

обиедйв ииститута matpux ncersatianna ayona

E2-87-18
P.Exner, P.Seba

QUANTUM-MECHANICAL SPLITTERS:
HOW ONE SHOULD UNDERSTAND THEM?

The behaviour of the conductivity for various systems of very thin metallic leads such as rings forming a loop on a lead, or the cayley tree has attracted recently a lot of attention/1-4/. For description of buch processes, behavior of the electron wavefunction at the branching point is crucial. In this letter, we fre going to analyze this problem in the simplest case when the conriguration manifold consiats of three seminfinite "wires".

Shapiro/1/suggested to associate an ideal device - a "splitter" with branching point which mediates transmission of the entering electrons to the outgoing branches. The device is described by matrix S which if momentum-indupendent and chosen in such a way that the incoming electrons are never reflected back. A similar approach has been edopted in Hefs. 2,3 and 5 , though the term "device" is not used explicitly there.

The role that the ideal device should play is not clear. Two potsibilities ariee : either it is measuring instrument or en intrinsic part of the system. The first possibility is, however, excluded. According to general principies of quantum mechanics $/ 6 /$, state of an electron after passing auchadevice would be a mixture of atates referring to the first and the second outgoing lead. In thet case, however, no interference is posefble when we join the loose ends of the outgoing "wires", and this contradicte to experimental evidence $/ 7 /$.

The other possibility means that the electron motion is governed by a Hemiltonian. Our goal 1 s to show that such Hamiltonians exist. te shall restrict ourselves to the siaplest aituation when the electron is supposed to be free everywhere except at the junction ; modificationa with eddition of a potential interaction are straightforward as far as the potential remains bounded. The method of conetructing the Hamiltonians is based on the theory of self-adjoint extensions ; it has been applied recently to another type of conductivity prob-lem/8-10/. We shall explain the main tdea ; more detailedexposition

and proofs together with application to metallic rings will be givan in a forthcoming paper.

Since we deal with three seminfinite "wires", the state space is $L^{2}\left(\mathbb{R}^{+}\right) \ominus L^{2}\left(\mathbb{R}^{+}\right) \ominus L^{2}\left(\mathbb{R}^{+}\right)$. The construction of Hamiltomian atarts from the operator

$$
\begin{equation*}
H_{0}=\bigoplus_{j=1}^{3} H_{0, j}, \tag{1}
\end{equation*}
$$ where each $H_{0, j}$ acts as $H_{0, j} \mathcal{P}_{j}=-f_{j}^{\prime \prime}$ and its domain consiste of

all $I_{j} \in L^{2}\left(\mathbb{R}^{+}\right)$with absolutely continuous derivatives and $f_{j}^{\prime \prime} \in L^{2}\left(R^{+}\right)$ such that

$$
\begin{equation*}
f_{j}(0)=f_{j}^{\prime}(0)=0 \quad, \quad j=1,2,3 \tag{2}
\end{equation*}
$$

where the values at 0 are understood as the limits from the right. The operstor H_{0} is not self-adjoint ; one must find therefore its self-adjoint extensions and choose the Hemiltonian among them. The extensions are constructed in a standerd way using von Neumann's theory/1/. In our particular case, H_{0} as well as its adjoint are differential oparators. Then any extension H_{U} acts as

$$
\begin{equation*}
H_{U}\left\{f_{1}, f_{2}, f_{3}\right\}=\left\{-f_{1}^{\prime \prime},-r_{2}^{\prime \prime},-f_{3}^{\prime \prime}\right\} ; \tag{3}
\end{equation*}
$$

various extensions are distinguished by their domains which are subspeces in $D\left(H_{0}^{*}\right)$ specified by suitable boundary conditions.

The deficiency indices of H_{0} are (3,3)so there ia a nine-parameter family of its selfadjoint extensions. This aet is very wide and we may try to restrict the freedom in the choice of Hamiltonian by additional assumptions. One possibility is to require the wavefunction to be continuous at the junction, i.e.,

$$
f_{1}(0)=f_{2}(0)=f_{3}(0) \equiv f(0)
$$

In that case wo are left with the one-parameter family of extensions specified by the boundary condition

$$
\begin{equation*}
f_{1}^{\prime}(0)+f_{2}^{\prime}(0)+f_{3}^{\prime}(0)=c f(0) \tag{4b}
\end{equation*}
$$

where C ia a real number. In fact, the continuity requirement is very atrong. If we consider the case of n seminfinite "wires" connected at one point, we have a n^{2}-parameter family of admiasible Hamiltonians, but the condition

$$
\begin{equation*}
f_{1}(0)=\ldots=I_{n}(0) E f(0) \tag{5a}
\end{equation*}
$$

selects among them just the one-parameter family obeying

$$
\begin{equation*}
f_{1}^{\prime}(0)+\ldots+f_{n}^{\prime}(0)=c f(0) \tag{5b}
\end{equation*}
$$

We remark also that the requjrement (5a) implies full symetry with respect to interchanges of the"wires".

One can start therefore with a weaker assumption, namely that the wavefunction is continuous when passing from the "wire" 1 to wire" 2 , but the junction of the third "wire" may be "tuned". This assumption seeme reasonable if one takea into account the way, e.g., in which the rings with leads are fabricated $/ 7 /$. In such a case, the starting condition (2) corresponding to fully disconnected "wires" should be replaced by

$$
\begin{equation*}
f_{1}(0)=f_{2}(0)=0, f_{1}^{\prime}(0)=-f_{2}^{\prime}(0), f_{3}(0)=f_{3}^{\prime}(0)=0 \tag{6}
\end{equation*}
$$

in which the first two "wires" remain partially connected wia the first derivative of the corresponding wavefunction. The deficiency indices are now (2,2) so there is a four-parameter family of selfadjoint extensions. It can be shown that they are specified by the boundary conditions

$$
\begin{align*}
& I_{1}(0)=I_{2}(0) \tag{78}\\
& I_{3}(0)=A f_{1}(0)+B\left(f_{1}^{\prime}(0)+r_{2}^{\prime}(0)\right) \tag{7b}\\
& r_{3}^{\prime}(0)=C f_{1}(0)+D\left(f_{1}^{\prime}(0)+I_{2}^{\prime}(0)\right) \tag{7c}
\end{align*}
$$

where A, B, C, D are complex numbere fulfilling

$$
\begin{equation*}
B \bar{C}-\bar{A} D=1, \quad \operatorname{Im}(\bar{A} C)=\operatorname{Im}(\bar{B} D)=0 ; \tag{8}
\end{equation*}
$$

for $A=-D=1$ and $B=0$, we recover the conditions (4). Let us turn to scattering on the branching point. We set

$$
\begin{equation*}
f_{j}(x)=a_{j, i n} e^{-i k x}+a_{j, \text { out }} e^{i k x} \quad, j=1,2,3 \tag{9}
\end{equation*}
$$

and demand this wavefunctions to belong locally to the domain of a particular extension, It yields a system of iinear equations that makes it possible to expresie the colamn vector of $a_{j, 0 u t}$ by means

$$
A=1, \quad B=0, \quad C=1, \quad D=-1
$$

$A=-0.5, \quad B=0.1, C=5 . \quad D=1$

$A=1, \quad B=0, \quad C=4, \quad D=-1$

$A=2, \quad B=0.5, \quad C=2, \quad D=1$

$A=0, B=0, C=10, D=0$

Fig. 1 The shape of the transmitted wavefunction corresponding to the incoming one that is rectangular in p-representation for few extensions
of the column vector made of $a_{j, i n}$. After solving the system of equations, we get
$\underline{\underline{a}}_{\text {out }}=\mathrm{S}_{\underline{\mathrm{an}}_{\text {in }}}$,

where

$$
\begin{aligned}
S= & \frac{1}{C+i k(2 D-A)+2 k^{2} B} \times \\
& \left(\begin{array}{ccc}
-C+i k A & 2 i k(D-i k B) & -2 i k \\
2 i k(D-i k B) & -C+i k A & -2 i k \\
2 i k(A D-B C) & 2 i k(A D-B C) & -C-i k(2 D+A)+2 k^{2} B
\end{array}\right)
\end{aligned}
$$

The most important feature of this result is that the S-matrix is, in general, momentum-dependent. Hence one must be concerned not only with the fraction of electrons in different channels, but also with the shape of the transmitted wavefunction. This is illustrated on Fig. 1 . In some ceses, the S-mutrix is k-independent. Using the conditions (8), one finds easily that such matrices form the two-parameter family

$$
S=\frac{1}{2+|A|^{2}}\left(\begin{array}{ccc}
-|A|^{2} & 2 & 2 \bar{A} \\
2 & -|A|^{2} & \frac{2 \bar{A}}{2 A} \\
2 A & |A|^{2}-2
\end{array}\right)
$$

with A complex, $D=-\bar{A}^{-1}$ and $B=C=0$. These ere just the matrices used in Ref. 2, apart from the fact that the authors have imposed there the ad hoc assumption that S must be real. Notice that most of the fully symmetrin solutions (4) do not fall into this class ; the only exception is represented by the case $A=-D=-1, B=C=0$. As for the the "reflectionless" S-matrices considered by Shapiro $/ 1 /$ and others, there is one-parameter family of them given by (11a) with

$$
\begin{equation*}
A=\sqrt{2} e^{1 \omega}, \tag{11b}
\end{equation*}
$$

where ω is a real number. None of the corresponding extensions is fully ymmetric.

Referencen

B. Shepiro, Phys.Rev.Lett., 1983, v.50, p.747.
M. Buttiker, Y.Imry, M.Ye.Azbel, Phys.Rev.A, 1984, v. 30, p. 1982.
Y.Gefen, Y.Imry, M.Ya.Azbel, Phys.Rev.Lett., 1984, v.52, p.129.
B. Pannetier, J.Chausgy, R. Ramal, P.Gandit, Phys.Rev.Lett.,

1984, v.53, p.718.
5 Y.Gefen, Y.Imry, M.Ya.Azbel, Surface Science, 1984, V.142, p. 203.

6 J.M.Jauch : Foundations of Quantum Mechanice, Addison-Wesley, Reading, Mass., 1968 ; Chap. 11 .
7 R.A.Webb, S.Weahburn, C.P.Umbach, R.B.Laibowitz, Phys.Rev.Lett., 1985, v.54, p. 2696.
P.Exner, P.Seba, Lett.Math. Phys., 1986, v.12, p. 193.
P.Exner, P.Seba, J.Math. Phyв., 1987, v.28, No. 1 .
P. Exner, P.Seba, JINR preprint E2-86-746, Dubna 1986 ; Czech. J. Phys.B, 1987, v.37, to appear.

11 M.Reed, B.Simon : Methods of Modern Mathematical Physics II, Academic lress, New York 1975 ; § $\mathrm{X} 1.$.

SUBJECT CATEGORIES OF THE JINP PUBLICATIONS

Lidex
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Lou energy theoretical physics
5. Mathentics
6. Muclear spectroscopy and radiochemistry
7. Heavy ion physics
8. Cryogenics
9. Accelerators
10. Autematization of data processing
11. Computing mathematics ant technique
12. Chemistry
13. Experimental techmiques and methods
14. Solid state physics. Liquids
15. Experimental physics of muclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

Экснер П., Шеба П.

Квантовомеханические 'сплиттеры": как их понимать?
С целью описания квантовых осцилляций на металлических кольцах и подобного рода эффектов некоторые авторы ввели недавно идеальное устройство, "сплиттер", которое расщепллет волновую функцию электрона в точке соединения трех "проводов". Правильное квантовомеханическое толкование требует, однако, чтобы процедура расщепления была описана при помощи некоторого гамильтониана. В этой эаметке мы показываем, как это можно сделать в рамках теории самосопряженных расширений.

Работа выполнена в Лаборатории теоретической физики Оияи.

Сообщение Объединенного института пдерных исследованпи. Дубна 1987

Exner P., Šeba P.

E2-87-18
Quantum-Mechanical Splitters:
How One Should Understand Them?
To describe quantum oscillations on metallic rings and similar effects, some authors introduced recently an ideal device which "splits" the electron wavefunction at the junction of three "wires". A proper quantum-mechanical treatment requires, however, that the splitting procedure is described by a Hamiltonian. In this letter, we show how this can be achieved in the framework of the selfadjointextensions theory.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1987

