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SUMMARY 

The spontaneous breakdown of symmetry 
of the a -model in the [1, 1] representation 
of SU (2) x SU (2) group is investigated. It is 
shown that the spontaneous breakdown is rea
lized in all cases of squared mass ~ 2 in 
mass term in the Lagrangian ( ~2 ·>0 , ~2 = 0, 
~2 < 0 ) , unlike the ·a-model in _[1/2,1/2] 
representation, in which the spontaneous 
breakdown only for the case ~ 2 < 0 mani~ 
fests itself. Further, different but equi
valent methods of obtaining of the nonli
near realization for pions in the frame of 
an extended in such a way a - model are 
demonstrated. Finally, it is sketched, that 
the obtained results can be generalized to 
all [N/2,N/2] representations of SU(2) xSU(2) 
chiral group. 

Introduction 

In order to construct a linear realization of the chiral 
symmetry for pions, one has to introduce other fields. 
The simplest possibility appears via introducing a scalar 
a -field with isospin T = 0 , which is needed to complete 

the four dimensional linear representation [ 1/2 , 1/2 ] of 
chiral SU (2) x SU (2) group. The model obtained by such 
a procedure is known as a -model /I/. 

If one wants to extend this model and to have the 
scheme with automatically conserved isospin, then the 
representation must be considered of the type [N/2, N/2 1 
only /2/ .Namely these representations contain T = 0 repre
sentation of isospin group. 

The natural extension of the aforementioned a -model 
(and still sufficiently simple for investigation) seems to be 
the consideration of [ 1 , 1 1 representation which contains 
besides the scalar T =0 and pseudoscalar T =1 partic
les, also the scalar particles with T =2. 

The purpose of this paper is to investigate the struc
ture of an extended in such a way version of a -model, 
denoted further by I and to generalize the results for 
all [N/2 ,N/21 representations. 

The plan is as follows. After a brief survey of the 
symmetry of the I -model in sect. 1, we are interested 
(sect. 2) in the spontaneous breakdown 131 (further we 
shall prefer to call it the Goldstone mode I 41) of the I -
model, the nature of which reveals the form invariance 
of a Hamiltonian. In such aspects of symmetry, physical 
states form a representation basis of a (classical) Lag
rangian. In this case there are Goldstone bosons and the 
vacuum states are invariant under the subgroup but not 
under the fullgroup. 
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On the basis of the obtained results, one can see imme
diately that Goldstone mode manifests without special 
assumption unlike the case of the a -model 13 1 where 
the squared mass Jl 2 in the mass term in the Lagrangian 
is negative only. In our case the Goldstone mode is reali
zed for all three possibilities (Jl2 '>0 , Jl2= 0 , Jl 2< 0 ). 

lt <an be generalized that in the framework of renor
malizable Lagrangians the Goldstone mode for odd values 
of N in [N/2,N/2] representations is realized in the same 
way as in the a -model and for N -even will manifest 
like in the I -model. 

In sect. 3 a few possibilities to carry out the nonlinear 
realization / 2 • 61 of SU (2) x SU (2) group are presented 
in which we do not admit the existence of fields other than 
that of the pion. This is possible to achieve generally, 
when partners of Goldstone bosons acquire infinite 
masses /5~ 

1. Symmetry of the ! -model 

It is known that the Lie algebra of su (2) x SU (2) is 
isomorphic to the algebra of the 4-dimensional rotation 
group .R(4) . Let us denote the generators of R(4) by 
'L J+V ( IL, v = 1, .. .4; 'L v =-'Lvll ). The correspondence 
with the generatorM Q k , Q ~ of Lie algebra of 
SU(2) x SU (2) is as follows: 

'L .. - f .. k Qk 1J 1J 
and 

'L 4k- Q: :i,j ,k =1,2,3 

Then the basis of the [N/2,N/2 ] representation of SU(2) xSU(2} 
group can be written as an irreducible tensor of R (4) of 

(N) - . . . the rank N , ¢ f3 (a , f3 ,y, .. =1, . .4hvhlch 1s traceless and a a -symmetric, 
In our applications of particular interest is the [ 1 ,1 ] 

representation, denoted by ¢ af3 ,the infinitesimal trans
formation of which is: 
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8cpaf3=1~ wjlV ('L/LV) aa,f3~cpatJ (1) 

with parameter w IL v and 

['L,v] _ f3f3- = -il8f3f3- [8 8 --8 _ 8 ] + 
r aa, /La va Jla va 

(2) 

+8- [8 f3 8 {3- -8 {3- 8 f3 ]l. aa IL v Jl v 

From (1) we get 

8¢ f3=W cp f3 +cf> w Tf3 a aa a aa a 
(3) 

which implies the axial vector and the vector infinitesimal 
transformation laws respectively 

8 ¢ ik = ai ¢ k4 + ak ¢ i4 

8A.. -aA.. -a A.. 
't-' i4 - .i 't-' 44 k 't-' ik 

8¢ =-2(a.¢. ) 
44 1 14 

where a =w 
i4 ¢ .. =-¢44 

1 1 

8 ¢ik =Wif cpfk + W kf cp if 

o¢ =w ¢ 
i4 if f4 

o¢ = o 
44 

(3.a) 

(3.b) 

with w ·f = ( ·fk f3 k. 
Then Tr

1 
( ¢ )21 , Tr (¢ ) 3 , Tr(¢ )4 , ( Tr(¢ 1 }~.. are inva-

riants under (3) and a chiral invariant Lagrangian that we 
want to consider is 
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.fl = .l a ¢ f3 a ¢(3 - w < <ll ) 
2 11 a 11 a n2 

n> 
with potential energy -

W(<lln) = 112<1J2+ i A<ll: + fl<ll3 + f2<ll4 

where we have used the notation 

<ll =Tr¢.¢.¢ .•... ¢ 
n 

---==""' ..._... 

n'>2 

(4) 

(4.a) 

¢a (3 can be expressed through physical fields ! (x) , " 1 (x) 
and T ik (x) in the following way 

1 . .. 1 
¢ ik = 2 I 1 ik + 8 ik .,[0 I I 

1 
cpi4 = l 77 I i,k=l,2,3 (4.b) 

1 3 
¢44=-r v 2 I and Tu = 0 

Further the vector currents are given by 

f = E
1
tte I¢ a ¢ -¢ a ¢ +a ¢ ¢ -a ¢ ¢ · 1 

11 Ita 11 a I Ia 11 a k 11 ia ak ll ka ai 

and the uial vector currents by 

sf J = ¢ a ¢ 0 - ¢o a ¢ 4+ a cp 0 ¢ 4 - a cp4a cp o· 
ll .4a ll a«. «.a ll a ll «.a a ll a'" 

(5.a) 

(5,b) 

Since Lagrangian (4) is exactly invariant under the group, 
all c1;1rrents become divergenceless, i.e., 

a J afJ = 8 ~ = 0. (5.c) 
ll ll 8w afJ 
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Finally, if the symmetry is broken by a term of the form 
~ = c • <1J 

2 
then PCAC is conserved. 

S.B. 

2. Goldstone Mode of the ! -Model 

A subject of this section is to discuss the Goldstone 
mode of the ! -model. Generally the Goldstone 13 •81 mode 
manifests by an exactly symmetric Lagrangian, provided 
that the physical vacuum is not invariant under the sym
metry group. 

In the case of noninvariance 181 of the vacuum state 
under the symmetry group, there would be such relations 
sufficient that not all fields have zero vacuum expectation 
value. 

The vacuum expectation value of ! is not forced by 
any symmetry principle to vanish and thus one can choose 
I to develop vacuum expectation value, i.e., we may write 

<!·> =vf,O. 
0 

This, however, makes a particle interpretation 
! -field impossible. Let us introduce field ! 
that < I·>

0 
= 0. Then 

¢a {3 = ¢ afJ + (V) a fJ 

where ( V ) afJ = v J afJ 

~1 .if a=:i 

c(a) = ~- 3 if a= 4. 

d J --1 
c ) s ~ an afJ - 2y7J ta a,.-

(6) 

of the 
such 

(7) 

with 

The constant v (one can see immediately from PCAC con-
dition that v =f 

17 
) is determined by ~inimizing /3,5/ the 

potential energy (considered as a function of the classical 
fields! , rr

1 
and T 1k )W(<ll

0
)=W(!,rr1 ,T 1k) introduced 

in eq. (4.a). 
The general conditions for minima look as follows 

I aW(CI>n) I = 0 
n•>2 a,~.. cf=O - ~afJ 

(8.a) 
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a2W(<Iln) I > 0. 
I ,~.. 2 ¢=o n>2 a'f' af3 

(8.b) 

The eq. (8.a) can be rewritten into the following form 

~ aW(<Iln) I • E_ .a =0, (9) 
a<lln ;p=o v n 

where 

1 n n n a = <ll I _ = ( -) v ( 3 + ( -3 ) ) . 
n n ¢=0 2 v6 

Now inserting the explicit form of the potential from 
(4.a) into (9) and (8.b) one gets: 

1. the equation for v 

I 2 1 (' 7 f ) 2_ 1 ./ 3 f l_ 0 V II +- 1\+ -- V - y- VI·-
r 2 62 2 2 1 (9.a) 

solutions of which are 

a, v = 0 

b, v± 

1 3 3 2 2 7 -V-ft± V-f. -211 (A+r-f) 
2 2 8 0 2 

A+l-f2 

(10) 

2. conditions for minima 

( ±) v ± v -t f~ -2 112 (,\ + f f 2) ·>_ 0. (11) 

where we suppose that .\ + f f? 0 and f 
1 

·> 0. The second 

condition is necessary in order to have the physical 
masses of the scalar particles non-negative. 

Now we are ready to show the shape of W(v)=W(v,O,O) 
for 112 > 0 , 11

2 = 0 and 11 2< 0 (see fig.1). 
Thus, we can see that Goldstone mode of ~-model is 

realized in all cases ( 11 2.>0 , 11 2 = 0 , 11 2< 0 ) that is 
the first moment which differs from the a -model in the 
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case of [ 1/2, 1/2] representation, where the Goldstone mo-
de is realized in the special case 112 < 0 only 11 I . 

Now comparing the results obtained in [ 1/2 , 1/2 ] and 
[ 1,1] representations one can see immediately the im
portant role of the trilinear interaction term in [ 1 , 1 ] re
presentation, which willappearinall [N/2,N/2] represen
tations with N -even. From here the conclusion can be 
drawn, that the Goldstone mode generally in [ N/2, N/2 ] re
presentation of SU(2) x SU(2) group for N -even in the case 
of renormalizable Lagrangians (we restrict ourselves 
maximally to quartic terms in meson fields) is realized 
like in the extended I -model and for N odd is realized 
like in the case of a -model. 

Finally we shall find the expressions for the masses 
of particles under consideration as functions of coupling 
constants appeared in the potential (4.a) and show that the 
mass of the pion is equal to zero. 

The masses of I and T lk are obtained from Lagran
gian (4) 

2 a W(tll > 2 
m = I ---~n __ 

1 
n m 

a 
-·-aa+ 

ct>n act> m cp= 0 v v n m I n,m2:_ 2 

+I ~ 1 n(n-1} 
u>2 a¢ - - --::-2 an 

n ¢=0 V 

2 aW(<I>n) . n-1 
m = I I · n (n-1 )v 

T ik n~ 2 a <I> n cp = o 

and using eq. (4.a) explicitly one gets 

m2 = - 2 /l 2 + 1.. v' 3 f v 
I 2 2 1 

and 
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m 2 =v'.i..f v 
Tik 2 1 

1 f v 6 2 

(12) 

(13) 

(14.a) 

(14.b) 

~ 

I 
I 

The last question we would like to discuss is the mani
festation that the pion is Goldstone. 

The mass of the pion is given by the following relation 

m2=l..I aW(ct>) I • .!!...a 
1T i v n ~2 act> ¢ =0 v n 

n 

From the condition for minima (eq. (9)) one can see 
immediately that 

m2 =0. 
"i 

3. Nonlinear Realization of the I -Model 

(15) 

The nonlinear realization 16 1 for pions is possible to 
achieve by means of several equivalent ways. 

One of them is to perform nonlinear I 51 canonical 
transformations of the I ,rr . and T 'k fields. This is 

I I 

allowed because(V >af3 = v Ja~ is not equal to zero 
identically. Then we can write the canonical transforma
tion (I ,rr. ,T .k) _. ( ct> , ~· , F 'k ) in the following form* : 

I I I I 

~ A .eA 
- .,. 8 8 - - 1<os 8 

M=(I+v)P4 +rr1 P1 + T1kPik= e {(ct>+v)P
4
+F1kPik le 

(16) 

where A
8 

are axial-vector generators of SU(2)xSU(2) 
group in [ 1, 1] representation and P a b (a, b= 1 , ..• 4) are 

(s=1,2,3) 
projection operators for extracting the states with 
isospin 0,1 ,2 frorn the basis of [ 1 ,1 ] representation. 

* We would like to note that M in (16) is given in the 
antisymmetric basis of [ 1, 1 ]representation and the rela
tion between M and ct> n used in Lagrangian ( 4) looks as 
follows: 

1 --
<1> 2 = Tr M .M, <1>3 = - y' detM, ct>

4 
= Tr( M )4 

3113 
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The expressions of ! , rr i and T ik in terms of ell , 
g i and F ik and the explicit form of matrices As and 
P are shown in Appendix. 
8~ubstituting the expression (16) in eq. (4) we obtain 

a new form of the Lagrangian in terms of ell , g i and F ik . 

f = ~ g) IL ell g)IL ell + ~ ~IL F ik g) IL J\i + 
(17) 

1 2 
+T~ (i ~IL (i l8ij (l+ell) -2(1+ell)Fii+FikFki 1-W(M), 

where 

2 A 2 2 fl --
W ( M) = tl Tr( M) + '2 ( Tr(M) ) + T,73 v' ~et M + 

4 J 2 Tr(M) 
3 

(17.a) and 

:D IL ell = all ell 
.... 

sin y' g 2 ((e aIL (e) ( sin v' ( 2 

. --=---=- + ( 1- -- ) 
ve2 e2 v'e2 

.... .... 
g;IL e = aIL e 

g) F. k = a F. k + i v i ( T i ). F k 
IL 1 IL 1 IL IS s (18) 

. --- 2 
with v,! =-f.k. e. a ek cosy'( 2 !( 

r 1 J 1 IL . . 
and(Ti) =fimi8 +fJmk8 +fJek8 

mf,ik fk ei mi 
A remarkable fact is that eq. (17 .a) depends only on 

ell and F ik consequently, the particles represented by ( 
have the zero masses. Now, taking the limit 151m F. , 
m ell .... "" the corresponding fields may be dropped1~ut 
of the Lagrangian and the matrix M given by eq. (16) 
reduces to 

.c - i( A •s 8 A 8 s s 
M =e v P

4 
e . (19) 

The nonlinear Lagrangian obtained in this way is 
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I 

I 
,j 

I 

f =.!_ T (.:£ ( .. 
2 IL 1 1L 1 (20) 

The terms quartic in the meson field may be used to 
calculate the T -matrix of the pion-pion scattering 15 •91 

(q l 'a)+(q2,{3)-->(q. 3' Y) +~ 4 ' 8 ) : 

T ~ , =- -
1-18 8.5>. s +8 8~, t+o, o~ .u}, (21) 

a,_,, yu v2 a{3 yv ay ,_,u au ,_,y 

where 
2 2 2 

S =( ql +q2) ,t =(ql-q3), U=(q l-q4). 

It has been observed / 5/ that a transition from the 
linear a -model to the nonlinear realization can be per
formed by taking the irifinite mass of a -particle /4/ 
( m a .... "" ) . To carry out this program in the ! -model one 
has to eliminate the ! and T ik partie le s from the theory *. 
Now using the standard procedure proposed by Weinberg /5/ 

one can see immediately that in the case of rr(q
1 

,a) + 
+rr(q28)->rr(a3 ,yhrr(q

4
,o) theTik and! pole terms give 

3 0 
( ~i) [oaf3 yo 

2 
4 mT 2 1 s ) 

1-(..:.::.!.ik) ( --+--+ ... + 
3 2v mT2 m~ 

ik . ik 

2 
mi 2 1 s 

+ <y--) <2 + 4 + ... ) + permutations 
m! m! 

(22) 

while the constant terms give 

2 2 
m m 

<~i)[8 ~ o.5> I _!_2 + ~ l + permutations 
a,_, yv v 3 v2 

(23) 

The sum of (22) and (23) takes the form 

* I am indebted to Dr. E.A.Ivanov for the drawing my 
attention to the possibility of a solution of the problem 
in this way and also for a fruitful discussion about it. 
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1 --[o ~o.;:; .s +o o~, .t+o o~ .u] 
v 2 at-' yv ay t-'u aa t-'Y 

(24) 

in the li_mit mi. ->oo , mT,i,f'oo and is consistent with the 
T -matriX obtamed from ·{~0). 

It is possible to show that in the limit in which masses 
of Goldstone partners become very large, Lagrangian 
(4) turns into (20). If in the equations of motion /5/ for 
T ik and I fields, respectively 

o <I>(~) + ( 2 +A <I> ) <I> (2) + f <I> (3 ) f <1>(
4) = 0 (25) 

. I k /1 2 ik 1 ik + 2 ik 

(2) 2 (2) . (3) (4) 
D <I> + ( p. + A <I> 

2 
) ¢

44 
+ f 1 <I> + f 2 <I> = 0 , (26) 

44 44 44 

<l>(n)=~ 
ab o¢ 

ab 

where 

one takes the limit m I .... "" , m T ..... oo then the 
"kinetic energy" terms may be neglecfed and one gets 
the solutions consistent with (19) 

T = 3( v- I ) '" " _1.. o "2 I . 
i k 4 1T 2 i k 3 ik 

(27) 

Conclusion 

In this section we summarize the main results which 
have been obtained in the analysis of the spontaneous 
breakdown of the extended I -model: 

1. The Goldstone mode manifests itself in all cases 
(p. 2 ·> 0 , /12 = 0 , /12 < 0 ). 

2. In the limit in which the partners of Goldstone 
bc)sons acquire infinite mass, the standard form of the 
nonlinear realization of a -model is obtained. There are 
indications for the validity of this result in all [N/2,N/2] 
representations of SU(2) xSU(2) group. 

3. There is another generalization for all [N/2,N/2] re
presentations. In the case of renormallzable Lagrangians 

14 

the Goldstone mode for N -odd is realized like in the case 
of a -model (p.2 < 0) and for N - even it is realized in 
all three cases ( 11 2 > 0 , 11 2= 0 , 11

2 < 0 ). 

The author would like to thank Professor V .I.Ogie
vetsky for suggesting this problem and for fruitful dis
cussions, and Professor G.V.Efimov for valuable advices 
and encouragement in this work. 

She is also grateful to Drs. E.A.Ivanov, B.Zupnik 
and J .Lanik for helpful discussions. 

Appendix 

To find the expressions of I , "
1 

, T ik in terms of 
<ll I e i , Fik from (16) we are iii need of an explicit 
form of axial As and vector ·v s generators of SU(2)xSU(2) 
groupandmatrices P4 , P 1 ,P1k(i,k=l,2,3) in[1,1] 
representation. 

They can be taken 16 •71 in the following forms 

i A = ;_ T <i$)p 
s 2 3 8 

·v = i- 1 0P 
8 ,/. 8 

1 
P4=21 ~r1 

p = -ipi (3r 2 

pik = Z ik ®r I 

a ,b =1,2.,3 

I= 8 ab 

1 2 z =-18 l) +l> 8 --l> l) I. 
ik 2 Ia kb ib ka 3 ik ab 

(A.l) 

where (p,.) ab = £ash and rl. are Pauli matrices. 
Now inserting these into tne eq. (16) and using the 

following comutation relations 
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[As,P4]=-~ ps 

[A , Pkd] = i
4 

I o P + o P + o p 
s ks d sd k kd s 

. 4 
[As 'pk] = .1 I } p4 ° sk - p sk} 

[Vs' p 4] = 0 

[Vs ,Pi ] = :,if sim pm 

['Vs,Pik] =ifskfpfi +ifsif pif {A.2) 

with the properties of traces of matrices in (A.1) we get 
the final results 

- 4 2 ~ 4 
! = v +ell - 3 n ( v +ell)+ 3 F ik ni n k 

- - 1 
". = n. [an< v + ell ) - --- F.k n. n k l+TI . F .. 

1 1 ~+1 J J l Jl 

and 

1 - 2 T.~, = F.k- -[(v+ell )ll -ll.lloF.o ]o.k + 
1,. 1 3 I (. JL 1 

- 1 
+ll.llk [v+ell + 2 ll.lleF·f ]-

1 (a +U I J 
n 

-
1 

- [ F o . n k n e + Ffk n. n e l 
a + 1 r.1 1 n 

with 

-+ -+ sin y' e 2 2 
ll = e · _ and a = 1- II ve-2 n 
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