independente We shall 8ho~ that they obey 
the conditions 

BC -AD =	 (i7a) 

Im(AC),= Im(BD) = O -u-	 (27b) 

which	 leave juat four real parametera free. The easiest way to check 
the relationa (27) ie to use an explicit parametrization of·the matrix 
U , e.g., 

ei(fX+d)cosp 'ei(d-tY.) Bin!,) 
U (28)

.i! ( ~.i (<<-ó)ainp e-iCtx+Ô)coa{3 . 

Subatituting it to (26), we get 

li -2i e i(J-C( ) [coa (IX + S+~)COB f3 + COS (! + f)] (s í,n ~ )-1 (29a) 

.B -i ei(i-ct> [oos«(+~)cosf +COSj] (Sinp)-1	 (29b) 

C 2i eÚ ef -jl() [coSCPc+c)cosf - Sinj] (ain pr- 1	 (29c) 

D i	 ei(Ó-~) [008(0( +ó-~)oOl!Jf. + oOS(J +l)] (sinp )-1 (29d) 

It is	 ev~dent now that (27b) is Talid, (27a) folloWB from (29) after 
a ahort calculation. Moreover, tne conditions (27) imply also 

Im(AB) Im(AD) Im(BC) Im(CD) O	 (30a) 

IAD- BC I = 1	 (30b) 

Next one has to check that the oorrespondence U~fA,B,C,Dj ie bijec­
tive. It oan be veri~ied direotly that for A,B,C,D which obey (27), 
the equations (29) have a· l!Jolution. Suppoee further that the matric8S 
U, U' yield the same valuee of the coefficients. In view of (26), we 
have 

I 
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1(1 

1 + 1U~O + U;3 +1 det U' :: ct (1 + iuOO + u
33 

+i det U) , <31a) 

1 + tr U' + det U' :: (l:: ( 1 + tr U + det U) <31b) 

1 + i trU' -det U~ :: 0(1 + i tr U -det U) <31c) 

1 + U~O + iU~3'+ i dét U' :: õ: ( 1 + uOO+ iU + 1 det U ) <31d)11: 

33 

11111. 
where oc:: U;alU3o • Summing (31b) and (31d), and subtracting (31d) 
from (31a), we get the relations 

./2 + E. tr U~ :: o: (/2 + e tr U ) 

and 

E(u;3 - u~o) :: ()(~(u33 - <32a)uOO) 

which together yield 

1 - i + u; 3 = IX. (1 - i + u ( 32b)33) 

Subtracting the last relation from <31a), we get 1 + u~o + det U' = 

=Dc:( 1 + uOO+ det U) • In combination wi th <31b), i t givea u;3 ='()(U
33 

ao cc: = 1 follow8 from (32b). Then u~O:: u due to (32a) andOO 
tr U~:: tr U. Furthermore, the defini tion of ~ impIiee u;O:: u •

30 
Since det U' = det U holda in view of <31b), we get u~3u30 = u •

03u30 
However, +O by assumption, and therefore U~::·U •u30 

7. The permutation-invariant extensions 

Let us turn now to the last subclass mentioned in Sec.2 that contains 
the extensions which are invariant under permutations of the wires. 
In other worde, we require now the wires to be physically equivalent. 
The operatore r~presenting transposition of a pair of wiree actP j k
 
in the following simple way
 

P12{f1,f2' f 3l :: tf 2' f 1' f 3 J, (") 

etc. It ie clear from the rélation (5b) that the operator Bu commu­
tes with alI Pj k 

j,k:: 1,2,3Pjk~C HuPjk (34a) 

12 

iff the.matrix elements of U fulfil U j j = ukk and u j k =.~j , i.e., 
ift U is of the fora 

u v-
I 
, V)

V VU:: U <34b) 
( v v u 

for some complex' u,v • The unitarity conditions now can be written as 

:1 . 2 2 
[u ] +21vl :: (35a~ 

. 2.Re üv + Iv,2 == O ( 35b) 

The subclass ~d.rcon81derat1oni8 parametrized therefore by two. real 
nuaDer8.-We want again to characterize the corresponding operators H

U 
by boundary conditions. They can be chosen as follows 

f , ( O) Af;(O) + Bf;(O) + Bf;(O) 

f (O) Bf; (O) +Af; (O) + Bf; (O) ( 36a)2

f (O) B.f; (O) + Bf; ( O) + Af; (O )
 3

Sub&ti~utiÍ'1g to these conditions from (5b) and(34b), we get the 
equations 

1 + u :: -(g +fu)A- 2EvB 
(37) 

V :: -(f +i:u)B - E.vA -EvB 

whioh are eolved by 

- e(1 '+,u + iu+ iv + il12 + iuv - 2iv2)
A (38a)

( u + 2v - i ) (1 + i u - i v) 

i12 v " 
B = ----=.;..;;;......;....-- ­ (38b)

(U+2v-i)(1 +iu-iv) 

provided the oommon denominator ie non-zero. As we have demonstrated, 
the exteneioDs with conttnuol1s wavefunctions are automatically pe rmu­
tation-invariant. It is clear that the cond1tlons (36a) reduce to (6) 

,"1.1 
and (12) if A=B , or equivalently u==v-1 (cf.(11b». A t ed í.oue 

f but straightforward calculation using repeatedly the conditione (35) 
'I.' I ShOWB t~at' Im A :: Im B :: O ao A,B are real numbers. In the same way 

ae above, one oan check that the mapping (u,v)~(A,B) ia injective.t 
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It ia more dif!icult to verify directly that every pair of real 
A,B ,defines a self-adjoint extension HU ; it would require to invert 
the relations (38). Fortunately, there is another way, how to check 
this statement ; one can use suitable boundary functionals/26/ relati ­
ve to the operator Let ua define .the functionals B , j =1,2,3,HO• j
 
on D(Hb} as follows
 

B (f) f 1 (O) - Af ; (O) - Bf; (O) - Bf; (O)1... 
B ( f } f 2 ( O) - Bf ; (O) - Af; ( O) - Bf3(O) (39)2

B ( f ) - Bf;(O) - Bf;CO) - Af;(O}3 f 3(0) 

They can be expres~ed as linear combinations of Cj: Cj(f) =fj(O) 
and Dj : Dj(f} = fj(O} • First 'we must show that Cj,D are boundaryj
functionals relative to the operator HO in the sense of Ref.26 • They 
are defined on D(H~} and Cj (f) = D (f) = O for :f D(H ; i t remaine

j O)
 
to check their continuity with r'eapec t to the graph norm, lIfll 2 =
 
22'
/If/l + IIHOf" • We shall use the following fact : there is a posi tive 

g€AC 2(1R+)K such that for alI , the inequality 

CIO 00 00 

fI g ' (x)f 2 dx ~ J"Ig (x)]2 dx + K J Ig(x)/ 2 dx (40)
O O O 

holde - cf' , Ref.27, Theorem 6.26 • Then for f = ff , ,f2,f3
JED(~) 

we have 

~ ~ 00 

If j ( 0 }12 
- 2 Re i s j (x)f; ( x) dx ~ { If j (x )I 2 dx + I' f; (x >f 2 dx s 

CC) 00 
2:6'( 1+10 J [r, (x}1 dx + J Ifj"(X) 12 dx ~ (1+K) IIfll2 

O J O . ~ 

and similarly 

O() O() 

2 . 2 . Ifj(O)1 ~ J Ifj(x}12dX + J If;' (x}12 dx ~ max( 2,K) li! II~ • 
. O O 

By this, the continuity ia established. Taking further Buttable vec­

t ora , e s g , , 2 'P1 = fg,o,oj, 1p2 = íO,g,O J and fF
3 

= fo,O,g j ·wi th 
g(x} =exp(-x ) , we see that detIBj(fk)/ fO for any A,B, Le., 
that the boundary conditions 

I Bj(f) = O j=1,2,3 (36b) 

14 

are linearly independente ~inally, it is easy to check that the condi­
tions (36) are sylDllÍetric for A,B real, Le., that Bj(f}=Bj(g)=O, 
j = 1 ,2,3 , implies 

3
 
{f,gJ:: i ~ (fj(O)g~(O) -fj'(O}gj(O}) = °
 

j= 1 J 

Then we may apply Theorem XII.4.30 of Ref.26 which asserts that the 
set of boundary conditions (36) defines a self-adjoint extension of 
the operator HO • 

8. The permutation-invartant extensions : exceptional cases 

The boundary conditions (36), however"do not exhaus~ alI possible 
permutation invariant extensions ; the situations when ~he rhs expres­
siona in (38) are singular must be treated separately. We shall show 
that there are two one-parameter families and a single extension left. 

Conaider fire t the cas e. where u::: i - 2v , i. e., the matrix U 

ia of the form 

i - 2V v 

U = v i-2v (41a)
( 

v v i:2J 
and the unitarity condition reada 

2 Im
. 

v _. 31v I
2 

= O (41b) 

The extenaione are now characterized by the boundary conditione 

f;(O) + f;(O} + f;(O) = O 

f 2 ( O) - f = C(f;(O} - f;(O» , (42a)
3(0) 

f ,(O) - f = C(f;(O} -f;(O»3(0) 

aubatltuting to them from (5b), we find that 

c = 3'iv-12. (42b) r 3v 

for a non-zero v. With the help of (41b), it ia easy to establish 
that Im C = O and that (42b) mapa the aet of complex numbers fulfil ­

,~) 

11ng (41b) to the whole real axis. 
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In a similar way, 
of the form 

one can handle the case where the matrix u i8 
2 V.Chandrasekhar, J.M.Rooks, S.Wind, D.E.Prober, Phys.Rev.Lett., 

1985, v.55, pp.1610-1613. 

3 B.Pannetier, J.Chau8sy, R,Rammal, J.Physique Lett., 1983, v.44, 

u C:i 
v 

v 

v+i v:J (43a) 4 
pp.L-853 ­ L-858. 
C.P.Umbach, C.van Haesendonsk, R.B.Laibowitz, S.Washburn, R.A.Webb, 

Phys.Rev.Lett., 1986, v.56, pp.386-389~ 

with 5 C.P.Umbach, S.Washburn, R.B.Laibowitz, R.A.Webb, Phys.Rev.B, 

.. 
2 Imv +'3IvI 2 = O ( 43b) 

6 

7 

1984, v.30, PP.4048-4051 • 
R.A.Webb et aI., physica A, 1986, v.140, pp.175-182. 
S.Datta, S. Bandyopadhyay, Phys.Rev.Lett., 1987" v.58, pp.717-720. 

The boundary conditiona are now the following 8 

9 

B.Shapiro, Phys.Rev.Lett., 1983, v.50, pp.747-750. 
M.Bttttiker, Y.lmry, M.Ya.Azbel, Phys.Rev.A, 1984, v.30, pp.1982~ 

fiCO) = f;(O) = f;(O) ::: f'(O) 
10' 

-1989. 
Y.Gefen, Y.lmry, M.Ya.Azbel, ~hy~.Rev.Lett., 1984, v.52, pp.129-1~. 

f 1(O) + f 2(0) + f 
3(0) 

= Df '(0) 
(44a) 11 

12 

Y.Gefen, Y.lmry, M.Ya.Azbel, Surface Sci.,1984, v.142, pp.203­
J.M.Jaucb, Foundations of Quantum Mechanics, Addison-Wesley, 

where D i8 a real number related to the matrix (43a) by 
13 

Reading, 
PoExner, 

Mass. 1968 ; Chap.ll • 
P.~eba, preprint JINR E2-87-18, Dubna 1987. 

v (44b) 
14 M.Reed, B.Simon, Methods of Modern Mathemati~al Physics., II.Fourier 

Analysis. Self-Adjointness, Academic Presa, New York 1975. 

provided V +O ; i t can again assume any real value. 
There is one more e~tenBion left which corresponds to v =0 in 

(41a) or (43a). The respectiva boundary conditions can be obtained 
formallr by eetting C =D =00 in (42a>' and (44a) ; alternatively, one 
should use (5b) to check that they are of the form 

15 
16 

17 
18 

19 

S.Albeverio, R.H~egh-Krohn, J.Oper.Theory, 1981, v.6, PP.313-339. 
S.Albeverio, F.Gesztes~, R.H~egh-Krohn, W.Kirscn, J.Oper.Theory, 

1984, v.12, pp.101-126. 
S.Albeverio, R.H~egh-Krohn, Physica A, 1984, v.124, pp.1'-28. 
W.Bulla, F.Gesztesy, J.Math.Phys., 1985, v.26, pp.2520-2528. 
p.~eba, Contact Interaction in Quantum Mechan1cs, PhD.Thesis, 

fiCO) = f;(O) ::: f;(O) = O (45,) 
20 

Charles University, Pregue 
Yu.A.Kuperin, K.A.Makarov, 

1986. 
B.S.Pavlov, Teor.mat.fiz., 1985, 

It ia worth mentioning that in view of (llb), none 
extensions discussed in this section has (alI the) 
tinuous at th~ junction. 

of the exceptional 
wavefunctione con­ 21 

22 

v.63, pp.78-87 (Ln Russ í an) .... 
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3KcHep n., We6a n. 
CBo6o.tutoe KBaHTOBoe ABIDKeHHe Ha pa3BeTBJilUOII1eMCR rpa<jJnKe. 
llocrpoeHHe pacwHpeHHH 

E2-87-213 

Mbi paCCMatJ>HBaeM CBo60AHOe IIBIDKeHHe KB8HTOBOH 'lliCTHIIbi Ha rpa<t>uKe,cocTOR-
111eM H3 TpeX nonynpRMLIX, KOIII1hl KOTOpbiX COeAHHeHbl. llOK!I3aHO, 'lrO BpeMI!HII6e 
pa3BHTHe MO>KHO onucan npu noMOII1H raMHJU,ToHHaua, H npu noMoll1H TeopHH caMoconpa­
lKeHHbiX paCWHpeHHH noerpoeu KJiaCC AOnyCTHMbiX I'aMHJihTOHHauOB. Tpu flOAMHOlKeCTBa 
3TOI'o KJiacca o6cYlK.llaJOTCR no.r~po6Ho: (a) oAHonapaMeTpH'IeCKoe ceMeiicmo raMHJit.To­
HHaHOB, 06JiaCTH ODpelleJieHHR KOTOpbiX COAeP"'aT <I>YHKIIHH HenpepbiBHble Ha KOHTaKTe, 
(6) 6oJiee WHpoKOe 'H!TblpexnapaMeTpuqecKoe ceMeHCTBO, y KOTOpoi'O BOJIHOBble <I>YHK· 
IIHH HenpepbiBHbl TOJibKO MelK.lly IIBYMR BeTBRMH rpa<I>HKa, (r) raMHJU,TOHHaHbl HHBapH­
aHTHble no oTHoweHHIO nepeCTauoBOK BeTseii. ,lVta KJiacca (a) npHBeAeHo o6o6111euHe 
Ha cnyqaif rpa<jJHKa COCTORII1ei'O H3 n nonynpRMLIX. Bo BTOpoii qacTH 3TOH pa6oTbl 6yAeT 
o6cYlK.lleHO paCceRHHe Ha KOHTaKTe. 

Pa6oTa BhlnonHeHa B Jia6opaTopHH TeopeTHqecKoii <I>H3HKH OHHH. 

Cootiou'"'"" 061.e,lllllleHHoro IDicnrryr& R.llepou.rx Hccneltoii8H1di . .1ly6Ha 1987 

Exner P., &ba P. 

Free Quantum Motion on a Branching Graph. 
Construction of the Extensions 

E2-87-213 

We consider free motion of a quantum particle on the graph consisting of three halfli­
nes whose ends are connected. It is shown that the time evolution can be described by a 
Hamiltonian and the class of admissible Hamiltonians is constructed using the theory of 
self-adjoint extensions. Three subclasses are discussed in detail: (a) the one-parameter fa­
mily of Hamiltonians whose domains contain functions continuous at the junction, (b) the 
wider four-parameter family with the wavefunctions continuous between two branches of the 
graph only, (c) the Hamiltonians invariant under permutations of the branches. For the 
class (a), generalization to the graphs consisting of n halflines is given. In the second part 
of the paper, scattering on the junction will be discussed. 
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