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1. Traditionally, the renormalization group equations are con-
nected with the property of multiplicative renormalizability in
quantup field theory 1/, The procedure which removes the ultraviolet
divergences known as the R-operation is equivalent to the introduc-
tion inte the Lsgrangian of some local counterterms. In renormali-
zable theories this results in a wultiplicative renormalization of
fields and coupling 1 . The renormalization procedure possesses the
group structure where the continucus group parameter appears to be
a normalization point A , parameter of dimensional regulariza-
tion s , ete.

The renormalization group equations drastically restrict the
renormalization arbitrariness. For instance, in any given order of
perturbation theory only the lowest logarithmic divergences are in-
dependent and define the sp-called f& ~functions. All higher diver~
gences are uniquely determined from lower approximations. This pro-
perty allows us , in particular, to perform s summation of higher
logarithmic asymptotics and to predict the asymptotic behaviour of
Green functions.,

In the present note, we will show how the renormalization group
equations can be generalized to the theories of a general type,
including nonrenormalizable interactions. In spite of the absence
of multiplicative renormalizability the obtained equations enable
us to calculate all higher singularities (poles in the dimensional
regularization) starting from the generalized fb ~functions like
in renormalizable theorles.

2. Remird first the standard procedure in renormslizable theo-
ries 2/. Further on we shall work in the framework of dimensional
regularization, The R -operation in this case leads to the follo-
wing expresaion for the "bare™ coupling in terms of the renormalized
one
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where for definiteness we use the minimal subtraction scheme. Any
change of the parameter r&-i r' is compenssted by an appropriste
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change of the coupling g~ y/ so that 36“8 remaing

unchanged. Differentiating eq.(1) with respect to M and intro-
ducing the definition
d
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we getl
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Bquating the coefficients of powers of & we have
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Hence, knowing the coefficient of a simple pole @y (‘}) s Wwith
the help of eq.(5) one can find all the coefficients a,, (?)
In particular, expanding them in a power series in %’

Anlg)= Z " %

(&)
we come to

= k+t

Py = ) duckeg
k-4

Ao = ) Qg (DDA
{=n-1

_ n
Bwn = Q4 (7)

3. Por the Lagrangien of a general type C;Z the implementa-
tion of R -operation results in the counterterms added to the Lag~
ranglan
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This can be described in a way like eq. (1)
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where Ah [3) means that the counterterme are calculated within
the lLagrangian X .
Proceeding further according to Sect.2,i,e. differentiating
eq.{8) with respect %o /V\ and introducing the definition
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we get
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The variational derivative should here be defined. For this purpose

we note that in the loop expansion the counterterms Ah ()
can be expressed like eq. (6)
o
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whare A;.,L (,ﬁ) are homogeneous functiona of ;(_ , .20
the following relation holds
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With account of eqs. (12), (13), eqs. €10), (11) can be rewritten
in the form (in case of nonlinear sigma-models this procedure bas
been used in refs, /3’4/):
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For the highest poles this gives B
nAhn(\5£>‘° éAnduq(i*’ Au(y»)
“ A

It is obvious from eq.(16) that the coefficient function of the
higheat pole is totally defined by the one-~loop approximation.
However, contrary to eg.(7) A, is not merely an n-th power of
A11 but contains also the derivatives.

There is a useful graphical interpretation of eq.(16)., In the
background field formalizm the one~loop counterterm for an arbitrary
Lagrangian Eﬁ (Lp) can be obtained in a general form /5,6,7/
and is proportional to {D=4-2€)
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with a proper contraction of indices, Graphically, this can be
represented as

Ay =X = <>

Then for Ptzz we get, according to eg.{(16),

Proceeding further, we have l

Clegrly if Ay=0 ,

i.e. (:::) = , then all Aun=0 . At the same time expanding

eq.{16) up to n-th order we mlways have the diagram
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which contains only one simple loop. That means that 4,1" possesses
only firest order zero when A¢,= { . This fact is of great impor-
tance for the construction of finite field theories/8’9

4. Equations {14), (15) are the desired generalization of renor-
malization group equations {4), (5) to the theories of arbitrary type.
In spite of a possible nonrenormalizability of a theory the counter-
termg happen to be connected with each other, The only independent
coefficient functions are those of a simple pole. Eg.(15) appears
to be very useful in various cases, In nonlinear sigma-models it
/10’11’9Z. It can be also applied to the calcula-
tion of higher counterterms in quantum gravity.

was used in a refs,
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Kasaxos HA.H. E2~87-132
06 onioM 0600meHMH YpPaBHEHHI PeHOpPMIPYIIb

O/ KBaHTOBO—MONEBHX TEOpHH IPOU3BONLHOTLO

BHRA

Oano obGobmeHne ypasHeHHMH peHOpDMIpYNbH Ha TEOPHH ¢ na—
rpalxMaHoM IIPOHSBOJIBHOI'O BHIA, BKIWOMAA HeNnepeHOPMHpyembie
B3aauMope#icTBuA. B paMkax pasMepHoit perynsipHaaldH noinydeH-
Hbole YPABHEHHSA NO3BONROT ONpenenaTs kxoabbHupeHTHrie GYHKIMM
fipy CTAPMHX MNOJOCAX, HCXOOs M3 Mianmero nojiuoca uny obob-
meHHLKx S-dyHKkuui,

PaGora BrmonHeHa B JlaGopaTopHH TeopeTHUYECKOH GHUIUKH
OHSH.
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sional regularization these equations enable us to deter-
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