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1. Introduction 

It is well known that the internal symmetries of ele
meniary particle interactions imply a large number of 
linear relations between the transition matrices of dif
ferent reactions. The most usual reactions are going 
through two channels of isospin, U -spin, V -spin or full 
uniiary spin such that the most frequent sum yules implied 
by uniiary symmetries or quark models 1 •21 are the 
triangular relationships. The isospin triangular inequali
ties for differential (polarized or unpolarized) cross-sec
tions have been investigated by many authors13- 13( But the 
isospin constraints on the differential observables of 
( 0 112 .... 0 '1 '/2 ) reactions, which are more stronger than 
the us~l triangular inequalities, were derived by Doncel 
et al. 4 1 and recently in ref. 15,61. So, a remarkable 
equality [ see eq. (4a), this paper l and the bound 
4H<A(a) [see our definitions (3a,b) and (4a)l was 
obiained in ref/41 while other equalities and the lower 
bounds on H have been proved in ref. 15,61 I see eqs. 
(24) and (25) from ref. / 5 I I . The isospin constraints 
have been derived 15,61 using a set of bilinear forms 
which can be constructed from the scattering amplitudes 
of two charge (or s , t , u -isospin)-channels. This form 
of presentltion of the isospin constraints on differential 
observables has an advaniage that the exact saturation of 
the bounds can be obiained in terms of the zero-trajecto
ries of the imaginary and _real parts of these bilinear 
form, or equivalently, in terms of [ n u , (n +112 -)u ] 
phase contours. Therefore, the analysis of isospin bounds 
helps to locate the zeros of ceriain transition amplitu
des 11 I and to obtain strong constraints on the experimen
tll daia and amplitude analysis/6/ when these bounds are 
exactly saturated or degenerated. 
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The purpose of this paper is to present a general 
method for derivation of all the constraints on the 
(differential and integrated) experimental observables of 
three ( 0 1/2 .... o '1 :'2)"eactions related by internal symmet
ries. So, in sect. 2, using the generalized amplitudes 
defined by eq. (6a) and the bilinear forms (6a,b,c,d) we 
prove that a general linear relation (2) alone implies the 
equalities (4a,b,c,d,e) and the bounds (5a,b,c,d,e) valid for 
any unit vector ~ in any spin reference frame at any 
energies and scattering angles. All the constraints on 
experimental data and amplitude analyses, when the bounds 
are exactly saturated, as well as a hierarchy of the bounds 
are given in the table. In sect. 3, we have proved that the 
sum rule (2) alone implies that the equalities (4a) and 
each of the bounds listed in the table have an integrated 
analog. These results improve in the most general form 
all the constraints previously obtained/ 4, 5, 6 I . 

2. Constraints on Differential Cross-Sections 
and on Polil rization Projections 

In order to obtain a unified treatment of all experi
mental consequences resulting from different triangular 
relationships, such as those derived from different inter
nal symmetries [ isospin invariance, SU (3) -symmet
ry /I/ quark models /2/] , we start with the following 
definitions. Let T k be the transition matrices for three 
( 0 ~ .... 0' ~ ) reactions written in the form: 

T k = f k + i ;.1 g k , (1) 

where f k and g k are the non-spin-flip and spin-flip 
scattering amplitudes, i5 =(ai,~,a3) are the Pauli matrices 
and ~ is the unit vector normal to the scattering plane. 

Let us assume that the transition matrices Tk satisfy 
the sum rule 

4 

3 

~ ckTk=O, 
k=l 

(2) 

where ·the c k coefficients are real numbers [ see 
ref.II,2~·. 

Let us define 

A(x,y,z) = x 2+y 2+z 2-2xy-2xz-2yz, (3a) 

A(a) =A [c1_ a1 ,c£a2 , c~a3 ] , (3b) 

.... -R 2->.... 2........ 2 ........ 
A( K·.t" a) =A [ ci K ·PI ai, c2K·P2 a2 , c3 K·P3 a3 ] , (3c) 

(±) 2 .... .... 2 .... .... 2 ........ 
A K =A [ c I (l±K·I1 ) ai, c2 (1±K.P2) a 2 , c 3(1±K·P3 ) a 3] , (3d) 

1 .... .... 
H .. = .,.,-{1-P.·P. )a. a., 

lJ .t. 1 J 1 J 
(3e) 

.... 
where J:. is an arbitrary unit vector, ak and Pk are the 
unpolarized differential cross-sections and the spin rota
tion vectors, respectively. 

The sum rule (2) alone implies the following set of 
equalities 

2 2 2 2 2 2 
H = clc2HI2= c2c3H23=c3ciH31' (4a) 

1 (+) (-} ~ . .... .... Y. --I A -A :1 = [-4H-A(a)] [4H -A (K·Pa )] , 4 K K 
(4b) 

!2H +...!..A(a) _.l.A (:.Pa)i =[-.l.A<+>]Y.[_.l.A<->]~ 
4 4 4 K 4 K (4~) 

1 1 .... .+ 1 (+) . Y. 1 (+) Y. 
I2H+~A(a) ---A(K·Pa)+-A- I =I-4H-A(a)] [--A-] 

4 4 4K 4K' 
(4d) 

1 1 .... .... 1 (±) 
I 2H + --A (a) - -A ( K • P a ) - -A I 

4 4 4 
= [ 4H -A ( :. P a)]~ [ _ _!:._A(±~ ~ 

4 ' 
(4e) 

(not all are independent) and the following set of inequali
ties 
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1 (±) . 2 2 ... ... ... ... 
0<--A <mtn lc c (l±K.P. )(l±K.P. )a. a. I, - 4 K i J• I J I J 

(ij) 
(5a) 

max 
2 2 ·~ ~ ... ... 1 ...... 

l-c.c. (K.t'.)(K.P. )a. a. 1::;-A(K.Pa)<H, (5b) 
1 J J J I J 4 -

1 ) . l 2 2 H ::; - -z- A (a < mtn c . c. a . a. I , 
q (ij) I J I J 

n<->< H < n <+> 
K - - K 

n<±>= _.1_( 
K 3 

mtn 

max 

... ,;;t ... ... ... ... 2 y, 
)j[1-(K·t' )(K•P )±[1-(K·P.)] x 

. I 
.l 

-> ~ 2 '; 2 2 
x [ 1 - ( K· t'1· ) ] 1 c. c. o . a . I , 

I J I J 

(5c) 

(5d) 

(5e) 

valid for any ;; and P in any spin reference frame at any 
energy and scattering angle. 

There are several ways of demonstrating these results. 
An interesting proof, which is in particular connected with 
the "contours" of the relative phases of the scattering 
amplitudes /6/ , can be obtained using the following combi
nations of the scattering amplitudes: 

(+K) ,(2 (--1<) y2 
Fk =------[fk+wgk], Fk = [-w*fk+gk],(6a) 

[l+lwi2]Y, [l+lw12]!fo 

where w is an arbitrary complex number, and the follow
ing bilinear forms 
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( ±K) 
M ij 

( ±K) ( ± K) 
[Fi ]*Fi 

Z(,O\ l_ [ M(.~K)+M~~l, Z(·K·)=_!_[M(~~) -M(~)] 
I J 2 I J I J I J 2 I J I J 

(6b) 

(6c) 

y_(~)= 21 [F~+K)F(~)-F~-K)F(.+K)) ' 
I J I J I J 

since 

M ( ±K ~ (1 ± ; P ) a 
k k k k ' 

I M<.±.K) I 2 = M~~K)M(.~K) 
I J II J J 

1 z~~> 1
2 

= 
2

1 o +P. 1>. >a. a. 
I J I J I J 

( K) 2 -> -> -> _.-
IZ .. I =H .. +(KP.)(KP.)a. 

I J I J I J I 

(O) 2 
I Y.. I =H .. , 

IJ I J 
y(O) = 0 

i i 

where ;;_ and P are defined as 

K ... = l 21m w 2 Re w 

1 + 1 w 12 1 +I w 12 

Z (O)= a 
ii 

a ' j 
Z

(K) -> p-> 
= K a 

i i i i 

2 
1 -I w I 
1 + 1 w 12 

... 21m (fk g\) (2 Re(ft g k) 
2 2 

lfkl -lgkl 
pk = l -----, ' 

ak a k ak 

(6d) 

(7a) 

(7b) 

(7c) 

(7d) 

(7e) 

(7f) 

I . (7g) 

Therefore, since the sum rule (2) is equivalent to 

3 
I. c F(±K) 

k=l k k =0 (8a) 

and also to 
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( 0) ( 0) ( 0) 
c 1 c 2 y 12 = c 2 c 3 y 23 = c 3 c 1 y 31 ' (8b) 

we obtain directly the equalities (4a) [ see (7e) ] . Then, 
by straightforward calculus, using (8a), (7b,c,d) and (6b,c) 
we get 

-1 2 2 2 
ReNij = (2cicj) [ckNkk-ci Nii -cjNjj], (9a) 

(±K) (0) (K) 
Ni i = M i i ' Z i i ' Z i i ' 

(9b) 
2 2 (±: Kh 2 1 (+) 1 Y.! 1 -> -> Y.! 2 

cicj [ImMij J =-4.\~ =1[-H- 4 .\(a)] ±ryK[H- 4 A(K·Pa)] I, 

(9c) 

c~c~[lmz<.~>l 2 =-H-__!_.\(a)=11[-..!_.\<+>]Y.!H [-..!_~-)]Y.!I 2 
IJ IJ 4 4 4K K 4K ' 

(9d) 
2 2[ (K) j 2 1 -> -> 1 1 (+) Y.! 1 (-).Y.! 2 

cicj ImZij =H- 4 A(K·Pa)= 41[- 4 ,\K] -fK[-
4

,\KJ I, 

where l7 and f are defined as 
K K 

TJK = sign [Im z<Simz~;>] =sign{-.\<:> +A<;;> 1, (9e) 

K - sign [1m !Vt~; \m M<;>] = sign I-SH-.\ (a ) +A(;· Pa) !. (9f) 

We note that the equalities (9a) are equivalent to 

c~ c I [ ( Re N i i )
2 

- N i iN i i] = ! .\ [ c iN 11 , c2
2N 22 , ciN3 ~.(9a ') 

Therefore, from (9a' ,b,c,d,) and the identity 

A(+)+ ,\ (-) = 2.\ (a ) + 2,\ (; • P a) , 
K K (10) 

we obtain the results (4a,b,c,d,e) and (5a,b,c), while the 
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bounds (5d) are derived from the triangle inequalities 
applied to the bilinear form y<i' > defined by eq. (6d). 
Now, from the above results, also we obtain the following 
interesting consequences: 
(i) The lower and upper bounds (5a,b,c) are exactly satu
mted on the zero trajectories of Im N ii and ReN ii , 
N - M ( ± K ) z ( K) z ( 0 ) pe ti l The bo nd . ii = ij , "ii , ij res c ve y. u s 
(5a(~tc) are degener~ted if and on_ly if I M<f.t~l = O , I z('j}l = O , 
I Z 1j 'I = 0 , respectively. The szgns TJ K , f K and the zero 
trajectories of Im Nu are independent of channel indices 
ij [see (9b,c,d,e,/) J • 
(ii) If AK (TJ K) and EK (f K) are the regions from the 
j:Jhysical domain where TJ K and f K /defined by (9e,/)/ 
respectively tnke a constnnt value ( ±) then the bounds 
->/:) ::_ 0 in A K (-) and -AJ;) ::_ 0 in AK ( +) are 
equivalent to the bound 

~ ...... ~ ->-> 
2[-4H-A.(a)] 2 [4H-A(K•Pa)] 2 :S-A(a)-A(K.Pa) (lla) 

uhile the bound 4H ::;-.\(a) in EK(-) and the bound 4H;:::-A.(~·Pa) 
in E K ( +) regions are both equivalent to the bound 

II II -> 

[ -~ :) ] 12 [ -A (:)] 12 
::; -.\(a ) -.\(-;.;. Pa ) . (llb) 

The bounds -.\ <:) :;::: 0, - .\<;;) :::_ 0 , 4H s-A.(~-),.\ (;·Pa) ~ 4H 
in the complementnry regions AK (+), AK (-) , EK (+)1 

, 

E K ( -) , , respectibely, are all weaker than the bound 

-> -> 

A(K·Pa) :::_-.\(a). (llc) 

These statements can be proved observingthateq. (9b,c,d) 
and (10) imply: 

(12a) 

(+) -> -> ·Y.! ... -> Y.! 
-.\- =-A(a) -A(K·Pa) ± 2ry [-4H-A(a) j [4H-A(K·Pa)] 

K K 

H = _.!_A(a) +.!_A(~·Pa) -~[-~+>JY.![-A<->]Y.! (12b) 
8 8 8 K K • 
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We note that the regions AK ( +) are separated from 
A,._ ( --) by the zero trajectories of lm z\ ,) and lm Z 1 j > 
while the regions E K ( +) and EK (-) are separated by the 
zero trajectories of lm M(d K > . 
(iii) The exact satur;ation of one of the bounds ->..<~ > 2: 0 , 
4H:::; -A.( a) and >..(;.Pa) ::; 4H, imPlies a relation of equi
mlence for the other three bounds. Indeed, from (12a,b) 
(10) and (9e,f) we obtain 

(+) .... .... 1 ( + ) II. - == 0 --> - 4H - A (a ) == 4H - A ( K • P a) == - .,...-II. 
K q K (13a) 

.... .... (+) (-) 
4H == -A (a ) --> 4H- A ( K • P a ) == -A K ==-A K , (13b) 

for all ; , and 

.... .... (+) (-) 
4H == A ( K • P a ) --> - 4H - A ( a ) == - A K ~ - A K • (13c) 

The constraints on the experimental data and on the 
amplitude analysis, when the bounds are exactly saturated, 
and a hierarchy of the bounds are given in the table. 
We note, of course, that the bounds of class III are more 
stringent that the bounds of the classes II and I, respec
tively. 
(iv) The exact saturation of the upper bound (5b) and (5c) 
jor of the lower bounds .(5b,c)j simultaneously imPlies 
the mirror symmetry: /Z. Pi==-~. Pi . These consequen
ces are obtained expliciting the constraints: A<;> == A<"-> 
and 

2 2 2 (0) (K) 
ckNkk== ciNii + ciNii' Nii~ zij' z ij. 

The above results improve, in the most general form, the 
constraints previously obtained I 4 - 5 I and are sufficient 
to obtain any constraints on differential observables by 
specializing the unit vectors IZ in a given s_piq r ... efe~enQe 
frame. An interesting result is obtained forK==~xlj /I~ xlj 1. 
For example, from (5b,c) we obtain: 

2 
ak --> --> ... 2 

max lc 4 [Pk·(P.xP.)J I<4H<-A(a).(14a) 
<ih;fk> kiP. xP.I2 1 J - -

1 J 

10 

I 

1 

' 

The lower bound (14a) is exactly saturated on the zero 
trajectories of Re Z \ 1> while the upper bound (14a) on 
the zero trajectories of lm z<N. Therefore, the bounds 
(14a) are degenerated if and only if I z<ioi>i == 0 . We note 
that the lower bound (14a) is equivalent to 

222 ... ... .... 22 Y.z 
c1 c 2 c 3 a 1 a2 a 3 1P1 ·(P2 xP 3 )1~4HTi~~l[cicjaiaj -H) I. (14b) 

Finally, we remark that a large class of inequalities can 
be derived using Young's inequality/14 / 

a b t 
ab::: J <ll(x) dx + J <ll- (y)dy, (15) 

0 0 

where y == <t>(x) is any continuous strictly increasing 
function of x for x > 0 with <1~0) ~ 0 and <t>- 1( y) is the 
function to <Jl( '0 4 , ~ and b are combinations of -A <K± > , 
A(a),, H,A(K·Pa) such that a> 0, b>O.The signof 
equality in (15) holds if and only if- b == <ll( a). 

3. Constraints on Integrated Cross-Sections 
and on Average Polarizations 

In this section we derive all the bounds on integrated 
cross-sections and on average polarization projections 
which are implied by the sum rule (2) alone. More conc
retely we shall prove that the sum rule (2) alone implies 
that the equalities (4a) and each bound listed in the table 
have an "integrated" analog. 

For this we start with the integrals 

I [ F I == [ f I F I P dj.L I 1/p (16) p 

D + 
defined for any 1 < p < +"" when F are the functions F <- K) 
defined by (6a), D is a region from the physical domain 
and fl. is a positive measure defined on the physical domain. 
Now ,using the properties of the integrals Ip[ F ](see ref. /6/) 
and the sum rules (Sa) we obtain: 
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\c .\I [F(~K~<\c. \I [F(.±K}j + \ck\I [F(±K~ (17) 
1P 1 -l P J p k 

valid for any 1<p<+oo any -;;_ and i ~j;iok= 1,2,3 .. There
fore,if we define the generalized integrated cross-sections: 

l([Kn)=lf[\F1Knl2in dlll1/n l_<n<+oo (18) 
D 2 

and if we choose p = 2n from the inequalities (17) we 
obtain 

\ci \[I(~ Kn)J¥.!::; \cj\ [I(f Kn) ]¥.! + \ck\ [I(~ Kn)] ¥.! (19) 

valid for any n, any ; and i;t'oj;ik= 1, 2, 3. Now, let us 
define 

- ::: 1 -> 
ae = f ae d11, Pe = -fPe ae d11, 

D ae D 
(20a) 

- 2- 2- 2-
,\ (a) = ,\( c1 a1 , c 2 a 2 , c 3 a 3 ) , 

(20b) 

~ ~ ~ z 
-> -- 2 -> - 2 -> - 2 -> - . 

,\ ( K • Pa) = ,\ [ c 1 K • P1 a 1 , c2 K • P 2 a 2 , c 3 K • P 3 a 3 J , 

(20c) 
(±) 2 -> = - 2 -> = - 2 -> = -

,\ K. = ,\ [ c 1 ( 1 ± K• P 1) a 1 , c2 ( 1 ± K • P 2 ) a 2 , ~ ( 1 ± K • P 3) a 3 ] , 

\ ( ± n) = \ ( 2 :; ( ± KD) 2:; ( ± KD) 2 :; (± Kn) ) 
1\K. _/\C1.:..1 ,c2.:..2 ,c3.:..3 ' 

(20d) 

- 1 ::! ::! - -
Hi j = 2 ( 1- Pi Pj ) ai a j 

(20e) 

Then, we can prove that the inequalities (19) alone imply 

2 2- 2 2- 2 2-
H = c1c2H12 = c2c3H23 = c3c 1H31, (21) 

12 

1 (±) 2 2 -> -> -> = - -
0 < - -4 A- < min I c. c. ( 1 ± K • P . ) ( 1 ± K • P J.) a 

1
. a J. I , 

- K - ( ij) 1 J 1 (22a) 

2 2 -> ..::!. -> = - - 1 ... ..::!._ 
maxl-c.c.(K·P

1
.)(K·PJ.) a

1
.a -1~-4 A(K·Pa) ::;H, 

( ij) 1 J J 
(22b) 

- 2 2- -
H < - ,\(a) <min l c. c. a. a. I , 

- - ( ij) 1 J 1 J 
(22c) 

nr -> < H: < n <+ > 
K - - K 

(22d) 

(for all ~ ), 

where n<;) are defineg by ... the relations (5e) and by the 
substitutions a ... -;; , P ... p , e = i, j . Indeed, since the 
inequalities (19) are equivalent to 

0 <-.!_,x_(±n) <min lc~c~ i<~Kn) i<~Kn) I (23) 
-4-- 1J 1 J 

K ( ij) 

such that taking n = 1 we obtain the bounds (22a). We note 
that the upper bounds (23) are obtained from the definition 
(3a) and the lower bound (23), since according to (3a), we 
can write 

A ( X , y , Z) = ( X-y - Z) 
2 - 4 y Z = (y - X- Z) 2 - 4xz = ( Z- X- y) 2 -4xy. 

Next, using the bounds (22a) for 
obtain 

-> ;;;t 

K pi , i = 1, 2 ,3, we 

~ ~ .--+ --+ 
(-) 2 - - - 2 - - -

-X- =-A. [3, c 2(1-P1 ·P2 ) a 2, c 3 (1-P 1 .P 3) a 3 ] = 0, 
p1 

(24a) 

( -) 2 = = - 2 = = --iL =-A.[c 1(1-P1 .P 2)a ,O,c 3 (1-P 2 .P3 )a 3 ]=0, (24b) 
p2 

which imply the equalities (21), and 
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( +) 2 ~ ::! - 2 2 .::t - 2 2 2 -
X - = A [ c 1 ( 1 + pi . p1 ) a 1 ' c 2 ( 1 + pi • p 2) a2 ' c 3 (1 + pi • p 3 ) a 3] = 

pi 

- -
= 4 [A ( a) + 4H 1 S 0 

(24c) 

from which we prove the bounds (22c). 
In a similar way, using the lower bound (22a) for 

-> -> 

~, = ~~·Pd~-Pi 
we get 

-> -> 
( +) -> - 2 -> -- -

A_,= 4( K • Pi ) I A( K • P a) - 4H I S 0 
K 

(24d) 

which implies the bounds (22b). 
The inequalities (22d) can be proved using the defini

tions 

- -2 -2-- -- -- -2-2 
ae=\fe\ +\gel ,aePe =l21m(~gl) ,2Re(fegp), \fe\ -\ge\1,(25) 

and F (± I() and Y < O) e - em defined by (6a,d) and by the 
substitutions: f e _. fe , , g e _. g e . Then, we obtain the 
inequalities: 

..lt!f'<.+Kt!F<~)I-IF<-K)IIF<:+K) !1 2 < \Y<.~)\ 2 < 
4 I J i J - I) (26a) 

~! 1\F~+K~I F(j--K)I+I F(7)11 F(t) 11 2
, 

which imply the bounds (22d) since 

2 2 - (0) 2 - - ( + K}2 -> 
2 

-
cicj\Yij I =H,\Fr- I =(1±K·Pe)ae (26b) 

Now, let us consider Young'sinequality(l5)for y = xp-
1 

then, we can write 

al/p bl/q < .!.. + _! 
p q 

for any a ::: 0 , b > 0 , 1 < p < + "" 

14 

(27) 

...!.. + ..l = 1 . The sign 
p q 

of equality holds in (27) if and only if a= b. Therefore, 
specializing a ,b and p, from (27), (22a,b,c,d) and (23) 
we obtain a number of interesting inequalities. For examp
le, for p = o = 2 and a= -Af~), b ""-A(_-> ; a=-4H-A(a), 

- -> :£1- K K 
b= 4H-A(K·Pa), we get 

[-A~+)] Y.z 
K 

( -) Y.z - -> 2-
[-Ai< ] _2:-A(a) -A(K·Pa) (28a) 

2 [-4H- A(-;;.)] Y.z [ 4fi -A(;.~;) J Y.z 2: -A(;;)- A(~·~;;-), (28b) 

which are the "integrated" analogs of the bounds (lla,b). 
We note that in the derivation of the inequality (28a) 

we have used the identity 

(+) (-) - ->~-
Ai( +A;z =2A(a) +2A(K·Pa). 

Now, let us consider the bounds 
-). -, 

1s n + A < ~ > - A < ; . r ~ > 1 :s -A < (; > - A < ~ . r ;; > , 

1 (+) (-) - ~::.'_-
-lA- -A- I S-A(a) -A(K·Pa), 2 K K 

(28c) 

(29a) 

(29b) 

which are natural consequence of the bounds (22a,b,c). 
Then,one can see that the bounds (28a,b) are equivalent 
to (29a,b), respectively, if and only if the equalities 
(4b,c) r or (12a,b)l have an integrated analog. Here we can 
prove only implications: X~> =A<_:-> _, 4ii = -A (;) for all 
-> • Ita 1 K K 
K stmu neous y. 

Therefore, we have proved that each bound on the 
differential cross-sections and on jxJla rization projections, 
listed in the table, has an integrat_!?d analog. 
Next, let us consider the bound 4H::;;- A(~) written in the 
equivalent form: 

2- 2- 2 - 2- 2- 2- 1 2-
[c. a. - c. a. ] + 4H < 2cka k [c. a. + c. a. - - ck ak ] (30a) 
II JJ - II JJ 2 

i f- j f- k = 1 ,2,3.This bound requires that if 
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2- 2- 2- 1 2-c a [c a + c a- -c a] ... 0. 
k k i i j j 2 k k S->+oo 

(30b) 

then 
... ... 

2- 2- - -
c.a. -c.a . ... 0, P.-P. -> 0. 

1 1 J J S->+oo 1 J S->+oo 
(30c) 

and conversely, ak cannot vanish for s-.+oo if one of the 
above relations (30c) does not hold for s ... + oo • On the 
other hand, from the bounds (28a,b), which are equivalent 
to 

... ... 

[ 
2- 2- 2 2- ... - 2- ... - 2 

c.a.-c.a.] +[c.a.(K•P.)-c.a.(K·P.)] < 
11 JJ 11 1 JJ J-

... ... 
2 - [ .... - ... - 2- 2 - 1 2- -

<2ckak 1+(K·Pk)(K·X)][c.a.+c.a. --ckak]- A 
- 1 1 J J 2 

where 

... :.x 
2- ... ~ 2- ... .:! 1 2- ... ~ 

ciai (K·Pi) + cjaj (K·Pj) - 2 ckak(K·Pk) 

2- 2- 1 2-
c i a i + cj a j - 2 c k a k 

(31a) 

(31b) 

(31c) 
- (+) ¥.! (-) ¥.! - _,:;!_ ¥.! - - ¥.! 
A=maxi[-A- ] [-,\-] , 2[4H-A(K·Pa)] [-4H-A(a)] I 

· K K 

we obtain the Pomeranchuk-type theorem (30c) assuming 
that 

2- 2- 2- 1 2 - ... ;:! ... ;:! -
2ckak(ciai + cjaj - 2 ckak )[1+(K·Pk)(K•X}l-A s:+J. (31d) 

Next, let us consider the inequality 

21 ReN ij I:=: IF<t>IIF<t~ +IF (iK)IIF<t>l, 
(32a) 

N .. = z ( 0) z ( K) 
1 J ij' ij ' 
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which follows from the definitions (6a,b,c), Then, using 
the Holder inequality we can write 

21 f R N .. d 1<1 [F(~)'I [F<:t-K)] I ,[F(.-K)..I ,[F(.-K)] 
e 1 J 11 - p 1 3 q- J +-p 1 J q J ' (32b) 

where p > 1, p '> 1 , _l_ + _l_ = 
p q 

1 , _1_,+ J, = 1 and the inte
P q 

grals I E [ F j , e = p , q, p ', q' 
(16). Therefore, from (32b), 

are defined by the relation 
(16), (18) and (9a) we obtain 

2 2- - -
4 ci c i Nii N i i + A [ N] ::; 

< c~c~![l(~Kn)JY.! [l(~Km)]Y.! +[I ~-Kn'JY.! Ci(~m)] ¥.! 12, 
-1J 1 J 1 J 

... ... 

where Nee"' a e , (K'·Pe) ii e, A(N) =A(a) , A(~ .?ii 

til f 1,1 d 1 1 1 respec ve y, or n > 2 , n > 2 an 2n + 2m- = 

1 1 -+ --= 1. 
2n' 2m' 

Finally, we remark that other interesting constraints 
can be derived if we write explicitly the bounds (23) and 

- ( + K n) ... 
(33) on L - for n :::_ 2 and K conveniently cho-
sen. These constraints can be very useful to check the 
sum rule (2) directly from the coefficients obtained by 
polynomial fits of the differential (polarized or unpolari
zed) cross-sections. 

4. Conclusions 

In this paper we have investigated the constraints on 
differential, I<± Kn) -integrated cross-sections and on 
polarization projections (in arbitrary directions) of three 
reactions related by internal symmetry. So, using the defi-
nition (6a) and the bilinear forms· M( ~ K) Z (~l z <. ~ l • 1J , 1J , 1J 

[ see (6b,c,d)] , in sect 2, we have proved that the sum 
rule (2) alone imPlies the equalities (4a,b,c,d,e) and the 
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bounds (5a,b,c,d,e) valid for any direction ~ in the sPin 
sPace at any energy and scattering angle. The exact 
saturation of these bounds is obtained in terms of [ ImNiJ. , 

] . . ( ( ± K) (0) (K) • ReNii zero traJectones Nii""Mii ,Zii,Zii]orequt-
valently in terms of [n", ( n+ }> "I phase contours. The 
zero trajectories of Im N ij are all independent of 
channel indices ( i, j) and the bilinear forms Z <J) are 
invariant under rotations of spin reference frame. A hie
rarchy of the bounds is established and the constraints on 
the experimental data and on amplitude analysis when the 
bounds are exactly saturated are given in the table. These 
results are sufficient to obtain certain tests of the sum 
rule (2) and to determine the breaking parameters when 
the experimental data for differential cross-sections and 
polarization vectors for all three reactions are available. 
Moreover, these results enable us to understand the small 
differences between elastic differential cross-sections, at 
high energies and fixed transfer momentum, in terms of 
the small charge-exchange differential cross-sections 
[ see the bounds (30a) and (3la) in terms of differential 
observables ] . 

Next, usin~ )he properties of the I P [ F I -integrals 
(16J ;see ref. 6 1 and definition (18) of the generalized 
'l ± K n) -integrated cross-sections, in sect. 3, we have 

derived the bounds (23), such that, starting with these 
results, in sect. 3, we hlve proved the equalities (21) and 
the bounds (22a,b,c,d) which are the integrated analogs 
of the equalities (4a) and the bounds (5a,b,c,d), respecti
vely. Hence, we have proved that: the sum rule (2) alone 
imPlies that each bound on the differential observables, 
listed in the table, has an integrateda'/fJog. These results 
improve the result (44a,b) from ref. 6 since the bound 
4ii < - i\( a) is equivalent to the bound (30a) and the bounds 
(28a,b) are equivalent to the bound (31a). We remark that 
the bounds (30a) and (3la), respectively, can be improved 
using the unitarily- analyticity bound (1) from ref./14/ . 

Finally, we note that all the results obtained in this 
paper can be extended to the cases when the 0 -spin 
particles are replaced by unpolarized J -spin particles and 
also to the three body final states ( 0 y, -+0 'O'y, ') reactions. 
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