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Introduction 

Some years ago in Golfand-Lichtman's paper It/ an 
algebra was invented which includes, in addition to Poin­
care algebra, four-generators forming together a four­
dimensional spinor. For these spinor generators some 
anticommutation relations hold instead of ordinary commu­
tation relations. 

In the same paper some interesting features were men­
tioned of the theories invariant with respect to the algeb­
ras of such a kind. Similar algebras were considered also 
by Akulov, Volkovl2/. Recently these algebras have 
been re-discovered first in the context ofthe dual model/3 ~ 
and finally have been formulated independently of the 
latter /4/. Theories invariant under the action of similar 
algebras were called supersymmetrical, and the symmetry 
itself supersymmetry. As a matter of fact, in the pa­
pers / 4 • 51 a more extended algebra was considered which 
contains, as a subalgebra, the Lie algebra of conformal 
group. 

With some exceptions /G/ this generalization remains 
unnoticed by theorists. (They consider basically the mini­
mal extensions of the Poincare group algebra by spinor 
generators). 

This paper is aimed to construct some representations 
of extended conformal algebra, on the one hand, and to 
find superconformally invariant two- and three-point func­
tions of some (scalar) superfields transforming irreducibly 
with respect to this algebra, on the other hand. 
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1. We consider a 24-generator generalized Lie algebra 
~ith !f

5
7 following commutation and anticommutation rela-

tions : 

[ J J l - i ( g J + g J -g J - g J ) AB' CD - AD BC BC AD AC BD BD AC ' 

[ 11 , JAB ] = 0 , 

[Qa'"] =i(/37)~ Q/3, 

[Qa,JAB] =i(yAB)~ Q/3, 

I Q a' Q /31 = 2( YAB A) a(3J AB - 3( f3 7 A)a/3 77 • (1.1) 

The generators JAB (A, B, C , D = 0,1,2,3,5,6) from 
the Lie algebra of the pseudo-rotation group EO( 4, 2) which 
is locally isomorphic to the conformal group ( gAB is the 
metric tensor: gAB= 0, A f. B ; gAA= (-1, 1, 1, 1; 1,-1)).The 
generators of supertransformations Qa form an eight-di­
mensional spinor. " is the generator of y5 -transforma­
tions. 

The 8 x 8 matrices YA 8 generate a representation of 
00(4, 2). We use the following direct product realization of 
y AB'/3 7 and A: 

y =l..[y ,y ].1 =a .1; y =-l..y a ;y =..ly .a ; 
f.lV 4 f.1 V f.1V f.1 5 2 Jl 2 f.16 2 f.1 1 

y 56= ~ I· a 3 ' 

J37=y5.a3, 

0 
A =y .a1. 

He~e y 
11 

are the Dirac matrices in the Majorana .repre~en­
tahon, y5 = y

0 
y 

1 
y 

2 
y 3 ; a . are the usual Paull matnces 

and I , 1 are four- and tiro-dimensional unit matrices. 
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In what follows, the transformations generated by the 
algebra (1.1) will be called conformal supersymmetry, 
and the algebra itself - superconformal algebra. 

For convenience we rewrite the algebra (1, 1) in a some­
what different form. For this purpose we introduce, in­
stead of Q , the following set of generators: 

a 

Q+=(l + i{:37)Q, Q-=(1-ij37)Q. (1.2) 

They satisfy the following commutation and anticommu­
tation relations: 

± ± ± . J3 ± 
[ Q a , "l = ± Q a; [ Q a ' JAB l =I( Y AB) a Q J3' 

+ + - -
!QaQ/31 = IQaQ 13l = 0, 

(1.3) 

I Q: , Q ~ l = 4 ( y A 8 A ( 1 + i J3 7 )) a/3 J A 8 + 6 i ( .A ( 1+ i J3 7 ) ) a/3 1T • 

In order to write the algebra (1.3) in the Minkowsky 
space we write Q as: 

s 
Q = ( - T) ' 

(1.4) 

where S , T are four-dimensional spinors. Hence, for 
Q+and Q-we obtain: 

s+ s-
Q =(_T_)' Q = (_T+), (1.5) 

where 

+ + 
s-=(l±iy

5
)S, T-=(l±iy 5)T (1.6) 

The ordinary conformal group generators may be 
expressed in terms of the generators J in the following 
way: f.1V 

M =J , D=J , 
f.1V f.1V 65 (1.7) 

p =J + J K =J -J 
f.1 6f.1 5f.1 ' f.1 6f.1 5f.1 
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We do not write out here the commutation relations (1.1), 
(1.3) in terms of S ± , T ± and conformal group genera­
tors. They may be obtained from (1.1) and (1.3) by taking 
into account the definitions (1.4), (1. 5) and (1. 7) / 5/. 

2. To construct a realization of the algebra (1.1) we 
make use of the induced representation method. Let us 
choose as a "little" or stability subalgebra C the algebra 
generated by M rv (Lorentz subgroup generators), K f.L 
(special conforma transformations), S- and T +. 

The commutation relations (1.3) show, that S and 
T + form a Grassman algebra which is an ideal of the 
''little'' subalgebra C . This makes it possible to consider 
inducing representations of stability subalgebra with 
s-'"'r+,u 

Let the vector < 0 I belong to the space of such a repre­
sentation, i.e., 

<0 Is- = <0 IT + = 0 (2.1) 

and besides 

<0 I M = <0 I! ' p.v p.v 
(2.2) 

<PI K = <0 I k . 
11 f.L 

+ -Denote as lfl ( x11 , p, A, 0 , () ) the operator * 

-+ + -- - f.L 
m ipD + iATT j() S + j{} T ix ,P 
T=e e e r (2.3) 

*Our notations a.re as follows. The spinor conjugated to 
f!... is denoted as () and is determined by the expression: 
e = eyo (no complex conjugation!); a e stands for 
a - o a a --; a() = a ()Y = - -;a = --; xa = X 

11
a 11. 

ae ao P. axfl 
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We construct here the representation of the algebra (1.3) 
realized in the space of the functions f defined as 
follows: 

+ - + -
f( x 

11 
, p·;)., () a, () f3} = < 0 I 'I' ( x 

11 
, p , A , ()a , () f3) . (2. 4) 

Four-dimensional spinors e+ and ()-form the Grassman 
algebra. They anticommute with the operators s+ and 
T- and commute with all the other quantities in eq. (2.3). 
e+ and e- could be obtained from one four-dimensional 
Majorana spinor by projecting with ( 1 + i y 5 ) and ( 1 - i y5), 

respectively. 
Hence, the following equalities 

(1 ±iy
5
)e± =2()±; e±(l ± iy

5
) =2()-± 

(1+ iy
5
)o± =e±( + ;y

5
) =o. 

(2.5) 

hold. 
Given an element A of the algebra (1.3), we denote the 

representiltion of this element in the space of the functions 
(2.4) as A . It operates as follows: 

" Af- f'(x
1
L,p,A,0+ ,0-) = <0 J'IIA. (2.6) 

It is readily proved that: 

-iJ f =<OIIfiP , 
11 /1 

-i J~/ = <0 llfl s:. 
(2.7) 

The operau;rs a~ and a e are defined by the anticommu­
tation relations: 

1e:.a;r11 =- ~ ( t+iy5 >ar1 ; w;.a 011 1=-~ <t-iy5>af3<2.s) 

(all other anticommutators vanish). This operators may be 
considered as left derivatives in the Grassman algebras 
generated by 0 + and 0-, respectively. They form the 
Grassman algebras in a sense dual to that of o+ and (}- . 
From the definition (2.6) and eq. (2. 7) it may be deduced 
that 
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.. 
"'+ . + s = -1 a0 • (2.8') Pp.=-iaP.; 

Other generators entering into eq. (2.3) could be obtained 
in a quite analogous manner by differentiating f with 
respect to 0- , p and A 

.. - + 
T-=-ia 0 -i(x·y)a 0 , (2.9) 

"' 
D a i-++ i---

-i--ixa--o al}+-0 all ap 2 v 2 v ' 
(2.10) 

.. 
11 = a -+ + - --i-+0 a0 +o a 0 • a .A 

(2.11) 

What one still needs is the realization of the generators 
of the stability subalgebra. Equation (2.6) suggests thatfor 
the purpose we must commute the operator A with 'I' . 
Then we use eqs. (2.1) and (2.3) to obtain the following 
results: 
A 

M p.v 2 + i (X a - X a ) + i 0 +a a
0
+ + i 0- a a()- ; 

p.v p. v v. p. p.v p.v 

(2.12) 
A - -
Kp. ePkp. + 2ixv[-i2p.v+O+ap.va; + o-ap.v a0 + 

( a 1 -o+a+ 1 ~-a-)l ·e-+ a- ·c2 2 ) v + g p.v a p + 2 () - 2 u () +I Y p. 0 +I "p. XV - g f'VX a ; 

(2.13) 

8- =-8i2 (ap.v0-)+8(yvo+)a -so-L+ 
P. v v a P 

+ 12i e-a~ + S( o -e-) a 0; (2.14) 

"+ ( .. - p • j.l - 8"~ p.v 0 + T = X•y)S +e81kvy 0 -l~p.va + 

8 

( -+ +) + + a . + a ( -+ ·ll-) P.a-+ 8 o o a 0 + 80 ap + 121 o ai- 8 o y P.v y 0 • (2.15) 

We consider only inducing representations of the stability 
subalgebra C with k P. = 0 (it is the case that corresponds 
to physically significant representations of conformal 
group). In this case, as is easily seen, the operators 

_i__ and _a_ commute with all the generators of the 
ap a>.. 

superconformal algebra. Therefore, we may introduce 
the functions: 

+ _ dp-izA + _ 
f (x ,0 ,() ,p,>..) =e ¢ (x ,0, 0 ) ,(2.16) 
( d,z) p. ( d,z) p. 

where d and z are arb~rary complex numbers. 
In the spaces R < d z> formed by the functions 

¢ < d z) ( x , 0 +, 0-) are induced representations of the 
algebra (2.8)-(2.15). The representation acting in R Td, z) 

is characterized by two complex "quantum numbers" d, z 
and by inducing representation 2 of the stability sub­
algebra (the Lie algebra of the Lorentz group in the 
case). 

Consider the scalar representation, i.e., 

2 = 0. p.v 

It acts in the space 
condition 

(2.17) 

R ~ d,zr It may be observed that the 

2 z = -d (2.18) 
3 

implies the reducibility of R z d, z) which contains in this 
case an invariant subspace Rd formed by the functions: 

+ + 
¢ 3 ( Xp. , () ,0) =ell d( Xp., () ) (2.19) 

(d, 2 d) 

independent of o-. 
In the space R~ an irreducible representation of the 

superconformal algebra (2.8)-(2.15) is realized. The gene­
rator of this representation are: 
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" " 
M =i(xa -xa +lj+a a()+); P =-ia 

IW 11 v v 11 p.v 11 11 

K11 =i[(2x11xv- g~x 2 )av+2x11 (d + ~ 'O+aJ1+2xv'O+a
11
va0; 

" . 1 -+ + " 2 -+ + 
D =-l(d+xa+ 2 e ae; "=- 3 d +e ae; 

" " " S + ·a+ s- sa v + T- · lla + = -1 (); = V y () ; =- IX/1 y (); 

T+=8[2de++x
11

avyllyve ++ (e+e+)aoJ. (2.20) 

This series of scalar representations of the superconfor­
mal flgebra (labelled by scale dimension d ) was obtained 
in /G ·within the framework of an algebra larger than 
(1.1). 

Expand the functions <ll d ( X 'e +) in powers of e +and 
observe that the series musl terminate in the second 
order: 

+ ~ ~ + <lld(x,O) =A(x) +0 'P(x) +F(x)O 0. (2.21) 

There exists only one linearly independent term quadratic 
in () because of the identity: 

o +e + = _ ..1 < e+ o +)( 1 + i y
5

) . 
4 

(2.22) 

Therefore the superfield (2.21) consists of two scalar 
fields A(x) and F( x) with scale dimensions d and d + 1 , 
respectively, and a spinor field 'I'( x) with a dimension 

. d + ~ . The supermultiplet (2,21) corresponds to Wess­

Zumino's scalar supermultiplet 141. 

3. Algebra (2.20) generates finite transformations of 
superfields. In order to write down these transformations 
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it is necessary to find the transformations of superfield 
arguments X 11 and e+. We have 

, faA -iaA 
x = e x 11 e 

()+, faA ()+ -iaA 
a =e ae ' 

(3.1) 

where A is some of the generators of (2.20). In fact it 
is necessary to evaluate x' by (3.1) only whe~ A is some 
of supersymmetry generators ( S ,s-, T+, T ) since the 
transformations of x and e+ under the other generators 
are well known. For example, the special conformal 
transformations of x and e+ are 

x' = ( 1 - 2cx + c2 x 2 ) -
1 

( x - ex 2 ) 
11 

o+ '= ( 1 + ( x. y) ( c • ·r) ) f3 o+f3. a a 

(3.2) 

The dilatation and y 5 -transformation of x and 0 + : 

D: x'=Ax 
fl fl 

11:X'=X 
11 fl 

are obvious too. 

0+'=-./AO+ 

(} + , = ei 8 () + 

(3.3) 

(3.4) 

It is not difficult to obtain global transformations in 
all other cases by applying the formula 

e ABe- A= l -1- [ A [ A ... [ A, B] ... ]] . . 
n! 

(3.5) 

It should be noted that the series (3.5) has terms only 
with n ~ 2 becauseofnilpotencepropertiesof s+, s-, T+, 
T -parameters. In such a way we find the following global 
transformations: 

a) T+ transformation (with a (finite) parameter c+ ) 
a a 

-1 -+ + -+ +, -+ + 
(gT+x) 11 =x~=[l-64(c c )(0 (} J)x 11 +8ic (x·y)y 11 0 

( g-!e~ = o+- = o + Si( o+o+) c+ 
T 

(3.6) 
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b) T- transformation (a parameter c-) 

-1 
( g x) = x' = x ; 

T- IL IL IL 

( -! () +) () + , () + ( ) -g =' = - X• y f 
T-

(3.7) 

c) s+- transformation (a parameter r+) 

(g;:x)p.­

( g-: e+> -
s 

x' = x 
IL IL (3.8) 

()+'=(}++T+ 

d) 8- transformatiOn (a parameter T- ) 

-1 - + 
( g 

8 
_ x) 

11 
= x ~ + Sir - Yp. () 

(g- 1 8l = ()+'=()+. 
s-

(3.9) 

Now we are in a position to determine the global transfor­
mations of the superfield. The result is: 

i; + T + -I ; +T + 
e <ll(x,e+)e =(1+16i;+e+)d <t(g:;!x,g;)+>, 

eicK¢ ( x, ()+) e-icK= 

2 
22d X-XC 

=(1-2(cx) +C x) $( 
2 

A ,(h(xy)(cy))e+), 
1- 2cx + c x 

,\ i D <t ( X' () +) ,\ - i D = ,\ + d <f (,\X' yA () +) ' 

i 8 11 + . 8 - ..tid8 . 8 
e ¢(x,8 ) e- 1 11 = e 3 <J1(x,l 8) (3.10) 

i,\A + - i.\A -1 -1 + 
For all other generators e 'P( x, 8 ) e = 'P(g A x,g A 8 ) . 
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In the derivation of (3.10) we have used the identity 
r-+ + -+ + -+ + 

16idL£8+4i(ff )((}0)] .-++d (311) 
e = ( 1 + 16t c 0 ) . . 

The reader can check (3.11) expanding both the sides of 
eq. (3.11) in powers of c+ and 0 + and using the nilpo­
tence of both of them. The remaining eqs. (3.10) can 
be derived straightforward. 

We end this section considering the algebra conjugated 
to the algebra (2.20). It may be obtained by considering 
the stability subalgebra C' with the generators s+ and 
T- instead of s- and T+ . In this case the corresponding 
scalar representation characterized by numbers d and 
z turns to have an invariant subspace R~* when 

z = -!.d. 
3 

(3.12) 

0 One may assume that the space R d *, where the represen-
tation conjugated to the representation (2.20) acts, consists 
of the functions complex conjugated to the functions (2.21) 

+ - -
<ll.j(x,O ) =A*(x) + 0-'P*(x) + F*(x)e-e (3.13) 

(star denotes the complex conjugation). All the generators 
of the conjugated algebra (excepting 1i ) may be obtained 
from the algebra (2.20) by means of the substitutions: 

A A_ A A -
+- +- ± + ± + e -.e; a8 -.a 8 ; s -.s; T -.T (3.14) 

and ; is expressed by 

" 2 -
'It =ad- e-ai. (3.15) 

Now we calculate the two- and three-point functions 
of the scalar superfields (2,21) and (3.17), provided that 
the physical vacuum is invariant with respect to the super­
conformal algebra (1.3). 

Consider the following two-point functions: 

++ + + + + 
Lld d (x1,xz: 81,0z) = <<lld (x1,8d~d (x2,02) >o 

1 2 1 2 
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+- + -
[\'\ d/ X1 'X 2 ; (;11 '(;I 2 ) 

+ -
- <<l>d (x1,01) <I>cf (x2,02) > 0 1 2 

t\ ~ -d ( X 
1 

, X 2 ; 0; , 0 -2) =e < <J>d ( X 1 , 0; ) <J>d ( X 2 , 0; ) > O 
1 2 1 2 

(4.1) 

i Denote Ad. any arbitrary generator of the algebra (2.20) 
acting in 1 the space of the functions with the arguments 
x. and 0~ ( i = 1, 2) and the corresponding generator of 

1 - 1 . - . 

the conjugated algebra (3.16) as A1d:". The invariance 
conditions for the functions (4.1) mlty be written.then uni-
quely as: 

1 2 ++ + + 
(Ad +Ad )Add (x1,x2; 01,02) =0 

1 2 1 2 

1 2 +- + -
( Ad + !\/ ) /\ d d ( X 1 ' X 2; 01 ' 0 2 ) = 0 

1 2 1 2 

(Al* +A2*) L\-- (x ,x ; 0-,0-) = 0 
d 1 d 2 d1 d 2 1 2 1 2 

(4.2) 

(scale dimensions d 1 and d 2 are assumed to be real). 
Let us show first that the equations (4.2) give only the 
following solutions for /\ + + and L\-- : 

++ 4 -+ -+ + + 
\d d =No (x

1
-x 2 )(0 1 -02 )(0 1 -0 2 )(d 1 +d2 =3)(4.3) 

1 2 

and 
++ --

'~d d = L\ d d = 0 ' 
1 2 1 2 

when d1 + d 2 I. 3. 
Consider the first of the equations (4.2). Translational 

(A~ =-ia
1
,A; =-ia 2)and s+(A~=-ia0 ,A~~ia0 )invari-

1 2 1 1 ~ 2 

ances imply that 
++ ++ + + 

L\ =L\d d (x1-x2;01-02)' 
1 2 

14 

S- -invariance (A~ =8(y.a 1)ot, A~ =8(y.a 2 )0~)gives then the 
1 2 . 

following expression for the considered two-point function: 

++ + + . + + 
L\dd =f(xcx 2)o(0 1 -0 2 )+C(0 1 -e2 ) (4.4) 

1 2 

( o -function o ( e; -o;) is defined in /S/. In our case: 
+ + -+ - + + + o ( o 1 - e 2) "' ( o 1 - e

2 
) ( e 

1 
- o 

2 
)) . 

T--invariance gives more restrictions: 
C + + (01 -0 2 ) =const:M, 

f ( Xt- X 2) = N o4 
(X 1 - X 2) . 

At last T+ -invariance results in (4.3). The latter of the 
equations (4.2) has an analogous solution. 

Turn now to ~e second of the. equations (4.2). Substi-
tuting here N = S ~: and :-' ~; we obtain for the 

two-point function L\ ~- d the expression 
1 2 

+- + - . aD( x) -- v + 
L\d_d (x;0 10 2 ) =D(x) -81---0

2
y e 1 + 

• 2 axv 

-+ + -- -
+ 16o D( x) ( 0 1 0 1 ) ( 0 

2 
0 

2 
) , (4.5) 

where x = x 1 - x 2 and D( x) is an arbitrary function 
of x . T.his function is fixed then up to a multiplicative 
constant by T+ and T- invariance, and turns out to be zero 
if d1 ,J.d 2 and c(x2fdif d 1= d

2
=d.Therefore 

+- + -
L\~d2(x;OI,02) =0 d 1 f. d 2 

L\ ~ d ( X; et, 0 2) = C[ ( X 
2 ) - d + 16 j d ( X 

2 r d-
1 0 2 ( X • y) 0 ~- + 

+ 64d(d-t)(x 2 >-d-l <etor><o2oi>. (4.6) 

15 



From the commutation relations (1.3) it may be seen that 
the invariance of the two-point function with respect to 
the spinorial generators implies automatically the inva­
riance with respect to the whole superconformal algebra. 
So there is no need to verify the invariance of the 
two-point functions (4.3) and (4.6)with respect to rotations, 
dilatation, special conformal transformations and rr . 

Substituting into the expression ( 4.1) for 1\ "d; d 2 the 
decompositions of superfields <ll d1 and <llJ2 in powers 
of e+ and e- givenbyeq. (2.21)and(3.17)and then compar­
ing the expression obtained with the equality (4.6) we may 
identify the first term in the r .h.s. of eq. (4.6) with the 
two-point function of a scalar field A( x).In doing so, the 
second term gives the two-point function of a spinor 
fiP.ld 'l'(x) and the third term that of a scalar field F(x) . 
Note that if the field A( x) has canonical dimension 
(d= 1) the last term in the r.h.s. of eq. (4.6) vanishes. 

The three-point functions may be obtained in an ana­
logous manner. As in the case of the two-point functions 
the coefficients in the decomposition of three-point func­
tions of the superfields in powers of () are conformally 
invariant three-point functions of ordinary fields A( x) , 
'l'(x) and F(x) . The distinction of our results from that 
of paper / 7/ is the following: the three-point functions 
prove to be different from zero only when some restric-
tions of the dimensions d1 , d2 , d3 hold. Denote 

r: d d =<<lld (x1,e:)<lld (x2,e;)<ll~ (x3,e~)>o' 
1 2 3 1 2 3 

r; d d = <<ll d (x 1' e:) <lld (x2 'e;) <lld (x3' e3-) > • 
123 1 2 3 ° 

It turns out that 

r: d d ,;, o 
1 2 3 

only in the case 
d1+d2=d3 

and r; d d f, 0 
1 2 3 

implies 

16 

(4.7) 

(4.8) 

(4.9) 

d1 + d2 + d3 = 3. (4.10) 

To understand how the condition (4.9) Irises let us write 
out the most general expression for r d 1d2d3 compatible 
with the Poincare and S ± invariance: 

r 0 =A- si-E-o-+ flo-- 8i~8+ P.o- + 
d1 d 2 d 3 a 11 1Y 3 a 11 2 Y 3 

X 13 X 23 

+ 16o 13 A(o~o:><o;o;> + 16o 2~<e;o;> ce;o;> + 

16 a A { o+ f1 v 0 +) ( 0 -o -) 
+ 1Y Y 2 3 3 ' 

a X f3 a X~ 
(4.11) 

where A is an arbitrary function of x1,1= x 1- x 3 and 
x23 = x2 - x 3 . To satisfy the T ± mvariance it is 

necessary (and sufficient) that all the coefficients in the 
decomposition of rd

0
1d 2 d 3 in powers of 0 are confor­

mally covariant functions. It is easily seen,, however, 
that A{ x 13, x23) and, e.g .• o 13 A may simultaneously be 
conformally invariant only in the case (4.9). The explicit 
expressions of the functions (4. 7) and (4.8) are 

r o ( .a+ a+ a-) -C{ 2 )-d1 ( 2 )-d2 d
1

d
2 

d
3

=d
1

+d
2 

x13'x23'v1,v2' 0 3 - xl3 X 23 x 

x [1 + 16d 1ix~;o:cx 13 -y) o 3-+t6d 2ix~;o;(x 23 ·y)o;-

- 64d 1( d 1 -1) Xt~ ( OiOi) (03 0 3)- 64d2{ d 2 -l) Xz~(Oi'Oi> (0303)-

-2 -2 -- - - - + + 
-128id1d2(x13x23)(0303)(0 1(x 13'Y)(x23'Y)02) ]. 

r; d d {x13'x23'x12;o;,o;,o~) 
1 2 3 

2 d .- 2 2 d 2 -2 2 d 3 -2 
=C{x23) (x13) (x12) x 
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x [0 ~(x 13• y) (x 23• y) e/- ; xii~e t+ciclic permutations(l,2,3) 
( d 1 + d2 + d 3 = 3) 

Degenerate solutions: 

I'+=No 4 (x 12 )e1~e1 ~,!'l;+d (x
12

,e 12 ), d 1 +d
2

=3,d
3

=o, 
1 2 

l'+=No 4 (x 23 ) e2;e2;, d2 + d 3 =3, d 1 =0, 

I·+=No4 (x
13

)e
1
;e1;, d 1 +d 3 = 3, d

2
=0: (4.12) 

At last, we draw attention to the following trivial fact, 
resulting from the condition (4.9): conformally-invariant 
three-point function (4. 7) of three superfields with canoni­
cal dimfmsions vanishes. In this case only the function 
(4.8) may be different from zero. 

The authors are very grateful to V .I.Ogievetsky and 
E.Sokachev for discussion and useful remarks. 
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