

объединенный институт ядериых исследовании дубиа

E2-87-132

D.I.Kazakov

ON A GENERALIZATION
OF RENORMALIZATION GROUP EQUATIONS
TO QUANTUM FIELD THEORIES
OF AN ARBITRARY TYPE

Submitted to "Tеоретическая и математическая физика"

1. Traditionally, the renormalization group equations are connected with the property of multiplicative renormalizability in quantum field theory $/ 1 /$. The procedure which removes the ultraviolet divergences known as the R-operation ia equivalent to the introduction into the Lagrangian of some local counterterme. In renormelizable theories this results in a multiplicative renormalization of fielde and coupling ${ }^{1 /}$. The renormalization procedure possessee the group etructure where the continuous group parameter appears to be a normalization point λ, parameter of dimensional regularization μ, etc.

The renormalization group equationa drastically restrict the renormalization arbitrariness. For instance, in any given order of perturbation theory only the lowest logerithmic divergences are independent and define the so-called β-functiona. All higher divergences are uniquely determined from lower approximationa. This property allows us, in particular, to perform a aumation of higher logarithmic asymptotics and to predict the asymptotic behaviour of Green functions.

In the present note, we will shaw how the renormalization group equations can be generalized to the theories of a general type, including nonrenormalizable interactiona. In spite of the absence of multiplicative renormalizability the obtained equationa enable us to calculate all higher singularities (poles in the dimensional regularization) starting from the generalized β-functions like in renormalizable theories.
2. Remind firat the standard procedure in renormalizable theories $/ 2 /$. Further on we ghall work in the framework of dimensional regularization. The R-operation in this case leads to the following expreaaion for the "bare" coupling in terms of the renormalized one

$$
\begin{equation*}
g^{\text {Bare }}=\left(\mu^{2}\right)^{\varepsilon} g Z_{g}=\left(\mu^{2}\right)^{\varepsilon}\left[g+\sum_{n=1}^{\infty} \frac{a_{n}(g)}{\varepsilon^{n}}\right] \tag{1}
\end{equation*}
$$

where for definiteness we use the minimal subtraction scheme. Any change of the parameter $\mu \rightarrow \mu^{\prime}$ ia compenated by an appropriate

change of the coupling $g \rightarrow g^{\prime}$ so that $g^{\text {baze }}$ remains unchanged. Differentiating eq.(1) with respect to μ and introducing the definition

$$
\begin{equation*}
\left.\mu \frac{d}{d \mu} g\right|_{g^{8}}=-\varepsilon g+\beta(g) \tag{2}
\end{equation*}
$$

we get
$0=\varepsilon\left[g+\sum_{n=1}^{\infty} \frac{a_{n}(g)}{\varepsilon^{n}}\right]+[-\varepsilon g+\beta(g)]\left[1+\sum_{n=1}^{\infty} \frac{a_{n}^{\prime}(g)}{\varepsilon^{n}}\right]$.
Equating the coefficients of powers of ε we have

$$
\begin{gather*}
\beta(g)=\left(g \frac{\partial}{\partial g}-1\right) a_{1}(g) \tag{4}\\
\left(g \frac{\partial}{\partial g}-1\right) a_{n}(g)=\beta(g) \frac{\partial}{\partial g} a_{n-1}(g)
\end{gather*}
$$

Hence, knowing the coefficient of a simple pole $a_{1}(g)$, with the help of eq.(5) one can find all the coefficiente $a_{n}(g)$. In particular, expanding them in a power series in g

$$
\begin{equation*}
a_{n}(g)=\sum_{k=n}^{\infty} a_{n k} g^{k+1} \tag{6}
\end{equation*}
$$

we come to

$$
\begin{align*}
& \beta(g)=\sum_{k=1}^{\infty} a_{1 k} \cdot k \cdot g^{k+1} \\
& a_{n k}=\frac{1}{k} \sum_{l=n-1}^{k-1} a_{n-1}(1+1)(k-l) a_{1 k-\ell} \\
& a_{n n}=a_{14}^{n} \tag{7}
\end{align*}
$$

3. For the Lagrangian of a general type \mathcal{X} the implementation of R-operation results in the counterterms added to the Lagrangian

$$
\mathscr{L} \rightarrow \mathscr{L}+\Delta \mathscr{L}
$$

This can be described in a way like eq. (1)

$$
\begin{equation*}
\mathcal{L}^{\text {Bare }}=\left(\mu^{2}\right)^{\varepsilon}\left[\mathscr{X}+\sum_{n=1}^{\infty} \frac{A_{n}(\mathcal{Z})}{\varepsilon^{n}}\right] \tag{8}
\end{equation*}
$$

where $A_{n}(\mathcal{Z})$ means that the counterterme are calculated within the lagrangian $\not{\chi}$.
Proceeding further according to Sect.2,i, e. differentiating eq. (8) with respect to M and introducing the definition

$$
\begin{equation*}
\left.\mu \frac{d}{d \mu} y\right|_{z^{B}}=-\varepsilon z+\beta(z) \tag{9}
\end{equation*}
$$

we get
$0=\varepsilon\left[\mathcal{L}+\sum_{n=1}^{\infty} \frac{A_{n}(z)}{\varepsilon^{n}}\right]+[-\varepsilon \mathcal{Y}+\beta(z)]\left[1+\sum_{n=1}^{\infty} \frac{\delta A_{n}(z)}{\delta z} \frac{1}{\varepsilon^{n}}\right]$.
Formally, this leads to

$$
\begin{align*}
& \beta(z)=\left(z \frac{\delta}{\delta z}-1\right) A_{1}(z) \tag{10}\\
& \left(\alpha \frac{\delta}{\delta z}-1\right) A_{n}(z)=\beta(z) \frac{\delta}{\frac{\delta}{\gamma}} A_{n-1}(z) \tag{11}
\end{align*}
$$

The variational derivative should here be defined. For this purpose we note that in the loop expansion the counterterms $A_{n}(\mathcal{d})$ can be expressed like eq. (6)

$$
\begin{equation*}
A_{n}(y)=\sum_{k=n}^{\infty} A_{n k}(z) \tag{12}
\end{equation*}
$$

where $A_{n k}(\not)$ are homogeneous functione of \mathcal{Z}, i.e. the following relation holds

$$
\begin{equation*}
A_{n k}(\lambda y)=\lambda^{k+1} A_{n k}(z) \tag{13}
\end{equation*}
$$

With account of eqa. (12), (13), eqs. (10), (11) can be rewritten in the form (in case of nonlinear sigma-models this procedure bas been ueed in refa. /3.4/):
$\beta(\mathscr{L})=\left.\left(\lambda \frac{\partial}{\partial \lambda}-1\right) A_{1}(\lambda \mathscr{L})\right|_{\lambda=1}=\sum_{k=1}^{\infty} k \cdot A_{1 k}(\mathscr{y})$.
$\left.\left(\lambda \frac{\partial}{\partial \lambda}-1\right) A_{n}(\lambda \mathscr{L})\right|_{\lambda=1}=\left.\frac{d}{d \eta} A_{n-1}(\mathscr{z}+\eta \beta(z))\right|_{y=0}$.

For the highest poles this gives

$$
\begin{equation*}
n A_{n n}(\mathscr{Z})=\left.\frac{d}{d y} A_{n-1 n+1}\left(\mathscr{Z}+\eta A_{11}(\mathscr{X})\right)\right|_{y=0} \tag{16}
\end{equation*}
$$

It is obvious from eq. (16) that the coefficient function of the highest pole ia totally defined by the one-loop approximation. However, contrary to eq.(7) $A_{n n}$ is not merely on n-th power of A_{11} but contains also the derivatives.
There is a useful graphical interpretation of eq. (16). In the background field formalizm the one-loop counterterm for an arbitrary Lagrangian $\mathcal{X}(\varphi)$ can be obtained in a general form $/ 5,6,7 /$ and is proportional to $(D=4-2 \varepsilon)$

$$
A_{11} \sim \frac{\delta^{2} \mathscr{L}}{\delta \varphi^{i} \delta \varphi^{j}} \times \frac{\delta^{2} \mathscr{L}}{\delta \varphi^{k} \delta \varphi^{l}} \equiv A
$$

with a proper contraction of indices. Graphically, this can be represented as

$$
A_{11}=\mathscr{L}=\mathscr{L}=\sim
$$

Then for A_{22} we get, according to eq. (16),

or

Proceeding further, we have

$+\frac{1}{3}$

$\frac{1}{3}$
\qquad
$+\frac{2}{3}<\sqrt{ }$

Clearly if $\quad A_{11}=0$,
i.e. $\quad=0$, then all $A_{n n}=0$. At the same time expanding eq. (16) up to n-th order we always have the diagram

which contains only one simple loop. That means that $A_{n n}$ possesses only first order zero when $A_{i 1}=0$. This fact is of great imporlance for the construction of finite field theories $/ 8,9 /$
4. Equations (14), (15) are the desired generalization of renomalization group equations (4), (5) to the theories of arbitrary type. In spite of a possible nonrenormalizability of a theory the counterterms happen to be connected with each other. The only independent coefficient functions are those of a simple pole. Eq. (15) appears to be very useful in various cases. In nonlinear aigma-modela it was used in a refs. $/ 10,11,9 /$. It can be also applied to the calculalion of higher counterterms in quantum gravity.

The author is grateful to D.V.Shirkov and A.A.Vladimirov for useful discussions

References

1. N. N. Bogolubov and D.V.Shirkov, "Introduction to the theory of quantized fields", Led, Nauka, Moscow, 1984:
2. G. 'tHooft, Nucl. Phys. B61 (1973) 455.
3. D. Friedan, Ann. Phys. 163 (1985) 318.
4. L.Alvarez-Gaume, D. Z. Freedman and S.Mukbi, Ann. Phys. 134 (1981) 85.
5. Get Hoof te, Nucl. Phys. B62 (1973) 444.
6. G.'t Hooft, M.Veltman, Ann. Inst. H. Poincare 20 (1974) 69.
7. D. I. Kazakov, V.N. Pervushin, S.V. Puehkin,

Theor. Math. Phys. 31 (1977) 169 (in Russian).
8. D. I.Kazakov, Phys. Lett. 179B (1986) 352.
9. D. I. Kazakov, Preprint JINR E2-87-16, Dubna, 1987.
10.M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Nucl. Phya. B277 (1986) 409.
11.M.T. Griearu, D. I. Kazakov and D. Zanon, Harvard Prerint fuTp-86 A076, 1986.

Казаков Д.И.
06 одном обобщении уравнений ренормгрупть
для квантово-полевых теорий произвольного вида

Дано обобщенне уравнений ренормгрупи на теории с лагранкианом произвольного вида, включая неперенормируемые взаимодействия. В рамках размерной регуляризации полученные уравнения поэволяют определять коэффициентные функции при старпих полюсах, исходя ия младшего полюса или обобщенных β-функций.

Работа выпопнена в Лаборатории теоретической физики ОНяи.

Препринт Объединенного ндститута пдерных исследований. Дубна 1987

Kazakov D.I.

On a Generalization of Renormalization Group Equations to Quantum Field Theories of an Arbitrary Type

A generalization of renormalization group equations to the theories with arbitrary Lagrangians including nonrenormalizable ones is presented. In the framework of dimen sional regularization these equations enable us to determine the coefficient functions of higher poles starting from a simple pole or generalized β-functions.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

