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Introduction

Some years ago in Golfand-Lichtman’s paper /1/ an
algebra was invented which includes, in addition to Poin-
care algebra, four-generators forming together a four-
dimensional spinor. For these spinor generators some
anticommutation relations hold instead of ordinary commu-
tation relations.

In the same paper some interesting features were men-
tioned of the theories invariant with respect to the algeb-
ras of such a kind. Similar algebras were considered also
by Akulov, Volkov /2/. Recently these algebras have
been re-discovered first in the contextof the dual model 3/,
and finally have been formulated independently of the
latter /4/ . Theories invariant under the action of similar
algebras were called supersymmetrical, and the symmetry
itself supersymmetry. As a matter of fact, in the pa-
pers /4% amore extended algebra was considered which
contains, as a subalgebra, the Lie algebra of conformal
group.

With some exceptions /8/ this generalization remains
unnoticed by theorists. (They consider basically the mini-
mal extensions of the Poincare group algebra by spinor
generators). _

This paper is aimed to construct some representations
of extended conformal algebra, on the one hand, and to
find superconformally invariant two- and three-point func-
tions of some (scalar) superfields transforming irreducibly
with respect to this algebra, on the other hand.



1. We consider a 24-generator generalized Lie algebra

with t}lse/ following commutation and anticommutation rela-
tions :

[y _,J I)]=i(g J +g

AB’ " C AD BC BCJAD _gACJBD “8gp JAC)’

(7, agl =0,
[Q,.nl =i ag,
B

a

[Q,T,p) =iy,

QB’

(Q, Qgt = 2y*PA) I, 0 - 3B, A)g 7 (1.1)

The generators J ,g(A, B, C,D = 0,1,2,3,5,6) from
the Lie algebra of the pseudo-rotation group S0( 4, 2 which
is locally isomorphic to the conformal group (gaB is the
metric tensor: g g=0, A #B ; gaa=(-1, L1L1; 1,-~1).The
generators of supertransformations Q. form an eight-di-
mensional spinor. » is the generator of yj;-transforma-
tions. o

The 8 x 8 matrices yyggenerate a representation of
S0(4, 2. We use the following direct product realization of
Yap-Byand A:

yyv=T[y ’yu}"l:U;w L }'#5=——;—}’#02 'yy(i:_;yy'al’
}'56:%1'03’

Bi=v5-93;

A = o.a

Here y, are the Dirac matrices in the Majorana represen-

tation, 'y, =ygy,7,v3 ; o, are the usual Pauli matrices
and | , 1 are four- and two-dimensional unit matrices.
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In what follows, the transformations generated by the
algebra (1.1) will be called conformal supersymmetry,
and the algebra itself - superconformal algebra.

For convenience we rewrite the algebra(l,1)ina some-
what different form. For this purpose we introduce, in-
stead of @ @ the following set of generators:

Q" =(1 +iB,)Q, @ =(1-i8,) Q. (1.2)

They satisfy the following commutation and anticommu-
tation relations:

Q5,71 = + Q% [Q5,Jap) =i(ran)h QB
oy QR = 1.3
1a,QH - 105475 = 0, (1.3)

1Q),Q5) = 4(y*PA(1+16,)) gg T up +BI(A(I+IB 7)) ggm-

In order to write the algebra (1.3) in the Minkowsky
space we write @ as:

Q =( _ST) , . (1.4)

where S, T are four-dimensional spinors. Hence, for
Q" and Q~ we obtain:

+ —-—

e -5, e -G, (1.5)
where

St:(ltiy5)S, Tt:(ltiys)T. (1.6)

The ordinary conformal group generators may_be
expressed in terms of the generators J#V in the following
way:

M#V=J#V, D:Jb,s,

(1.7)



We do not write out here the commutation relations (1.1)
(1.3) in terms of S*, T * and conformal group genera-
Fors. They may be obtained from (1.1) and (1.3) b taking
into account the definitions (1.4), (1.5) and (1.7)/5),

2. To construct a realization of the algebra (1.1) we
make use of the induced representation method. Let us
choose as a ’’little”’ or stability subalgebra C the algebra
generated by M ,, (Lorentz subgroup generators), K
(special conformal transformations), S~ and T". ok

+The commutation relations (1.3) show, that S~ and
T ‘form a Grassman algebra which is an ideal of the
’.’httlt'a” subalgebra C . This makes it possible to consider
;n_duililg 0.representations of stability subalgebra with

Let the vector <0 | belong to the space of such a repre-
sentation, i.e.,

<0|8™ = <0|T* =0

(2.1)
and besides
<0|M =<0
| v IE#V, 2.2)
<P|K = '
K, =<0k, .
Denote as W(x#,p,A,O’L,G_) the operator * :
ipD+il 0 st ri0 T H
¥_e ﬂel +1i Telxul’ . (2.3)

*Our notations are as follows. The spi j

( I { . pinor conjugated to
0 is %enoted as 0 and is determined by the ex]plgession:
()as Oy’ (no complex conjugation!); dg stands for

< d
a6

;6 =0 o:-__- - d . _ 13
6 oY 9,6#— ax#’xa =x,90k.

We construct here the representation of the algebra (1.3)
realized in the space of the functions f defined as
follows:

oot oy L + -
(X, 030,04, 0 g) =<0 ¥W(x 00 A, 0,,0 g) . (2:4)

Four-dimensional spinors 6*and 6 form the Grassman
algebra. They anticommute with the operators Ss* and
T "and commute with all the other quantities in eq. (2.3).
9t and 6~ could be obtained from one four-dimensional
Majorana spinor by projecting with (1+iy 5) and (1- iy5 ,
respectively.

Hence, the following equalities

i+

(15iy )0 =20"; 6°(1+iyy) =20°,
(17iy,) 0% =6 (Tiyy) =0. (2.5)

hold.

Given an element A of the algebra (1.3), wedenote the
representation of this element in the space of the functions
(2.4) as A . It operates as follows:

Af - f'(xll,p,/\,0+ LOT) =<0 | WA, (2.6)
It is readily proved that:
—id f =<0]|¥YP ,
® [

e +
—i0} £ =<0 |¥S?.

(2.7)

The operators f)(; and 9, are defined by the anticommu-
tation relations:

P 1 i 10”97 11 5
16,0551 = = 5 (1+iys) g 10,9, 1=—5-(1-1r5),g (2.8)

(all other anticommutators vanish). This operators may be
considered as left derivatives in the Grassman algebras
generated by 0 and 67, respectively. They form the
Grassman algebras in a sense dual to that of #* and 67 .
From the definition (2.6) and eq. (2.7) it may be deduced
that
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A

P, =-id,; st = —iag. : (2.8")

Other generators entering into eq. (2.3) could be obtained

in a quite analogous manner by differentiating f with
respectto 67, p and A :

.- o= +

T :-180 —l(x"y)ae , (2.9)

A _ _i 9 i o+ o+ ig—5-—

D = lap—lxa—-2—0 dy +—2'0 99 (2.10)

e _ii+5+ag+ 6795 . (2.11)
ET 0 '

What one §t_ill needs is the realization of the geherators
of the stability subalgebra. Equation (2.6) suggests that for
the purpose we must commute the operator A with ¥ .

Then we use egs. (2.1) and (2.3) to obtain the following
results: :

_ : _ T+ + - -
v 2#_V+ .(x#av xua#)+10 awae +i6 awae;
(2.12)

- of I o+ + o= -
K# e k#+ 2ix" [ 12#V+0 ayva0+0 o 80+

J_ . 15 PR U
+ g#,,(gz +?0+a0+_.%0 9g)1+i8y, dg+i(2x,x, —gwxz)ay;

(2.13)
s~ =—SiE#V(a”VO-)+8(yV0+)aV—80'a—ap— +
+ 12109 4 8(8797) 95

> e (2.14)

A

T = (x-3)8™+ ep8ikVyV0_—8i2#Va#V0+ +

gty o+ + 0 . d ~y = -
+8(0707)05+ 807+ 12i6 "> - 8(67y,07) ¥4 . (2.15)
We consider only inducing representations of the stability
subalgebra C with k, 6 =0 (it is the case that corresponds
to physically significant representations of conformal
group). In this case, as is easily seen, the operators

9 and -i—commute with all the generators of the

dp ar
superconformal algebra. Therefore, we may introduce
the functions:

R dp-izA + -

f(d,z)(x#,() ,07,p,A) =e ¢(d’z)(x#,0 , 07),(2.16)
where d and z are arbgrary complex numbers.

In the spaces R{ g formed by the functions
¢ (a.;(%,,07,607) are induced representations ofythe
algei)ra (12.8)—(2.15). The representationactingin R {7q, z)
is characterized by two complex ’’quantum numbers’’ d,z
and by inducing representation X of the stability sub-
algebra (the Lie algebra of the Lorentz group in the
case). }

Consider the scalar representation, i.e.,

p3 w = 0. (2.17)
It acts in the space R?d 2y It may be observed that the
condition ’
2
z =—d 2.18
5 (2.18)

implies the reducibility of de,z) which contains in this
case an invariant subspace Ry formed by the functions:
¢(d,% )

independent of ¢ .
In the space R?l an irreducible representation of the

superconformal algebra (2.8)-(2.15) is realized. The gene-
rator of this representation are:

(x,,6°.0) = ®(x,,00) (2.19)



M —i(xd -xd +66 a"); P =—id ;
w pv Tvp pv 6 " p

A

. v v 2 ‘ 17+ v+ +,
Ky =1l2x,x" - g\ x") 9, +2x,(d + 3-6797)+ 2" 6 9,96

D=-i(d+xa+-2}_5+ag; ;r=—?2d+5+60+;

A+ . A- A- .

ST =-idg; S =89 y o', T =—|x#y#6(;;
T+-8[240%+x,9,yy"0 *+ (8%0%)a§). (2.20)

This series of scalar representations of the superconfor-
mal /algebra (l1abelled by scale dimension d ) was obtained
in/8 "within the framework of an algebra larger than
(1.1).

Expand the functions ¢ 4(x,,0") in powers of 6 " and

observe that the series mus# terminate in the second
order:

®,(x,0%) =A(x) +67¥(x) + F(x) 0%, (2.21)

There exists only one linearly independent term quadratic
in 6 because of the identity:

6+6* = - (00 (1 +iyy . (2.22)
Therefore the superfield (2.21) consists of two scalar

fields A(x) and F(x) with scale dimensions d and d+1 R
respectively, and a spinor field ¥(x) with a dimension

d o+ -% . The supermultiplet (2,21) corresponds to Wess-
Zumino’s scalar supermultiplet /4/.

3. Algebra (2.20) generates finite transformations of
superfields. In order to write down these transformations
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it is necessary to find the transformations of superfield
arguments x, and 6%.We have

[l
, iaA —iaA
X' =e Xy e ,
, + i 3.1)
0; _ elaA S icA ,

where A is some of the generators of (2.20). In fact it
is necessary to evaluate x° by (3.1) only when A is some
of supersymmetry generators (S",S",TY, T”) since the
transformations of x and 6% under the other generators
are well known. For example, the special conformal
transformations of x and 6% are

x;l=(1_2cx+c2x2)'l(x -cxz) ,
(3.2)
6t~ (1 +(X-y)(c.-'y))aB9+ﬁ.

The dilatation and y,-transformation of x and 6%

D x#=/\x# 67 = yre* (3.3)
- x;l=x# 0+/=e18 0+ (3.4)

are obvious too.
It is not difficult to obtain global transformations in
all other cases by applying the formula

e *Be AL s LACAL[ABL.T. (3.5)

n.
It should be noted that the series (3.5) has terms only
with n < 2 because of nilpotence propertiesof S*, S, TH,

T “parameters. In such a way we find the following global
transformations:

a) Tz transformation (with a (finite) parameter 52 )
- . ~ il T+ +
(gzj)#Exll:[1_64(f+f+)(9+9*)]x#+3.f (x-y) ¥ 6
(g=16%) =06% =0 +8i(6%0%)* (3.6)
T .



b) T~ transformation (a parameter ¢ ~)

-1 ,
X=X 3
T_x)# [ [

n

(g

(ghoh) =6t =0" —(x-)e” (3.7
T

¢) S"transformation (a parameter 7+)

—1 ’
= X =X
o D = 0 R (3.8)
(g—:6+) gttt s ”
S

d) s~ transformation (a parameter 7 )

(672x), =x) +8i7 -0

p M
(g2oh =6"=0".

+

(3.9)

It

Now we are in a position to determine the global transfor-
mations of the superfield. The result is:

iett? ~tetT? ~ 1
e ¢(x,0+)e =(1+1(iie+0+)d ‘¢(g1+x,g

-1+
T+l!9 )
eiCK(IJ(x,6+) e—icl(=

X—ch

= (1-2(ex) +c*x)? @ ( =, (1+(xy) (7)) 07,

1-2¢cx+c¢cx
AP a(x,0H AT P XY (ax, vaoh

~-2iq
idn idd

e ¢(x,6+)e—i5"=e 3 ‘(I:'(x,eiae) . (3.10)

iAA +, —iAA -1 1+
For all other generators e ¥(x,0 )e “¥(gaxgal)-
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In the derivation of (3.10)' we have used the identity
6idlet 0 v acTe Ty (G -
e e 7 vAlee )]=(1+16ie+9+)d. (3.11)

The reader can check (3.11) expanding both the sides of
eq. (3.11) in powers of ¢+ and ¢+ and using the nilpo-
tence of both of them. The remaining eqs. (3.10) can
be derived straightforward.

We end this section considering the algebra conjugated
to the algebra (2.20). It may be obtained by considering
the stability subalgebra C’ with the generators S* and
T instead of S~ and T* . In this case the corresponding
scalar representation characterized by numbers d and
z turns to have an invariant subspace R‘L* when

z =-24. 3.12

3 (3.12)

One may assume that the space R?,*, where the represen-
tation conjugated to the representation (2.20) acts, consists
of the functions complex conjugated to the functions (2.21)

Ox(x,6™) = A¥(x) + 0 W (x) + F*(x) 676 (3.13)

(star denotes the complex conjugation). All the generators
of the conjugated algebra (excepting # ) may be obtained
from the algebra (2.20) by means of the substitutions:
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A A A A

7] -»9—; a;-»a'o—, Si-»SI;Ti_,TI (314)

and » is expressed by

A _ 2 _—
#=2d-97a (3.15)

Now we calculate the two- and three-point functions
of the scalar superfields (2,21) and (3.17), provided that
the physical vacuum is invariant with respectto the super-
conformal algebra (1.3).

Consider the following two-point functions:

++ + .+ + +

I3



- + - + —
A;ldz(xl,)(2;01,62) = <¢dl(x1,01)¢a‘2(x2,62)>0

A;’d ( xl,xz;el‘ ,0‘2) = <<1>*;,1(x1,6l )<I)’52(x2,62) >0
1 2

(4.1)

Denote A:,. any arbitrary generator of the algebra (2.20)

acting in' the space of the functions with the arguments

x. and 0+i (i=1,2) and the corresponding generator of

1 . s - ) . . .
the conjugated algebra (3.16) as A‘di* . The 1r}var;ance -

conditions for the functions (4.1) may be written then uni-

quely as:

1 2 ++ . + + _

1 2 t- 0 07y =
(Adl+Ad*2) Adldz(xl,xz,el,oz) =0

d

(Al* + AZ) AT
d, d, dd,

. - - :0 4.2
(%43 07:05) = (4.2)

(scale dimensions d; and d, are assumed t'o be real).
Let us show first that the equations (4.2) give only the
following solutions for A** and A7

4 ~+ >+ + 4+
\;:diﬁ (xy=%p) (07 -0,) (07 -63)(dy+dp=3) (4.3)
and
At AT, =0,
dle dle

when d; + d, # 3. ‘
Consider the first of the equatlions (4;2).2Tr.ansl_at10ngl
(Al =_ial,,A§2=_iaZ) and S+(Ad1=-iael,A =—1862)1nvar1-

d 4

1
ances imply that

++ ++ ot +
A =Ay 4 (xl-x2,61—62),

d,d,
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$”-invariance (A(l]l=8(y-(91)0i", A§2=8(y.az_)9;)gives then the

following expression for the considered two-point function:
++ + +. + +
Adld2=f(xl—x2)8(61—62)+C(61-62) 4.4)
( 6 -function 8(6?—6;) is defined in/s/, In our case:
+ + o+ o+ + +
8(01—62) :(f)l - 62 )(6'1—02 )).
T -invariance gives more restrictions:
C(O;L—G;) =oonst =M,
f(xy3- x5) =N84(x1 -X3) .

At last T* -invariance results in (4.3). The latter of the
equations (4.2) has an analogous solution.

Turn now to the second of the equations (4.2). Substi-
tuting here A'- Sa, and Sg’  we obtain for the

two-point function A%,  the expression
192

+=- ot CoB(x)— v +
Adldz(x,()l()z =D(x)—8l—aXV 62y 61 +

+ 160D(x) (0707) (6,07, (4.5)

where x=x;-x, and D(x) is an arbitrary function
of x . This {unction_is fixed then up to a multiplicative
constant by T  and T invariance, and turns outtobe zero
if d,#d, and c(x*y9if d - d,-d.Therefore

+ - + -
Adldz(x;ﬁl,flz) =0 d, # d,

- - - —~d-1 7 - -
ALS (x:0,%,65) = CI(x2) ™ v 16id(xy 7 05 (xey) 0] +

+ 64d(d-1) (x2)"9=1 (6}67)(9363) - 4.6)

IS



From the commutation relations (1.3) it may be seen that
the invariance of the two-point function with respect to
the spinorial generators implies automatically the inva-
riance with respect to the whole superconformal algebra.
So there is no need to verify the invariance of the
two-point functions (4.3) and (4.6) with respectto rotations,
dilatation, special conformal transformations and =7 .
Substituting into the expression (4.1) for Adajd, the
decompositions of superfields g4, and ¢f, in powers
of 67 and ¢ ~ givenbyeq. (2.21)and (3.17)and then compar-
ing the expression obtained with the equality (4.6) we may
identify the first term in the r.h.s. of eq. (4.6) with the
two-point function of a scalar field A(xIn doing so, the
second term gives the two-point function of a spinor
field ¥(x) and the third term that of a scalar field F(x) .
Note that if the field A(x) has canonical dimension
(d=1 the last term in the r.h.s. of eq. (4.6) vanishes.

The three-point functions may be obtained in an ana-
logous manner. As in the case of the two-point functions
the coefficients in the decomposition of three-point func-
tions of the superfields in powers of 0 are conformally
invariant three-point functions of ordinary fields A(x) ,
¥(x) and F(x) . The distinction of our results from that
of paper 7/ is the following: the three-point functions
prove to be different from zero only when some restric-
tions of the dimensions d;,d,, dg hold. Denote

0 = + y @ -
dydy dg - <<Dd1(x1,01) <I>d2(x2, o) ¥, (x4,03) > » 4D

rt _<®, (x,00) D, (x,,00) Q4 (x3,05) >,. (4.8)
dd,dg d111 d, "2 2d333 0

It turns out that

r? 40
d,d,d3
only in the case
d,+d,=dg (4.9)
and T} #0
d,dyd4

implies
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d1+d2+d3=3. (4.10)
To understand how the condition (4.9) @rises let us write

out the most general expressionfor I" i
. d
with the Poincare and §* ifpfy  compatible

invariance:
0 JA ~ -

I“ - A—8i———6+# - . aA + -
d,d,d vy 0, - 8i 0yHto
19,43 o1 73 Y +

ox 13 6x’2‘3 2 3

dtat o~ — = =
+160,3A(076,) (630 ;) + 160,,A(036,) (0,07 +

JA ~ ~
+ 16 ————— (07970, (656 3) 4.1
) .11

Ixfadxfg @10
where A is an arbitrary function of x_=x _-x and
Xp3=Xy~ Xg. To satisfy the T* Invariance it is
necessary (and sufficient) that all the coefficients in the
decomposition of Fd1d2d3 in powers of 6 are confor-
mally covariant functions. It is easily seen, however
that A(x13,x23) and,e.g.,o0;3A may simultaneously t;e
conform?.lly invariant only in the case (4.9). The explicit
expressions of the functions (4.7) and (4.8) are

0

ot ot o— 2 ~d 2 —d
dldzd3=d1+d2(xl3’x23’61’62’63)=C(x T(x p3) "2x

r
13)

L =20+ . - . =27
x [1 + 84 ix720 7 (x o) 057+ 16d,ix520% (x 00 7) 05 -

-2 -~ -~ — ~ -,
- 64d,(dy -1) x15(67607) (6503) - 64d,(dy - 1) x'zz,,(oge;) (6303) -
. -2 =2, e =
— 128id1dy(x13%z3 ) (63 63) (0 3(X 13:%) (x23-7)03) 1.

rt X ot gt gty _

dldzds( 13° X3 %1230, 5.0 3) =
d. -2 d_-2 d_-2

e 2 U2 2

= C(x%,) (x%3) (x5,) 3 &



x [0 7(x 132 ¥) (X532 7) 0, - —;—- x§30~’;6 J+eiclic permutations(l,2,3)
(dl+d2 +d3 = 3)

Degenerate solutions:

“+_Nsd g+ +_ A ++ _ _
I'"=N3 (x12)912612~Ad1d2("12’912 ), dy+dy=3,d,=0,
[‘+:N54("23) 52+392+3’ dy +dg =3, d;=0,

. 4 =

['t=N& (x13)01’3L 013 R d1+d3= 3, d2=0: (4.12)

At last, we draw attention to the following trivial fact,
resulting from the condition (4.9): conformally-invariant
three-point function (4.7) of three superfields with canoni-
cal dimensions vanishes. In this case only the function
(4.8) may be different from zero.

The authors are very grateful to V.I.Ogievetsky and
E.Sokachev for discussion and useful remarks.
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