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1. Traditionally, the renormalization group equations are con­
nected with the property of multiplicative renormalizability in 
quantum field theory!1!. The proce~ure which removes the ultraviolet 
divergences known as the R-operation is equivalent to the introduc­
tion into the Lagrangian of some local counterterms. In renormali­
zable theories this results in a multiplicative renormalization of 
fields and coupling"!. The renormalization procedure possesses the 
group structure where the continuous group parameter appears to be 
a normalization point A • parameter of dimensional regulariza­

tion r ,etc. 
The renormalization group equations drastically restrict the 

renoI'!llalization arbitrariness. FOl,' instance. in any given order of 
perturbation theory only the lowest logarithmic divergences are in­
dependent and define the so-called ~ -functions. All higher diver­
gences are uniquely determined from lower approximations. This pro­
perty allows us • in particular. to perform a summation of higher 
logarithmic asymptotics and to predict the asymptotic behaviour of 
Green functions. 

In the present note. we will show how the renormalization group 
equations can be generalized to the theories of a general type, 
including nonrenormalizable interactions. In spite of the absence 
of multiplicative renormalizability the obtained equations enable 
us to calculate all higher singularities (poles in the dimensional 
regularization) starting from the generalized ~ -functions like 
in renormalizable theories. 

2. Remirid first the standard procedure in renormalizable theo­
ries!2!. Further on we shall work in the framework of dimensional 
regularization. The R -operation in this case leads to the follo­
wing expression for the "bare" coupling in terms of the renormalized 
one 
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where for definiteness we use the minimal subtraction scheme. Any 
change of the parameter ~~ ~' is compensated by an appropriate 
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· , Q~A,echange of the coupllng g..., 9 so that <f remains 
unchanged. Differentiating eq.(1) with respect to ~ and intro­
ducing the definition 

rtr~\~!.=-E.~T ro(~) 
(2 ) 

we get 
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Equating the coefficients of pOWers of E. we have 

i->C~)= (~~~ - i') 0. 1 (3) 
(4 ) 

(};;~ -i) a,,('})~ (b(~)~~ an-~.L~) 
Hence. knowing the coefficient of a simple pole a. ('})

(5 ) 
. with 

the help of eq. (5) one can find all the coefficients a", (1) • 
In particular, expanding them in a power series in ~ 
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we come to 
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3. For the Lagrangian of a general type ~ the implementa­
tion of R -operation results in the counterterma added to the Lag­
rangian 

:t ~ ';t + A::t.. 
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This can be described in a way like eq.(1) 
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wherf) A." ( 'ct ) means that the counterterms are calculated within 
the Lagrangian ?t 

Proceeding further according to Sect.2,i.e. differentiating 
eq.(S) with respect to ~ and introducing the definition 

r 1F ';;t I'tie. = - t 'J. + ~ (~ ) J 

(9 ) 

we get 

o· cl;t +~ A~("~)1 + t-t';{+i"[)j'lJ l1 +.i. 'b·t:;/~) ~4nJ. 
Formally. this leads to 

~(~)= ~~ -1.) A~(';;(), 
(10 ) 

(l.~d. -1.) A~ (~) =- 0C~)';~ A~-~ (~) (11 ) 

The variational derivative should here be defined. For this purpose 
we note that in the loop expansion the counterterms An ( ?t ) 
can be expressed like eq.(6) 

A,,(';1)= L
0<0 

Ank('i), 
(12 )1(='" 


where A",k ( ~) are homogeneous functions of d.. , i. e. 


the following relation holds 


A.... k (). '0( j = )..k.+! A1'1 k l ~) . 
(13 ) 

With account of eqs. (12), (13), eqs. (10), (11) can be rewritten 
in the form (in case of nonlinear Sigma-models this procedure has 
been used in refs. 13,4/): 
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~U5f) = fA :::L - A-t()";'()\»..1.= Ik·A'Ik(~). A36= <=XX) +<:><0 ~ j<j + S~\. fJ), tc;=i 
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( A:L-i)AI-\(A£')\ =- 1- AII_i.(~~ 1~Ut))\ +;<1»+t ([] +~<U>+±dC>1), 1.==1. ~{ '(.::- O. 

(15 ) 

For the highest poles this gives 1 
Clearly if A4f .. 0 
Le. <=>:::- 0 ,then all 4...... :: a . At the same time expanding 

I'L A..,,,, ('cl)= J.. A~I-1I1'1 ('cl.. +- YJ A~1 (~) \ eq.(16) up to n-th order we always have the diagramd.r ( i7= 0 (16 ) 

It is obvious from eq.(16) thst the coefficient function of the 

highest pole is totally defined by the one-loop approximation. 
 "toor<!S/SJ;7However, contrary to eq. (1) A 1"1" is not merely sn n-th power of 

A11 but contains also the derivatives. 


which contains only one simple loop. That means that A1'11'1 possesses
There is s useful graphical interpretation of eq.(16). In the 

only first order zero when A4f ~ 0 • This fact is of great impor­
background field formalizm the one-loop counterterm for an arbitrary 

tsnce for the construction of finite field theories/8 ,9/.
Lagrangian ?£. (Lp) can be obtained in a general form 15,6,11 

and is proportional to (J)=4-2E:) 


4. Equations (14), (15) are the desired generalization of renor­
t.. malizstion group equations (4), (5) to the theories of arbitrary type.

t;"£ 
)( 

b:i.. In spite of a possible nonrenormalizability of a theory the counter­- A
A11 terms happen to be connected with each other. The only independent""" bl.f'''S "blfk D~f 

coefficient fUnctions are those of a simple pole. Eq.(15) appears 
to be very useful in various cases. In nonlinear siema-models it

with a proper contraction of indices. Graphically, this csn be 
was used in a refs./10,11 ,9/. It can be also applied to the calcula­

represent ed as 
tion of higher counterterms in quantum gravity. 

A~1 e :t £. :: <=> The suthor is grateful to D.V.Shirkov and A.A.Vladimirov for 
useful discussions. 

Then for An we get, according to eq.(16), 
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Ka9aKOB A.H. E2-87-l32 
06 OAHOM 0606~eHHH ypaBHeHH~ peHopMrpynn~ 
AmI' KBaHTOBO-nOJIeBbIX TeopH~ npOH9BOJI~'HO~0 
BHAa 

AaHo 0606~eHHe ypaBHeHH~ peHopMrpynn~ Ha TeopHH c JIa­
rpaHEHaHOM npOH9BOJIbHOrO BHAa, BKJI~qaR HenepeHOpMHpyeMWe 
B9aHMoge~cTBHR. B paMKax pa9MepHo~ p~rYJIRpH9a~HH nOJIyqeH­
Hwe ypaBHeHHH n03BOJIR~T onpegeJIHTb Ko3~H~HeHTHwe $YHK~H 
npH cTapmHx nOJI~cax, HCXOAH H9 MJIaAmerO nOJI~ca HJIH 0606­
~eHHbIX ~-$YHK~HH. 

Pa60Ta BWnOJIHeHa B na6opaTopHH TeClpeTHqeCKOH $H3HKH 
OHllH. 

npenpHHT 061>e,l1HHeHHOro IUICTHTyTII. RAepHwx HCClleAoBIlHHli. Jly6Ha 1987 
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On 	 a Generalization of Renormalization Group 
Equations to Quantum Field Theories 
of 	an Arbitrary Type 

A generalization of renormalization group equations to 
the theories with arbitrary Lagrangians including nonre­
normalizable ones is presented. In the framework of dimen 

_sional regularization these equations enable us to deter­
mine the coefficient functions of higher poles starting 
from a simple pole or generalized ~-functions. 

The investigation has been performed at the Laboratory 
of-Theoretical Physics, JINR. 
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