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1. Introduction

It is well known that the internal symmetries of ele-
mentary particle interactions imply a large number of
linear relations between the transition matrices of dif-
ferent reactions. The most usual reactions are going
through two channels of isospin, U -spin, V -spin or full
unitary spin such that the mostfrequent sum }'ules implied
by unitary symmetries or quark models ’!2/ are the
triangular relationships. The isospin triangular inequali-
ties for differential (polarized or unpolarized) cross-sec-
tions have been investigated by many authors’3 13/ But the
isospin constraints on the differential observables of
(01/2 ~0°172) reactions, which are more stronger than
the USl}al triangular inequalities, were derived by Doncel
et al. /4/ and recently in ref. /5.6/ . So, a remarkable
equality [ see eq. (4a), this paper! and the bound
4H<A (o) [see our definitions (3a,b) and (4a)] was
obtained in ref./* while other equalities and the lower
bounds on H have been proved in ref. /5.6/ / see egs.
(24) and (25) from ref. /5// . The isospin constraints
have been derived /5.6/ using a set of bilinear forms
which can be constructed from the scattering amplitudes
of two charge (or s , t, u-isospin)-channels. This form
of presentation of the isospin constraints on differential
observables has an advantage that the exact saturation of
the bounds can be obtained in terms of the zero-trajecto-
ries of the imaginary and real parts of these bilinear
form, or equivalently, interms of [n#r ,(0+1/2 )r ]
phase contours. Therefore, the analysis of isospin bounds
helps to locate the zeros of certain transition amplitu-
des /7/ and to obtain strong constraints on the experimen-
tal data and amplitude analysis /6/ when these bounds are
exactly saturated or degenerated.



The purpose of this paper is to present a general
method for derivation of all the constraints on the
(differential and integrated) experimental observables of
three (0 1/2-0"1/2reactions related by internal symmet-
ries. So, in sect. 2, using the generalized amplitudes
defined by eq. (6a) and the bilinear forms (6a,b,c,d) we
prove that a general linear relation (2) alone implies the
equalities (4a,b,c d ,e) and the bounds (5a,b,c,d,e) valid for
any unit vector < in any spin reference frame at any
energies and scattering angles. All the constraints on
experimental data and amplitude analyses, when the bounds
are exactly saturated, as well asahierarchy of the bounds
are given in the table. In sect. 3, we have proved that the
sum rule (2) alone implies that the equalities (4a) and
each of the bounds listed in the table have an integrated
analog. These results improve in the most general form
all the constraints prev1ously obtained /4.5.6

2. Constraints on Differential Cross-Sections
and on Polarization Projections

In order to obtain a unified treatment of all experi-
mental consequences resulting from different triangular
relationships, such as those derived from different inter-
nal symmetries [ isospin invariance, SU(3) -symmet-
ry /1/ quark models /2/1, we start with the following
definitions. Let Tk be the transition matrices for three
(0% 50"Y ) reactions written in the form:

Ty =fy + iong,, 1)

where fk and gk are the non-spin-flip and spin-flip
scattering amplitudes, ¢ =(01,%,93) are the Pauli matrices
and n is the unit vector normal to the scattering plane.

Let us assume that the transition matrices Ty satisfy
the sum rule

3 .
> T, =0, 2
k=lck Kk (2)

where the cy coefficients are real numbers [ see
ref/1.24
Let us define

Alx,y,z) sx2+y2+22-2xy—2xz—2yz , (3a)
Ao) =Alcd o) ,cdoy,c205 1, (3b)
A x-Bo) E,\[cf,?--ﬁl Ul,cgl:-l_sz %y _’l_” ] , (3¢)
(&9 2 oo 9, oo
X =Alc (1P Yoy, c3 (1P ) o 5 ,c3(1i;<-P3)03] ,  (3d)
1 - -

= «—(1-P.- 3e

H, = >(1-P;-F; )o; o, ’ (3e)

where ¥ is an arbitrary unit vector, o, and P, are the
unpolarized differential cross-sections and the spin rota-
tion vectors, respectively.

The sum rule (2) alone implies the following set of
equalities

2 9 2 2 2 2
H = cicyH)y = chezHyg=c5crly, (4a)

Zl_u‘:)-;\(j _[-4H-A(c)] “[4H A (x-Po )17% ,  (4b)

E]

12H + L A (o) - 1r (&Bo)| AN R Ly
4 4 K

(4c)
|2H+-%/\(0) __41,\(,?.;’*0“%,\‘3) | =|=4H-A(0)1" [-%A(i)]'/’
(44d)
1 1 > o 1. () %

- . . - = -A KP ——-/\
|2H+4/\(a) 4,\(KP o) 4,\ | =[4H-A( a)] [ y )1
(4e)

(not all are independent) and the following set of inequali-
ties



0< -1 <minfc_2c.2(ltf:.l5'. J(1+P Yo o } , (5a)
-4 Gipp o P4 ! o
9 9, 5 o 1 R
maxi--cicj (K-i-”j)(K.Pj )aiaj }g—4—A(K.Pa)<_H > (5b)
Hs_l)\(o)< mmic C2o.0. } (5¢)
4 (ij) U
(=) oW 5d
Q. <H <o, (5d)
QYo L™ (B ) (P ) =B )2 (5ey
K 3 max i i i

[1 —(;.isj 12171 e2¢%0 o i,
U T I
valid for any < and P in any spin reference frame at any
energy and scattering angle.
There are several ways of demonstrating these results.
An interesting proof, which is in particular connected with
the ’’contours’ of the relative phases of the scattering
amplitudes /6/ | canbe obtained using the following combi-
nations of the scattering amplitudes:

() 3 (=) 2
F. = __\'/__. (f+wgy I, F K = —i—-——[—w*fk +gkl . (62)
[1+)w|2]1% [1+]w]?

where ¥ is an arbitrary complex number, and the follow-
ing bilinear forms

(1x) (k) (k)
F

1*F, ‘ (6b)

(Q) 1 (+x) (—K (K) _[ (+K) (—.K)] ’ (6¢)

ij ij

Yi(]O % [ F(+K)F(—K) F("K )F(+K) ] (Gd)
since
I 7a
ML 1 +2P Yo | (72)
kk ko k
+ 2 + +
L U R VAL (7b)
l] il ]j
[Z(O)|2=l—(l+l_5 —13 Yo o, Z(O)=0‘ , (7¢)
ij 2 i i ii i
(K)2 5> N (k) -» o
|Z 1" =H +(«kP)(xP)o o .=k P o (7d)
ij ij i j i ii i
"%y, Y90, (Te)
ij ij ii
where < and B are defined as
2
5 2Im w 2Re w 1-jw| } (1)
K = >
14w |2 1+]wi2 1+jw|2
. 2m(f, g%)  (2Re(fig) £ [*-1g, |
Pk = g > } * (7g)
" %k 9k

There

fore, since the sum rule (2)

z QFYKLQ

and also to

is equivalent to

(8a)



(0) (0 (0)
€€ Yy =Y g =cgc Y0 (8b)

we obtain directly the equalities (4a) [ see ("e) ] . Then,

by straightforward calculus, using (8a), (7b,c ,d) and (6b,c)
we get

B -1 2 2 2
ReNiJ._(2cicj) [ckak—ciN“—chjj], (9a)

N.. = M(.t. K), Z(i(;) : Z(if;)’
(9b)
Fo lmME 2o Ly [=HoofA (0))* 2 - LN B0 %y
(9¢)

czicjz[lmZ(i?)] 2 ——A( )= 1{[——(+)] [—%A(K_)]%}Z,

(9d)
2 2 (K) 2 1.~ 3 -
e lmz" [ ] :H_IA(K.PO)%Tg[_%g?]%_f,( [_i_A‘Kﬁ%}z’

where 1, and ¢, are defined as

N, = sig [ImZ(OimZ(K)I—Slgn{ )\H) )\( 0, (9e)

¢ = sign ImMiImMGO) — signt-8H-A(0) \AR-Po) 1. (o1

We note that the equalities (9a) are equivalent to

2.2 2 2 ,
c?[(ReN,;) —N“ij]=——/\[c Ny1:CaNy, ,ciN,J.(927)
Therefore, from (9a’,b,c,d,) and the identity
(+) (=) 2. p
X ea) 2 an(o) +2A(x - Bo) (10)

we obtain the results (4a,b,c,d,e) and (5a,b,c), while the

2
’

bounds (5d) are derived from the triangle inequalities
applied to the bilinear form Y{}) defined by eq. (6d).
Now, from the above results, also we obtain the following
interesting consequences:
(i) The lower and upper bounds (5a,b,c) are exactly satu-
rated on the zero tra]ectones of ImN;, and ReN; ij ,
Ny = M| +") , 7J") , L(?) respectzvely The bounds
(5a b ¢) are degenevated if and only if | MG =0 L, 129 =0,
|Z S] 0 , respectively. The signs 7, ,¢, and the zero
tra]ectories of ImN;; are independent of channel indices
ij [ see (9b,c,d,e,f)] .
i) If Ax(ny) and E.(c.) are the regions from the
physical domain where ., and ¢,  /defined by (9e,f)/
respectively take a constant value ( +) then the bounds
AP >0 in A, (-)and -A(7’> 0in A, (+) arve
equzvalent to the bound

9[—4H -~ A(0) 1% [4H-A(R-Bo)1” <=A(o) -A(x- Po) (11a)

while the bound MH<-\(o) inEx(~) and the bound 4H3 -\x-Po)
in E, (+) regions are both equivalent to the bound

[-XT)] o /\(_)]/2 < -A(0) ~A(kPo) . (11b)
The bounds -\ >0, X750 , 4H<-A(0)\(x-Po) <

in the complementary regions A, (+), A (=) |, Ef ()
E,(-),, respectibely, are all weaker than the bound

A(k-Pa) < -A(a). (11c)

These statements can be proved observing thateq. (9b,c,d)
and (10) imply:

(12a)
(+ > - % > %
—/\ =—/\( )-Ak.Po)t 2y [—4H AMo) ] [4H—.\(K Po)l” ,
H - - 2a(0) + 2r@-Po) - o[- % 1-A01% . A2b)

8



We note that the regions A (+) are separated from
A, () by the zero trajectories of Imz( and ImZz {0
while the regions E, (+) and E,(-) are separated by the
zero trajectories of Im M(iji k)
(iii) The exact saturation of one of the bounds -\}’ > 0 |
H < -A(0) and X(x-Po) <4H, implies a relation of equi-
walence for the other three bounds. Indeed, from (12a,b)
(10) and (9e¢,f) we obtain

oo, =M -A(0) = 4H - A(<-Po) = LT (13a)
H==A(0) ~ MH-ARZPo) - a2 (13b)
for all ¥, and

H=A(K-Po) > - 4H-A(0) = - A=A, (13c)

The constraints on the experimental data and on the
amplitude analysis, when the bounds are exactly saturated,
and a hierarchy of the bounds are given in the table.
We note, of course, that the bounds of class III are more
stringent that the bounds of the classes II and I, respec-
tively.

(iv) The exact saturation of the upper bound (5b) and (5¢)
/or of the lower bounds .(5b,c)/ Simultaneously implies
the mirror symmetry: <.P; = -«. P, . These consequen -
ces are obtained expliciting the constraints: /\(:) = )\(K“
and

CIZ(NI(I( = C%Nii + C?ij » Nyj= Z(i(;)’ Z (i’;)'

The above results improve, in the most general form, the
constraints previously obtained /-3 and are sufficient
to obtain any constraints on differential observables by
specializing the unit vectors < in a given Sj’i'!. referenge
frame. An interesting result is obtained forx=FxB /| xR .
For example, from (5b,c) we obtain:

2

o - - -
max {ed X [Pk.(PixPJ.)Jz}<4H§—)\(o).(l4a)
G£3#%)  C|B P -

10

The lower bound (14a) is exactly saturated on the zero
trajectories of ReZ(i‘J?) while the upper bound (14a) on
the zero trajectories of Im Z(joj)- Therefore, the bounds
(14a) are degenerated if and only if |Z{})/-0. We note
that the lower bound (14a) is equivalent to

- -> - . 22
cfelclo 0,04 [P - (P, xPy)|< Mminilcjefo o, ~H] #1. (14b)

Finally, we remark that a large class of inequalities can
be derived using Young’s inequality/14

ab< fo(x) dx + | 07 (y)dy, (15)
0 0

where y - ¢(x) is any continuous strictly 1increasing
function of x for x> 0 with #®0)-0 and 4 '(y) is the
function to ®(x), , a and b arecombinations of —ale)
A(o), , H,A(«x-Po) such that a> 0 | b> 0.The sign of
equality in (15) holds if and only if b - d(a).

3. Constraints on Integrated Cross-Sections
and on Average Polarizations

In this section we derive all the bounds on integrated
cross-sections and on average polarization projections
which are implied by the sum rule (2) alone. More conc-
retely we shall prove that the sum rule (2) alone implies
that the equalities (4a) and each bound listed in the table
have an ’’integrated’’ analog.

For this we start with the integrals

LUFI=[ [ FPd /P (16)
D
defined for any 1<p <+~ when F are the functions F *
defined by (6a), D is a region from the physical domain
and p is a positive measure defined on the physical domain.
Now,using the properties of the integrals Ip[Fli(seeref./6/)
and the sum rules (8a) we obtain:



le M TR N <l 11 ) TF %« ey IT ) TFES A

k
valid for any I<p<+~ any « and i#j#k=123.. There-
fore,if we define the generalized integrated cross-sections:

(+ Kn) {f[lF(“(n]ZEn dy}l/n L (18)
2

and if we choose p=2n from the inequalities (17) we
obtain

|cll[2(+Kn)J <ley I[E(— Kn)1%+|c |[E<+Kn)] % (19)
valid for any n, any < and i£j#k=1,2,3. Now, let us

define

-

-(;g=f Ug d,u, Pg = -a—lg—ff; Og dp., (203)
D D

- 2 - 2 -
)\(U) )\(cl l’czaz ,C3 3)’

(20b)
MK Po)=A[c?L.P o, cfk-Pyo, , chx-Pyogl,
(20¢)
5 2 - - - 2 5 =2 -
ME) 2 AP (1: P oy, a1 RePy) oy, (12 K-Py) oyl
(tn) 2 2(tkn) 22 (t Kkn) 2 2 (t kn) 20d
Ao = Ae 2 €2y 1325 1, (200)
o 1 33 -= (20e)

Then, we can prove that the inequalities (19) alone imply

21)

2 52 L2 1> 2= -

r?iaj)i{—clcj(x P,) (« PJ)UiOJ}S-I)\(K Po) <H, (22b)

1 - . 2 2= -

H<-Xo) <minifcieio. 0.}, (22¢)
(p Pt 8

g9 i< g (22d)

K — —_ K
(for all x ),

where 5( *) are defined by the relations (5e) and by the
substltutlons o -0 ,P 5P ,l=i,j. Indeed, since the
inequalities (19) are equlvalent to

0 <L \¢m < min {c g i(f Kn) i(i; Kn) (23)
T4k (ij)

such that taking n =1 we obtain the bounds (22a). We note
that the upper bounds (23) are obtained from the definition

(32) and the lower bound (23), since according to (3a), we
can write

A(x,y,z) = (x—y'—z) 2 ~4yz = (y—x—z)2 —4xz=(z—x—y)2 —4xy.

2
Next, using the bounds (22a) for < = P; , i=1,2,3, we
obtain

- =g

(=) 2 2 2
—)\FIE—)\[Q,CZ(I—P P) 09, (33(1 P P3)0 1=0 (243')

-)\(; = Acj(1-P, Py o ,0,c5(1-P,-P) 5,10, (24b)
2

which imply the equalities (21), and

K]



= = - 2 2 2 - 2 2 2 —_
A EA[C3(1+Pi -P) oy scz(l+Pi‘P2)02’c3(1+Pi'P3)03]=
P

_ _ 24
4l (o) + H1< 0 (24c)

from which we prove the bounds (22c).
In a similar way, using the lower bound (22a) for

2= AP %P,
we get
A 4(k.P) R iA(K-Po) -4H] <0 (24d)
K

which implies the bounds (22b). . o
The inequalities (22d) can be proved using the defini-

tions
5= 1Tg1% + 12g1%. 7 Py =1Am(Gap) . 2Re(Tozp), ITgl *~1eg "1, (29)

and Fi*) and Yg  defined by (6a,d) and by the
substitutions: f, - fy , , gg- g¢ - Then, we obtain the
inequalities:

T P a(—=K) [ p(+<) 112 v, 2
LyF N EGO IR ORI < Y

(26a)
1 D) gy (46 1 2
< HFPFGOL P FG™ 1S
which imply the bounds (22d) since
G2 YV 2=, [Ff P =1 P og.  (26D)
. p-1
Now, let us consider Young’s inequality (15)for y = x ,
then, we can write
al/P pl/e o2 b @7)
' : 1 L _ 1. The sign
forany a>0, b> 0, l<p<+ = , T]_+_{.l._ )

14

of equality holds in (27) if and only if a-b. Therefore,
specializing a ,b and p, from (27), (22a,b,c,d) and (23)
we obtain a number of interesting inequalities. For examp-
le, for P-49=2 and a E-A‘E , b ;—)\({ ; a=—-dH-x(7),
b=4H-A(«-Po) , we get

(+) . %

IV R SN b

S—A(E)—A(Z-Iz’g) , (28a)

2[-4 - X(0) 1™ [4H -A(K-P5)1 "% <-A(5) —A(R-P7), (28b)
which are the ’integrated’’ analogs of the bounds (1 la,b).
We note that in the derivation of the inequality (28a)
we have used the identity
X2 XD Jaa(@) s oAl Pa). (28¢)

K

Now, let us consider the bounds

|8H +A(5)_)\(Z.i‘;;) | <=A(0) _A(Z.ﬁa) , (29a)

(+) (=)

2i|)\ - |22 A(5) ~A(RPDY (29b)

K

which are natural consequence of the bounds (22a,b,c).
Then,one can see that the bounds (28a,b) are equivalent
to (29a,b), respectively, if and only if the equalities
(4b,c) [or (12a,b)] have an integrated analog. Here we can
prove only implications: X2 )\ (2 | 4 -A(¢) for all
X simultaneously. " .

Therefore, we have proved that each bound on the
differential cross-sections and on polarization projections,
listed in the table, has an integrated analog.

Next, let us consider the bound 4H < -A(0) written in the
equivalent form:
[cizgi —cjz_j 12+ a4 <_2c|2((;k[ci20. v ko, - % cio 1 (30a)

i i k

i#j#k=1,23This bound requires that if

15



2 > 25 - 1.27 . 0. 30b

ckak[c o, +co, 2ckak]s_)+m (30b)
then

¢?5 -c¢%. - 0, P -P - 0. (30c)

i1 J Jso4 1 J so+e0

and conversely, o, cannot vanish for s-+«~ if one of the
above relations (30c) does not hold for s-+ « . On the
other hand, from the bounds (28a,b), which are equivalent
to

=11

[?5, - cJa 1 +lc?o, (KP)—ca (R-P J)]2<_

(31a)
< 1+ («<:-P)(«:X) ]l a+czja ——c:;k] - A ,
where
2~ 5 = -_ -
R c;o;(«-P;) + €05 (K-Pj)———ckak(x P,)
KX = , (31b)
2~ 2— 2 -
CO'l+Cj0'j—2ckUk
(31c¢)

K= max{[- H)]%[—A(E)]% 2[4l A (2B o)) [l -A(5)) *# }

we obtain the Pomeranchuk-type theorem (30c) assuming
that

-

255, (clo; + Ao _-;_cio’k M1+(ZPO(-NFA o 0. (31d)

Next, let us consider the inequality

(+K) o (+K (—K)) (=)
2| ReNy; | < |[FNFT) 17 R
| ijlzs i i i i (32a)

N, =29 z
ij ij ij

’

which follows from the definitions (6a,b,c), Then, using
the Holder inequality we can write

( !—K)

2| f ReN,j dul<l, F, WLALET 1 LR T, (32b)

+

where p> 1,p'> 1, l+_1_= 1, 1, —1-_ 1 and the inte-
p q pq

grals 1,[F}, ¢=p,q,p’.q° are defined by the relation

(16). Therefore, from (32b), (16), (18) and (9a) we obtain

4ch N +/\[N]g

(rin)y % (5 Goem) B

i i i J

<c2cJ§[E

where Ny, = G, , (K-Pp)a p, MN) =A(0) , MK-Po)

respectively, for n > , n’> % and 5— + — = 1
1 1
on’ " o2m’

Finally, we remark that other interesting constraints
can be derived if we write explicitly the bounds (23) and
(33)on 3'°N" for n > 2 and ¥ conveniently cho-
sen. These constraints can be very useful to check the
sum rule (2) directly from the coefficients obtained by
polynomial fits of the differential (polarized or unpolari-
zed) cross-sections.

4. Conclusions

In this paper we have investigated the constraints on
differential, S(*km) _jntegrated cross-sections and on
polarization projections (in arbitrary directions) of three
reactions related by internal symmetr So using the defi-
nition (6a) and the bilinear forms: SR AL U AR
[ see (6b,c,d)] , in sect 2, we have proved that the sum
rule (2) alone implies the equalities (4a,b,c,d,e) and the

17



bounds (5a,b,c,d,e) valid for any direction K in the spin
space at any energy and scatltering angle. The exact
saturation of these bounds is obtained in termsof [ lmN ,

ReN ;; | zero trajectories [N;; _M(‘ “) Zg,) (K )] or equl-
valently in terms of [n#n, (n+ 5) 7l phase contours The
zero trajectories of ImNjj are all mdependent of

channel indices (i, j) and the bilinear forms Z) ") are
invariant under rotations of spin reference frame A hie-
rarchy of the bounds is established and the constraints on
the experimental data and on amplitude analysis when the
bounds are exactly saturated are given in the table. These
results are sufficient to obtain certain tests of the sum
rule (2) and to determine the breaking parameters when
the experimental data for differential cross-sections and
polarization vectors for all three reactions are available.
Moreover, these results enable us to understand the small
differences between elastic differential cross-sections, at
high energies and fixed transfer momentum, in terms of
the small charge-exchange differential cross-sections
[ see the bounds (30a) and (31a) in terms of differential
observables | . ,

Next, using }he properties of the I, [ F| -integrals
(162 /see ref. / and definition (18) of the generalized
s Kkm) -integrated cross-sections, in sect. 3, we have
derived the bounds (23), such that, starting with these
results, in sect. 3, we have proved the equalities (21) and
the bounds (22a,b,c,d) which are the integrated analogs
of the equalities (4a) and the bounds (5a,b,c,d), respecti-
vely. Hence, we have proved that: the sum rule (2) alone
implies that each bound on the differential obseruvables,
listed in the table, has an integrateda 7a/og These results
improve the result (44a,b) from ref: since the bound
< - (o) is equivalent to the bound (30a) and the bounds
(28a,b) are equivalent to the bound (31a). We remark that
the bounds (30a) and (31a), respectively, can be improved
using the unitarity- analyticity bound (1) from ref./14/

Finally, we note that all the results obtained in this
paper can be extended to the cases when the 0 -spin
particles are replaced by unpolarized J -spinparticles and
also to the three body final states (0% -0°07%") reactions.

]

o}

(o)

ImN;j=0 y
lm;g
lmNﬁ-’-‘ 0
lmZ(aj“O
Im My=0
Im M=o
Im z&"‘o
ImZ'J’-O

amplitudes

=)

(-

[ /)
n-
- J\‘:

Pr), A
4H-MR P =

L]
n

u-4H-A)
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-
»?.
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)
(ad

s

A

experimental data

whH = A(

)
r

4g

4H = AR P m-)

Exact saturation of bound implies constraints on
405 w b -2 @), 2= 2
4H =-A(r) m A(%PT), X =0

Alao, Be
~4H-A(T) =
~4H-M) = A
-4H-A@=- A

Table

(x)
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nds, in the complementary regions, are weaker

are exactly saturated
)
FART R
EH $-A@ -AGEPr)
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rimental data and on amplitude analysis when the bounds
The bounds

The hierarchy of the bounds and the constraints on expe-

yo. A0 ¢-atm- (R Fr)

)

x

(RBor)hHEMN

4Q5) ¢ - @)
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MR-
25020, M) [Fab-2eo] fuH-AGE AT
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1
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3
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