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1. Introduction

For many decades, the motion of a quantum particle on a line represen-
ted a useful abstraction and an introductory chapter to textbooks
rather than a real problem. The situation changed during a last few
years when the techniques became available which allowed to proguce

on a substrate thin metallic "wires" whose width was mere 250 A .

By the same device, however, one can draw not only lines, but segments,
circlesyetc. as well. This opens a new frontier ; in order to give in-
terpretation to the wide variety of conceivable experiments, one should
build guantum mechénics on graphs and examine its implications.

At present, the experiment is clearly ahead of theory. A lot of
conductivity measurements have been performed on the systems consisting
of one or more metallic rings or similar structures 2'6/. A particular
attention has been paid to the Aharonov-Bohm effect manifested by mag.
netoresietance oscillations. The size of involved graphs is 'so small
that the phase destroying elastic scattering has a weak impact only ;
in the nearest future, experiments.with electrons in a purely ballistic
regime are expected 6,7 . This is one reason why we shéll discuss here
the free motion. The other reason is that it represents the simplest
possibil&ty and a natural starting point for analysis of more compli-
cated situations. ] :

If we want to desoribe motion on a graph, it is crucial to know
what happens at the branching points. In this paper, we are going to
discuss this question for the simplest nontrivial graph that consists
of three branches joined in one point. Since we have in mind mainly
the electron motion in the metallic structures mentioned above, we
refere to the branches as to wires in the following.

Shapiro/a/ proposed to associate an ideal device called “"split-
ter"™ with each branching point, however, he did not explain how it
should be understood (see also Refs.9-11). Within the orthodox inter-
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pretation of gquantum mechanics, two possibilities arise : either the
splitter is a measuring device or a part of the system. The first pos-
sibility requires that we are able (at least, in principle) to deter-
mine which wire the electron has chosen after passing the junction.
This is difficult, but conceivable. What is worse, state of the elec-
tron which went through such a device would be a mlxture/12 3/ In such
a case, however, the interference effects on the rings and similar
structures will be impossible, and this contradicts to experimental
evidence. ) :

Hence the splitter must be a part of the system, and the time
evolution of electrons passing through the junction must be described
by a Hamiltonian. Then there is no necessity to introduce an extra
device associated with the junction, because the information about the
splitting process is contained fully in the Hamiltonian. The behaviour
of a particular junction depends on the way in which it is fabricated,
impurities of the material and other factors. They should be. taken
into account in a microscopic theory of such a contact. It is a diffi-
cult problem, however, and we are not going to discuss it here.

Instead, we shall discuss the abstracted situmation in which the
wires are supposed to be infinitely thin. In that case one can construct
the class of all admissible Hamiltonians. Each of them is characterized
by simple boundary conditions containing a few parameters. In turn,
this makes it possible to calculate the matrix which describes scatte-
ring on the junction. It seems appropriate to us to reserve the term
*gsplitter" for this matrix. The method of constructing the Hamiltonians
is based on the theory of self-adjoint extehsionsi). We start with an
operator which describes motion on the considered configuration mani-
fold (three wires) with the connection point removed. Mathematically,
the last statement is realized by choosing the initial domain as consis-
ting of the functions which are zero on some neighbourhood of the junc-
tion. The operator obtained in this way is not essentially self-ad joint,
and we shall construct its self-adjoint extensions. Similar ideas have
been used recently within a different context in Refs.15-25 ..

Let us describe briefly the contents of the paper whose results
have been announced in Ref,13 . In the following section, we formulate
the problem and construct the most general nine-parameter class of ad-
missible Hamiltonians for the junction of three semiinfinite wires. We
select here some important subclasses specified by the requirements of

%) The necessary information about the theory of self-adjoint extensi-
ons can be found in nearly all books on Hilbert-space operators -
see, e.g., Ref.14 or Ref.27 .

the wavefunction continuity or invariance with respect to permutations
of the wires. They are discussed successively in Secs.3 and 5-8 .

In Sec.4, we present a generalization to the case of n wires. The
second part of this paper 28, is devoted to calculation of the S-matri-
ces, or splitters, for the Hemiltonians of the subclasses mentioned
above. We shall discuss there also how the conclusions modify for

wires of a finite length. Applications of the results derived here to

analysis of the interference effects in metallic rings will be given

.in a subsequent paper.

2. Three semiinfinite wires

We shall be concerned mostly with the simplest nbntrivial case when
the configuration menifold consists of three halflines (Fig.!). The
state Hilbert space of the problem is

1 of the form

H=1°®N e 12@"Y) e 12@" . (1)

2
Following the philosophy sketched in the
Fig. 1 o introduction, we begin the construction
ig. ti s
thiee semg?ﬁggn;gz 3{res. of admissible Hamiltonians with the
operator
H0 = H0,1 [} HO,Z o H0,3 y (2a)
where each H acts as
0,]
Hy £, = =f :
0,i%3 j (2b)

with the domain D(H, j)- c2r* ) . Up to a certain degree, the choice
of the domain is a matter of convenience ; Qne might take some larger
one whlch is contained in D(HO, ) —<{f3€ AC (m+) : fJ(O)_ f'(O)- 05
Here AC (R ) denotes conventionally the set of all f eAL (B Ywhich
are absolutely continuous together with their first derivatives and
f{exg(a+) , furthermore, the values fj(O) and fi(o) are understood
a5 the limits from the right. .

In order to see what can happen at the junction, one has to con-
struct all self-adjoint extensions of the operator Ho . Since each
ad joint operator Hg,j acts again according to the formula (2b) and
its domain is ACZ(R+) , the deficiency subspaces are easily found :
one has ‘



+
s = Ker (87 1) = 1anfplT) pf0H) p5Ne (3)
where

P(+) = {f+’0,0} (43)

and similarly for Jj=2,3 ,

-
£,(x) = e ° % (4v)

»

with £ = e‘m‘/4 and

¢§-) = ¢(+) y J=1,2,3 . (4c)

Consequently, the deficiency indices of Ho are (3,3) and one has
a nine-parameter family of self-adjoint extensions. Since “the ¢j
are of the same norm, one can characterize the extensions by 3x 3
unitary matrices U . Each extension HU represents a restriction
of HS , ..,

By{fyif, 5 8= {-15-100-25¢ (5a)

and it is specified by its domain

D(Hy;) —{f- ¢+:‘Z‘1 ( +) é“:]k%(;)) P cget, pen(ﬁo)}. (5b)

The relations (5) represent a complete solution to our problem

/14’27/. From the. viewpoint of prac-

in terms of the von Neumann theory
tical applications, however, the specification of the domain by means
of the matrix U is not Qery suitable. Fortunately, one is able to
classify the extensions alternatively by boundary conditionms j it will
be done in the following sections.

Before proceeding further, let us mention some restrictions
which might be imposed on the set of all extensions HU . The latter
represents a nine-parameter family, being therefore a bit too wide.

Some interesting subfamilies are the following @
(a) the extensions that require the wavefunction to be continuous at
the junction,
f1(0) =f2(0)=f3(0) ’ (6)

(by) a wider class than the preceding one : the extensions that require

the wavefunction to be continuous when passing from wire 1 to
wire 2,

f1(0)= f2(0) H (7)

(c) the extensions invariant under permutétions of the wires.

3. The extensions with continuous wavefunctions

In this section, we are going to discuss the first one of the above
named classes of extensions. Let us substitute for f from (5b) to
the continuity condition (6). Since the equality must hold for all
complex cj y We get

THug, = 2y, = %4y
1405, = U5y = Uyg (8)
1+ugg = ugy = Uy -

Hence the matrix elements of U can be expressed by means of u13,
u23 and u33 . The unitarity conditions then read

3luj3|2 ~2Reu;; =0 , 3=1,2 , (9a)
3]u33|2+ 4Re gz +1 =0 (9b)

u13ﬁ23--u13"623 =0 , . (9¢)
3uj3533+2uj3-1—133-1 =0 , j=1,2 . (94d)

Subtracting the last two of them, and taking into account that

3u33-+2 # 0 in view of (9b), we get u13= u23 . Then it is sufficient
to consider j=1 only in (9a), (9d) , while (9c) is equivalent to
(9a). Of the remaining three conditions, one is still superfluous :

if we express u33 from (94),
1-2u
= - — 13
u33 = 3313 R (10a)

and substitute it to (9b), we arrive after a short calculation to (9a).
The last named condition ie solved by

. ‘
u,3-=%e’3cos/s , pelom (11a)



substituting it back to (10a), we obtain
-1 . (10b)

Summing the above argument, we see that there is a one-parameter family

of extensions H with continuous wavefunctions, which correspond to

U
matrices of the form

. v
Uyzml Wyg Uy
B3 Uzt wyg ’
u13 u13 u13-1

(11b)

where Uy is given by (11a). This yatrix has a particular symmetry }
it means, as we shall demonstrate below, that the extensions with con-
tinuous wavefunctions are permutation-invariant.

Now we would like to characterize the extensions under considera-
tion by suitable boundary conditions. Since the deficiency indices are
(3,3) , the extensions are specified by three linearly independent
conditions/26’27/. We try the condition
f{(0)+-fé(o)+»f;(o) = Ccf(0) , (12)

where f(0) denotes the common boundary value of the functions fj .
Substituting from (5b) for f and using (11b), we get the relation
-E-—S(Bu13 -1) = Cu;5 . In combination with (11a), it yields

cos(ﬁ+£)
Cc = _3_'_J_

= . (13)
cosﬁ
Hence the extensions with continuous wavefunctions are characterized
by the boundary conditions (6) and (12) with a real number C . We
inglude conventionally the possibility C=o00 that corresponds to
the boundary conditions f1(0)= f2(0)= f3(0)= 0 . It is easy to see
that the correspondence C<«»U is one-to-one so the conditions (6)
and (12), characterize uniquely all extensions of the class (a). The
derivatives on the 1lhs of (12) cannot enter with different coefficients;
it is one more ‘manifestation of the fact that the extensions under
consideration are permutation-invariant.

+

4. A diggression ¢ the case of n wires

We have seen that the continuity requirement (6) reduces substantially
the number of free parameters. In order to illustrate, how strong this
requirement is, let us discuss the analogous situation for n semiin-
' finite wires (Fig.2). The relatioms (1)-

-(5) are easily adapted to this case. The

1
n ? operator HO has now deficiency indices
. (n,n) so it has a nz—parameter family
n-2 of self-adjoint extensions. Each of them
n-1 is specified by (5b) with 3 replaced

by n . Let us demand now the wavefunc-
tions to be continuous at the junction,
i.e., to fulfil

Fig.2 Connection of
n semiinfinite wires

f1(0) = ¢ = fn(o) . (14)
It yields the relations

uyy = eee = u. =u,, +1

TR R T P I (%

jn
for j=1,...,n , which mekes it possible to express the matrix ele-

ments of U by means of u1n,...,u « The unitarity conditions then

nn
read
nju, |2~ 2Re u, = 0 j=1 n-1 (16a)
Jn :jn ’ ey ’ "
nlunnl2 +2(n-1)Reu +n-2=0 , ‘ (16b)
nujnu}én—ujn—u}m=0 y Jek=1,..0yn-1 , (16c)
nujrtunn+(n-1)ujn-unn_1 =0 , j=1l,e..,n=1 (16d4)

Now one has to subtract the conditions (16d) for different j,k 3

since nﬁnn~+!1— 1 = 0 contradicts to (16b), we get ujn= LI for
jsk=1,...,n-1 . Next one may use (16d) to express )
1 - (n—,)l-l
1n
w_os - . (17a)
nn 1-nu
in

The condition (16b) then reduces to (16a) as well as (16c) ; we are
left therefore with the condition (16a) for =1 alone. It is sol-
ved by



i
by =2 ePeoap pelom s (18a)
substituting it back to (17a),. we get
wo = u,n-l . (17p)

Hence the extensions that obey (14) are characterized by the matrices

coaﬁ —121 i cosﬁ
cosp cos B

cosﬁ coaIA e cosﬁ -121 e'i/g

with ,Be[o,yr) . We see that the continuity requirement selects just

one-parameter family of extensions out of the nz-parameter one. These

extensions can be again characterized by boundary conditions. We set

cosp . -
. n -
cos/é _Eeiﬁ -

(18b)

£,(0) ++-- +£°(0) = Cf(0) , (19)
where f(0) 1is the common value of fj(o) . It yields the conditions
-E—E(u31+°"+ujn) =Cujn for j=1,...,n-1 and -E—S(un1+---

.o +um'1) =(}uzl1 y but in view of (18b), all of them reduce to a single
.condition which is solved by

o cos(ﬁwi)
= -pn—0 4

coe/Q

The corespondence

. . : (20)

C<«>U 1is again one-to-one, i.e., each extension
HU with continuous wavefunctions is characterized uniquely by the
boundary conditioms (14) and (19) with a real number °"C .

5. Three wires : another approach

Before examining the class (b) of Section 2, let us construct the
extensions with continuous wavefunctions in another way. We are moti-
vated by the fact that dealing with 3x 3 matrices is not so simple,
and that it is worth to formulate the problem in terms of 2x2 matri-

ces when it is possible. We shall build now the junction successively,
first joining the wires 1

one to them (Fig.3).

and 2 , and afterwards attaching the third

1 The first two wires together form a line.
The free motion on it is described by the
2 Hamiltonian whieh corresponds to C=0 ,
s or A=x/4 , and n=2 in the relatioms

(18)=(20). In order to join the third

wire to the first two ones, it is neces-

sary to "disconnect" them partially by ,
j=1,2 . The starting operator will therefore

be HO = H0,1+2 2] HO,} s where H0,1+2 is the restriction of HU(Jr/4)’
the free Hamiltonian on the line, to

Pig.3 Sucecessive joining
of three wires

setting fj(0)=0 for

= - . 2, - -
D(H0’1+2) -{f- {f1,f2} : fjeAC (R") , £,(0)=£,(0)=0,
. . (21a)
£/(0) =-£,(0) § .
The deficiency indices of the operator H, are (2,2) , and the defi-

ciency aubgpacea are spanned by the vectors soé’) defined in Sec.2
and by ,oé ) given by

Péi) - 2-1/2{f+,f+,02 (22a)

with £, glven by (4b) and

p8) = g8t (22b)
In order to check this assertion, one has to realize, that the wires

1 and 2 are now only partially disconnected, since the derivatives
at 0 are allowed to be non-zero (and mutually correlated) within

D(Ho 1+~2) . An easy integration by parts shows that the boundary con-
b4
ditions in (21a) yield

* ={r= . 2, + _
Dy o) = {f={r,. 0,0 g eac? @), g0 =10 f . (21%)
Hence the solutions to the deficiency equations must be joined conti-
nuously at O . In turn, it implies that the wavefunctions in the do-
main of any extension ﬁﬁ of ﬁb are continuous when passing from
wire 1 to wire 2 , because

& (+) (=) ’ =
D(H,) =4f= P + Z c. ("’ + Z, u, )t c.,eC, ¢eD(H0)_§,

v -t 50,3715 ’ (238)
2x 2 unitary matrix whose rows and columns are inde-
3 , and

U is a
xed by O and

where



D(Hy) = {f={fo.f33 P foe D(Hy 4,,) » T3€D(H, 5) § . (23b)
Mimicking now the argument given in Sec.3, one can show easily that
imposing additionaly the continuity requirement on the joint of the
third wire, we arrive back at the one-parameter family of extensions
characterized by the boundary conditions (6) and (12).

» 6. The extensions with partially continuous wavefinctions

The extensions of the class'(b)Aare therefore fully described by the
relations (5a) and (23a). Now we want to characterize them by suitable
boundary conditions. We choose them in the form

(24a)

£4(0) = £,(0) ,
£5(0) = Af£,(0) + B(£{(0) +£,(0)) , (24v)
£5(0) = 8o+ D(£,(0) +£,(0)) (24c)

N '
where the First condition represents the requirement (7). Substituting
from (23a), we get the following set of equations ' ’

V2 . -
2 %y, = A1 *“oo) - 2B(£ +£n00) ’

1/2 -
2 ‘(1+ u33) = Au30-ZB£u30 , (25)
-21/2.:1130 = c(1 +u00) -2D(E +£ Uoo) s
/2, _
-2/ % (s +£u33) = Cuy, -2Deugz, ,
which is solved by
-
A= ;u30(1 +iu00 +u33+i detU) , (268)
=4 !
B = 2t130(1+'crU+rdetU) , (26b)
0 = ~uz(1+1tr U -det V) (26¢)
oL E g 5
, D= > u30(1 +u00+iu33+1 det U) (264d)
if only u 0 # 0 . The remaining extensions must be characterized jn

a different way, but it can be easily done. If u30=‘0 y the mntri% U
is diagonal and the two parts of ‘the configuration manifold remain se-
parated as it can be seen from (23a). The Hamiltonian is then of the

10
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form §U=H1,2O H3 » where H12 describes motion on the line with a

J-interaction situated at O (cf. Refs.16,19), while H3 is one of

the standard free halfline Hamiltonians - cf.Ref.14, appendix to Sec.
o ' A : '

The complex coefficients A,B,C,D 1in (24) should parametrize the

family of extensions given by (23a) with a non-diagonal U , and there-

fore they cannot be fully independent. We shall show that they obey

the conditions

(27a)
Im(AC) = Im(BD) = 0 , (270)

which leave just four real parameters free. The easiest way to check
the relations (27) is to use an explicit parametrization of -the matrix

U, e.g., o

Lo e1(tx+5)c°sp Aei(J-a)Sinﬁ oy
) '-ei(a_é)sinls e-i(a+6)cos/5 :

Substituting 1t to (26), we get
A =‘ -2191(‘;‘“)[con(«+§+%)coe/ﬂ +cos(f+%)}(sin/§)_' , (29a)
B=-1el@-® [cos(e+3)cosp +cosg ] (sta py' ) (29b)
¢ = 21 61(9-20) [cos@+8)cosp - sing] (sink)ﬂ , (29¢)
p = 1elld-0) [cos(x +d-T)conp +con(g +D]einp)~t . (294)

It is evident now that (27b) is walid, (27a) follows from (29) after
a short calculation. Moreover, the conditions (27) imply also

Im(AB) = Im(AD) = Im(BC) = Im(CD) = 0 , (30a)

|AD=-BC| =1 . (30b)
Next one has to check that the correspondence U‘+>{A,B,C,D} is bijec-
tive. It can be verified directly that for A,B,C,D which obey (27),
the equations (29) have a- solution. Suppose further that the matrices
U,U" yield the same values of the coefficients. In view of (26), we
have

11 ‘



”1“00"“33 +idet U’ = 6 (1 +iuoo+u33-+i det U) , (31a)
1+trU'+det U' = a(1+trU + detU) , (31p)
1+1trU" -det U” = X(1+itrU —-det U) , (31¢)
1+u00+iu33.+idetU =a(1+uoo+iu33+idetU) ’ (314)

where o = u3'0/u30 . Summing (31b) and (31d), and subtracting (31d)
from (31a), we get the relations

J2+8trU = ¢ (J2 +£trU)

and
s(u33—uoo) = o{i(u33—uoo) ) (32a)
which together yield

1-1+u33=¢x(1—i+u33) . (32b)

Subtracting the last relation from (31a), we get | +u60-+det U=
=®(1+uy,+det U) . In combination with (31b), it gives 113’3 = Uy
B0 « =1 follows from (32b). Then “60‘“00 due to (32a) and

tr U= trU. Furthermore, the definition of & implies u.

30~ %30 *
Since detU’= detU holds in view of (31b), we get =u_.u

Y03%30 = Y330 °
However, u30 #0 by assumption, and therefore U =T .

7. The permutation-invariant extensions

Let us turn now to the last subclass mentioned in Sec.? that contains
the extensions which are invariant under permutations of the wires.

In other wordes, we require now the wires to be physically equivalent.

The operators P.k representing transposition of a pair of wires act

in the following simple way

P12{f1,f2,f3j = {fa,fi,fB}, (33)

etc. It is clear from the relation (5b) that the operator HU commu-—

tes with all ij ’

PJkRUCHUij y Jyk=1,2,3 (34a)

12

oy X

iff the matrix elements of U fulfil iUy snd wg sw, dee.,
iff U is of the form

U=|v u v ) . : (34b)

for some complex u,v . The unitarity conditidns now can be written as

wil+2vi2=1 (35a)

2Reiv+{v]®=0 . : A (35b)

The subclass under considerstion ie parametrized therefore by two. real
numbers. We want again to characterize the corresponding operators HU
by boundary conditions. They can be chosen as follows

£,(0) = Af{(o)_ +Bf2'(0) +Bf;(0) ,
12(0) = Bf,(0) 4-Af2(o)+ Bf3(0) ’ . (36a)
‘ f3(0) B,f1(0) +Bf2(0)+Af3(0) .

i}

Substituting to these conditions from (5b) and (34b), we get the
equations '

1+u = -(g+gu)A-2svB ,

. (37

v=-(f+gu)B-svA -EVB ,
which are solved by

-£(1+u+iut iv+iu2+iuv-21v2)

A= y (38a)
(u+2v -1)(1 +iu-1iv)
4

B = W2 v (38b)

(u+2v-1)(1 +iu=-1iv)

provided the common denominator is non-zero. As we have demonstrated,
the extensions with continuous wavefunctions are automatically permu-
tation-invarient. It is clear that the conditions (36a) reduce to (6)
and (12) if A=B , or equivalently u=v-1 (cf.(11b)). A tedious
but straightforward calculation using repeatedly the conditions (35)
shows that ImA =ImB=0 so A,B are real numbers. In the same way
as above, one can check that the mapping (u,v)r>(A,B) 1is injective.

13



It is more difficult to verify directly that every pair of real
A,B defines a self-adjoint extension HU 3 it would require to invert
the relations (38). Fortumately, there is another way, how to check
this statement ; one can use suitable boundary functionals 2
ve to the operator Ho . Let us define .the functionals Bj y 13 =1,2,3%,

on D(HS) as follows

5

relati-

. By(£) = £,(0) -A£{(0) - B£,(0) - Bf5(0) ,
By(f) = £,(0) —Bf{(O)-AfZ'(O) -Bf3'(0) s (39)
B3(f) = f3(o) -Bf1(0)-Bf2(‘0)-Af;(0) .0

They can be expressed as linear combinations of C, ¢ C.(f)=f,(0)

and D, : D,(f)=£ (0) . First we must show that C,,D, are boundary
functionals relative to the operator H, in the sense of Ref.26 . They
are defined on D(Hj) and Cy(£)=D,(£) =0 for f D(H,) ; it remains
to check their continuity with respect to the graph norm, Hfﬂ2 =

= Hf”2+ "Hof"2 . We shall use the following fact : there is a ;ositive
K such that for all geAC?(R') , the inequality

oo co 00
glg'(x)lzdx £ .!Ig”mlz dx + K {lg(x)lzdx (40)

holds - cf. Ref.27, Theorem 6.26 . Then for f={f,,f,,f5}e DK} ,
we have
d
{20012 = =2re J ¢
J 0

o0 00
EF ) ax € J Iz, (x)%ax + f |fj'(x)[2 dx <
0 0

J J J

Y ' o0
sy Sl o ax + S 1£012ax € () 1212
o 3 o , *

and similarly

y i

. 0 o0
_ |f:j’(0)|2 £ {|f£(x)l2dx + .({ If; (x)lzdx £ max(2,K) [(fl]i .

By this, the continuity is established. Taking further sujtable vec-
tors, e.g., %={g,0,0} , lp2={0,g,0_§‘ and $03= £0,0,g 3 with
g(x) =exp(-12) , we see that detIBj(Pk)] fO for any A,B , i.e.,
that the boundary conditions

' Bj(f) =0 , j=1,2,3 (36b)

14

are linearly independent. Finally, it is easy to check that the condi-
tions (36) are symmetric for A,B real, i.e., that Bj(f) =Bj(s)= o,
J=1,2,3 , implies

{r,g}

Then we may apply Theorem XII.4.30 of Ref.26 which asserts that the
set of boundary conditions (36) defines a self-adjoint extension of
the operator EO .

3 - . - _
i j%(fj(mgj(o)-fJ(O)gJ(o))- o .

8. The permutation-invariant extensions ! exceptional cases

The boundary conditions (36), however, do not exhaust all possible

permutation inveriant extensions ; the situations when the rhs expres-

sions in (38) are singular must be treated separately. We shall show

that there are two one-parameter families and a single extension left.
Consider first the case. where u=1i-2v , i.e., the matrix U

is of the form

i-2v v v
U= v i-2v v (41a)
v v i-2v

and the unitarity condition reads
2Imv-3vi?=0 . (41v)
The extensions aré¢ now characterized by the boundary conditions

f1(0)4-f2(0)4-f3(0) =0 ,

"

£,(0) - £5(0) c(f;(m -£,(0)) (42a)

£,(0) - f3(0) C(f;(o) -f{(o)) H

substituting to them from (5b), we find that

3EV-V2

3v (42p)

C =
for a non-zero v . With the help of (41b), it is easy to establish

that Im C =0 and that (42b) maps the set of complex numbers fulfil-
ling (41b) to the whole real axis.
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In 8 similar way, one can handle the case where the matrix U is
of the form

v+i v v
U = v v+i v (43a)
v v v+i ‘
with
2Imv +3|v|i2 = 0 . (43b)
The boumdary conditions are now the following
ft(O) = f2(0) = fj(O) = f(0) ,
3 (44a)
£,(0) +£,(0) +£,(0) = Df"(0) |,
1 2 3
where D is a real number related to the matrix (43a) by
38v +J2
D=~ —E-;———— (44b)

provided v#0 ; it can again assume any real value.

There is one more extension left which corresponds to v =0 in
(41a) or (43a). The respective boundary conditions can be obtained
formally by setting C=D=w in (42&, and (44a) ; alternatively, one
should use (5b) to check that they are of the form

£700) = £(0) = £(0) = 0 (45)
It is worth mentioning that in view of (11b), none of the exceptional
extensions discussed in this section has (all the)
tinuous at the junction.

wavefunctions con-
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3xcHep I1., HleGa I1. E2-87-213
Croboaxoe KBaHTOBOE ABIDKEHHE HA PA3BETBIRIOLIEMCA rpadHKe.
IMocTpoetine pactiHpeHHA

Mal pacCMATpHBaeM CBOOOAHOE NBYOKEHWe KBAHTOBOH 4aCTHUbI Ha rpaguxe,CoCTOR-
1EM W3 TpeX MONYNPAMBIX, KOHIUBI KOTOPLIX COen ITo ), YTO BpeMeHHOe
Pa3BHTHE MOXHO OICATh [TPH [TOMOILH raMWILTOHHAHA, H DY NOMOILM TeOPHH CAMOCONPH-
SKeHHBIX PACLIMPEHHIl OCTPOeH KJIaCC HOMYCTHMAIX I'AMHIBTOHHAHOB. TpH NoAMHOXeCTBa
3Toro Kjacca ob6cyxualTcs noApoGHO: (8) OAHONAPAMETPHYECKOE CEeMeNCTBO raMHIIBTO-
HHAHOB, 06NacTH OmpeNeneHHA KOTOPBIX CONEpHAT (PYHKIMH HeMpPephIBHEIE HA KOHTAaKTe,
(6) Gonee WHpOKoOe YeThipexmapaMeTpPHYECKOe CeMeiiCTBO, y KOTOPOro BOIHOBble (DyHK-
IHH HeMpephlBHLE! TOMBKO MEXAy ABYMA BEeTBAMH rpaduka, (r) raMMIbTOHHAHEI MHBapH-
AaHTHBIC 110 OTHOLUIEHMIO NepecTaHOBOK Berseil. [Iia xsacca (a) mpHBeneHo o6obilenHe
Ha ciyuait rpadMKa COCTOAILEro U3 N nONynpAMsIX. Bo Bropofi uacTu 3Toit paGorbl Symer
obcyaIeHo paccesHHe HA KOHTAKTe,

Pa6ota BrInonHeHa B JIaGopaTtopuu reoperuueckoit dusnxa OUAHU.

Coobu 067 0 HHCTHTyTa X Hy6ua 1987

Exner P., Seba P. E2-87-213

Free Quantum Motion on a Branching Graph.
Construction of the Extensions

We consider free motion of a quantum particle on the graph consisting of three halfli.
nes whose ends are connected. It is shown that the time evolution can be described by &
Hamiltonian and the class of admissible Hamiltonians is constructed using the theory of
self-adjoint extensions. Three subclasses are discussed in detail: (a) the one-parameter fa-
mily of Hamiltonians whose domains contain functions continuous at the junction, (b) the
wider four-parameter family with the wavetunctions continuous between two branches of the
graph only, (c) the Hamiltonians invariant under permutations of the branches. For the
class (a), generalization to the graphs consisting of n halflines is given. In the second part
of the paper, scattering on the junction will be discussed.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1987




