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I. Introduction 

The concept of superfield introduced by Salam and 
Strathdee/I/ has proved to be a useful instrument for 
realization of supersymmetry (for references see I 2 

/ ; 

see also /3/ and /4/ ). Therefore it is interesting to 
obtain a more detailed information about its structure 
and properties. 

The representations of the supersymmetry algebra 
in terms of superfields are reducible. A decomposition 
of the scalar superfield into irreducible parts has been 
given in /5/. In the present article a general method 
is proposed for extracting the irreducible multiplets out 
of a superfield with an arbitrary Lorentz index and with 
a nonvanishing mass. This method consists in constructing 
a complete set of projection operators with the help of 
the Casimir operators. The decomposition of the super
fields obtained in this way can also be expressed in terms 
of simple differential conditions as, for example, the spin 
one part of a four-vector A fL is singled out by the equa
tion iJfL :\ fL = 0 .These results may be useful when construc
ting Lagrange field theories for superfields with higher 
spins'· 

The plan of this paper is as follows. In Section II some 
necessary definitions and formulae are collected. In 
Section III the supertransformation algebra is enlarged by 
adding the covariant derivative as a new spinor generator. 

-------------------------* Superfields with sp~nor and vector indices have already 
been used in 6 and • . 
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Then a superfield with an external (Poincare) spin j appe
ars to form an irreducible unitary representation of the 
new algebra. Reducing this representation on the initial 
subalgebra we decompose it into four irreducible repre
sentations of the supersymmetry algebra. They can be 
extracted with the help of projection operators built out 
of the Casimir operators. 

In Sec. IV detailed calculations of the projection ope
rators are carried out. In Sec. V, corresponding supple
mentary conditions are found. 

II. Some Necessary Information 

We use the following notations. The 
tisfy 

( 1/2) ! y , y ! = g = di ag ( + - - -) ; 
11 v f-1 v 

y 5 = Y 0Y 1 Y 2 Y 
3 

; ( y 11 ) + ~ g 11 11 y f-1 • 

r -matrices sa-

The charge conjugation matrix is chosen to be C = i y 0 y 2• 

The notation ( y 11 ) af3 means C (1 ( y f-1) u. P . 
The supersymmetry algebra lfi consists of the Poin

care group generators and four anticommuting generators 

[S , P I = 0 
a 11 

[S ,J l = _!_(a
11

vS)a a 11 v 2 (1) 

1Sa,Sf3! = Pa{3' 

The superfield 

4 

- - -
<ll i ( p, e) = A i ( p ) + e 1./J i ( p ) + ee F i ( p ) + e y 5 e G i ( p ) + 

(2) 

- - - - 2 
+ A i y y 

5 
e A~ ( p ) + ee. ex . ( p ) + ( e e) o . ( p) v 1 1 1 

is a function defined onthemassshell {p 2=m 2 ,m,tO ;p 0 > O) 
and on a Grassmann algebra with generators e a forming 
a Majorana spinor. This function transforms as a scalar, 
spinor, vector and so on under the Poincare group, 
according to the Lorentz index i . An integer external 
spin j is described by a symmet:.:ic tensor <ll11 lf1 2 ••• 11 . 
satisfying the following supplementary conditions: 1 

¢11 = 0 . p 11 ¢ = 0 . (3) 
f-1113 •• f-lj . f-1112"'(-lj 

A half-integer spin j + 1/2 is described by a symmetric 
spin-tensor <ll satisfving (3) and 

a/lloo•f.lj • 

( ,f-1) (:3¢ -0 
} a f"3w2"'1lj- , 

( 1 + i y 5) /<ll f3!l 1 ... f-1 j = 0 ( 1- i y 5 )af3 ¢ (:3/L 1 .. ·11 j = 0 . 

In what follows we shall use these conditions without 
reference. 

In the space of the superfields (2) the supersymmetry 
transformations are generated by the operators 

s = i ( _!!__ + ~ p f3e ) 
a aea 2 a f3 . 

(4) 

They form a Majorana spinor if an appropriate scalar 
product is defined /8,9/ . 

The so-called "covariant derivative" D / 5
•
10 I is 

defined as a Majorana spinor operator which anticommu
tes with sa 

1Sa,D{3l =0 (5) 

and obeys relations, similar to (1) 
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In u. P11 1 -= o , 

I [) 11, .J,II l 1 
2(a(Ll' D) u 

l n (L • D r) ~ r u r;· 

(6a) 

(6b) 

(6c) 

The explicit expression for this operator is 

rl l fl 
D - --- - "' ,P 0 " . 

11 J~l1 2 u n 
(7) 

A number of useful algebraic identities for D 11 has 
been found in 

1
:-i /. For convenience some of them are listed 

in Appendix to our paper. 
Algebra (1) has two independent Casimir operators -

P 2 and (" . (' is a g~nei;"alization of the square of the 
Pauli-Lubanski vector l.ll; · 

(' ( ( .(L I· 

(LI" (Sa) 

where 

(" p (' -· p 
(LI (L I. I. fl 

(8b) 

and 

( . 1 p 1.J"P 1:;. · 
~- . - -,..,( ,. ,. ~. 

(L 2 t fl 1'" p J 'fL ' 5 
(Be) 

I , 

It is shown in :ll.l 2
.

13
/ that all the unitary irredu-

cible representations of algebra (1) with m ,J 0 are labelled 
by the eigenvalues of the Casimir operator (' : 

6 

C = - 2 m 2 Y ( Y + 1) , 

where Y is an integer of half-integer number caHed 
"superspin". Such a representation contains four usual 
(Poincare) spins 

J =Y-1_, Y.Y.Y+l_. 
2 2 

(9) 

So it becomes clear that the representations realized 
on superfields (2) are reducible. 

III. Supersfrin Contents of a Superfield 

Now we are· going to prove the statement made in 
the introduction that a superfield combines four represen
tations of the supersymmetry algebra into one represen
tation of a larger algebra. This algebra has a new spinor 
generator Da, in accordance with (5) and (6). Relations 
(6) are identical with (1), so to construct the unitary 
representations of the new algebra we can follow the 
method used in/121 for algebra (1). 

Let us go to the rest frame ( p i = 0 , p = m) . If y 0 is 
diagonal, (6c) can be written in the form 0 

+ + + 
!Da.Dbl = 0, IDa, Db I= 0, IDa, nbl = m8ab· 

Here a = 1, 2, D ~ ~ - D 4 , n; ~ D 3 . Choose an irreducible 
representation of algebra (1) with superspin Y to play 
the role of a "vacuum state": n: IY>=O. 
Then using the "creation operators" lla one obtaines 
a basis of four vectors for a representation of the enlaged 
algebra: 

! Y . ---.l_ ll 1 1 Y , 1 n 2 1 Y , .J_ ll 1 n z : r (10) 
ym \/m m 

In the rest frame the space components ( i of vector 
(8c) form a Sl'(2) algebra - the superspin algebra. The 
operators D a commute with (' i as "superspinors". 
Consequently, multiplet (10) contains super spins Y- {-. 
Y,Y, Y+-}. 

So, the irreducible unitary representations of the en
larged algebra (1), (5), (6) are labelled by m 

2 and by 
a "spin" number j . Such a representation combines four 
representations of algebra (1) with superspins 

v · 1 · · · I 
I =J-y,J·J·J'-r· 

Taking into account (9) and comparing with (2), we see 
that these representations of the enlarged algebra are rea
lized on superfields with external spin j . 

Our aim to extract the four representations of algebra 
(1) out of the superfield with spin j can be achieved by 

7 



using the following construction. If in a reducible repre
sentation of an algebra its Casimir operator C has eigen
values c 1 , c 2, ... , c n' , then there exists a complete set of 
projection operators: 

(C-c
2

) .•• (C-c
0

) _ (C-c 1) ... (C-c
0

_ 1 l 
Ill = ' .•• 'lln = __ .::__ __ _.:.:......::.__ 

(cl-c2) ... (cccn) (cn-cl) ... (cn-cn-l.l (11) 

I1 iII j = 8 i j Il j , ll1 + ... + ll 0 = J. 

Each of them, n i , extracts a subspace in which C = c i 1 . 

Thus, with the help of the Casimir operator (!3) one 
can separate the representations y = i- -Jand y c_ j + ~ but 
the two representations y = .i cannot oe distinguished. 
This degeneration can be removed by introducing a new 
symmetry - y 5 - invariance. Suppose that the super
field transforms as a scalar (in the case of integer e::tt: .r
nal spin) or as a spinor (when a spinor external ir.dex 
is presented) under a transformation which multiplies 
every spinor by a matrix exp ( i a y5 ) . The generator r of 
this transformation commutes with all other generators 
but S : a 

[Sa' 1 ] = ( i y 5) a f3s f3 . 

This larger algebra has a new Casimir operator 

- 2 
G=-SiPy 5 S +2P 1. (12) 

The old Casimir operator C (8) is invariant with respect 
to 1, too, so the new symmetry conserves the superspin 
classification. As we shall see further the projection 
operators of the type (11) constructed out of G distinguishe 
the two superspins Y = j . 
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IV. Projection operators 

Now one has to insert the explicit expressions for 
J JLV and S a into (8), calculate the Casimir operator 
C and find the projection operators (11). We are going 
to do this in details in the cases j = 0 , -J- , 1 , _1_, 2 , then 
we shall be able to write out the general formu1ae for an 
arbitrary j . 

Spin 0. The generators J are realized in the form 
JLV 

. a a 1 -
J =I(p --p --) +-ea 

flV fL apv V apfl 2 flV a if 
a (13) 

Putting ( 4} and (13) into (8b) and (Be) and using (7) one 
obtaines _ 

c11v = o xw, o, 
where 1 . .\ 

xflV = 4 ( p/1 g VA - Pv g f1A ) I y y 5 • 

Making use of formula (A.l5) in Appendix the Casimir 
operator is found to be 

C =(DX D)(DX 11vD) =-_1_p,1-A) 
where 11v 2 

A= - 1- (DD) 2 , A2 =A. (14) 
4p2 

Obviously, C has eigenvalues 0 and - !.p4 corres
ponding to superspins Y =0 , ~ . The projectidh operators 
for these superspins have the form 

n~ = 1- A 

(15) 
Ilo A 

In fact, there are two representations with superspin 
0, i.e., II0 is a sum of two orthogonal projection ope
rators. To find them we use the new Casimir operator 
G (12). Its explicit form in this case is 

G=Dipy 5 D. 
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In accordance with (A.l5), G 2 = 4p 4 A (see (14)), therefore 
G has eigenvalues 0 , ± 2p 2 . The corresponding projecti
on operators are 

0 
II = I - .\ 

+ 2p
2 

I \ + w = 21 - I -
--Dipy D 
4p2 5 

(16) 

Combining (15) and (16) we obtain the complete decom
position of the scalar superfield into irreducible repre
sentations of the superalgebra: 

llt,=1-A 
'~ 

+ l 1 -
11-0 = -:\ + --rlipy

5
n 

2 2 • 4p 

(17) 

This result coincides with the one formulated in 15 /. 

Spin 1/2. In this case the generator JfLI/ receives 
a matrix addition l/2 a and C (8b) is written as 

- 111.' 11" 
( c ~ ) fLI/ = D X Ill' D. 1 + 2 X fLU p ' 

where f is the unit spinor matrix. After some calcula
tions one obtains 

3 4 " 4 c I/ = -2 p A. 1 + 2p {111 
/2 I 2 

- 3p <l 1' (18) 

where 

2 - fH1 1 fll! · (1 ) f3 ~ = -- X p D X D = --p a y 5 D 1 y y
5 

D . 9 
2 4 f.ll! 4 2 f.l 1/ p p 

Further, with the help of formulae in Appendix one finds 

2 3 . " 
f3 II,. = f3 II + -4 ( 1 - A) . 1. 

;2 /2 
(20) 

A remarkable feature of f3 ~ is the identity 
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i 

I 
I 

(3~ .A= A.f3~ =0. (21) 

It allows the degree of p2 in denominator to be not larger 
than 1 in all the projection operators (this situation remains 
unchanged for higher spins too). 

Using (20) and (21) one finds the projection operators 
for super spins Y = 0 , ~ , I: 

1 3 " n1 = 2 (2 . 1 -11~~ )(I-A) 

II~ = A. 1 

1 1 " II 0 = -
2 

( -
2 

. 1 + {1 11 ) ( 1 - A) . 
12 

The two superspins 1/2 are again distinguished by the 
projection operators 

± 1 1 - " 
II 11 = ( -

2 
<\ ± -. 1~ i r y 5 n) . 1 

/2 4 p2 

+-
Ill/ + 11 1, = 11 11 

/2 /2 /2 

constructed out of the Casimir operator c; (12). Here 
y 5 -covariance has another consequence: it splits the 

spinor superfields into left and right chiral ones but this 
is a part of our convention in Sec. II. 

Spin 1. This case is treated analogously to the 
previous one. Here (fL~' receives a new part ·\

1
w : 

1 -
( C) =(D\ D)o +(A) 

f.ll! Kp ILl' 1-Kp f.liJ K(J 
where 

( A ) -·( 8 11 c/') 0 

Ill' Kp -I PfL I' -piJ fl P £ AaKp (22) 

Further, ( · 1 has a form similar to c 
11 

(18): 
3 <l • 11 4 '

2 

C 1 = yP A.J + 2B 1 - -Tp 
with ( 1 ) w = g

111 
and 
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1 - ;1v · A a 
( B 1) k. p = -.r (A,). v) K p D X. D = -

1 
? p f D i y y 5 D . 

p 2 0 ~ aAKp 
(23) 

The analogues of (20) and (21) are 

Bi oo B1 + 2 ( 1 - A) J (24) 
AB 1 = B1 A - 0 

For the projection operators see the general for
mula (27). 

Spin 3/2. Now 
3 4 " 4 4 " Ca; = -
2 

p A. 1 J + 2 p {3 31 - 9p 1 J 
with · 2 • 2 

{3 31 = {3 I; 1 + 1 B 1 
3 2 

(see (19) and (23)). The analogue of (20) and (21) reads 

2 15 ". f3% = f3% + -:r < 1 - A) 11 

{3% A=A(3o/
2 

=0. 

The projection operators are given in (28). 

Spin 2. Here 

34 2 4 Zl4 
C2 =2f' A.J +2p B 2 - 2 -p, 

B
2 

= B 1 J + 1 B 1 . 

When evaluating B~ the noncommutativity of B1 acting 
on different indices must be taken into account: 

2 2 2 
(B2 )fLA,vp ~. (B1 )11;,. g vp + gflA (B1)vp +(B1) 11A (B1')vp + (25) 

+(B{)vp(B1 )11;,. · 

12 

Then B~2 becomes (see (24)) 

B 2 ~I'. uf1-·'\7 2 
2 - J 2 t \ .">) 

Arbitrary spin j . We are already able to write out 
the general formulae. Consider first integer spins. Now 
(see (22)) _ . . . 

(C j ) 0 D .xflV D. l JL A flV l J -
1

-!. ... 4- J J -
1 

A f1L 

and 3 3 4 . 
r· ( ·' 2 · 1 

• · 1) ) l J 2B '"j = y·-._- ]\]r --2 p + j' 

where (see (23)) 
j -1 J i - 2 Ji - 1 B Bic·.B 1 J + B11 + ... + 1· 

Taking into account (24) and (25) one finds 

Bz _ 8 2 , i- 1.._ 1 j -1 B 2 > J m u 1 k B , l j -· m- k- 2 
j- 1 1 .... + 1+- 0 1 1 4-

m,k (26) 

+ 1 
m,k 

l~i,1kB 1 lj-m-k-z =Bj +j(j+1)(1-A)Jj 

Formula (26) enables us to establish the projection 
operators 

II - 1 . . j+)~ -- 2j_;-l[(J+ 1)ll -Bj]( 1-A) 

nj =A.1j (27a) 

IJ . 1/.2 J-; 

1 . 
-2 · - ( j JJ + B ) ( 1 A) )+1 j -. 

In this general case we have the same decomposition 
of rri as in (17) 

+- + 1 1- . 
Il.=Il.+Il., 11~ =(-A± -Dipy

5
D) Jl. ·(27b) 

J J J J 2 4p2 

When j is half-integer, B i is replaced by {:5 i : 
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j-~ • 
fi . = {1 II J + 1 B . 1/ 

J 12 J- /2 

2 " · II 
{1 j = {i i + j ( j + 1) ( 1 - A ) 1 J J - 12 

The projection operators are 
1 ~ . IL 

II . + II = ---- [ ( j + 1) 1 J J - ' 2
- {i . l ( 1 - A ) 

J 2 2j + l J 

+ l I - ~ j - 1L 
II~ (-A± ---nitfy D) IJ ' 2 

J 2 4p2 5 

1 " • II J- ·~ 
ll

1
._1;.:= ---(jl J . + fl

1
.) (I- A). 

2 2j + I 

V. SuPPlementary Conditions 

(28) 

As it was mentioned in Introduction, every projection 
operator II can be replaced by an equation ("supple
mentary condition") L<11 =0, where L is some differential 
operator. This means that if ¢11 = ¢ then L<!J = 0 and 
vice versa. 

Obviously, one can immediately write such an equation: 

(Il-1)¢=0. (29) 

But it appears that in many cases (29) can be reduced to 
one or several more simple equations. Take, for example, 
a scalar superfield with superspin 1/2. Then (29) reads 
(see (17)) 

- 2 
( DD) <!J = 0 . (30) 

This equation can be simplified using the multiplication 
rules in Appendix. Multiplication by D y 5 D gives 
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-
Dy

5
D<!J = 0. (31) 

Multiplying eq. (30) by Di~y5 D, weobtainanothersimple 
equation 

DD<I>=O (32) 

and vice versa, the same multiplication turns eq. (31) into 
eq. (30) *. Finally, eq. (30) is an obvious consequence of 
eq. (32). 

The scalar superfield contains two superspins 0 also. 
Each of them is singled out by one of the equations (see 
(17)) 

+ 
II 0 <IJ c• <11 

or 

( D ()) 2 <11 + 2 D i (l r " ll <IJ - H p~ll . 
,) 

(33) 

After multiplication by ll 11 one obtaines (see (A.5) and 
(A.l6)) 

lm 1 2p' ( 1 + i )' 5) n 1 u <ILt 1 p 2 
1 ( 1 , i y, ) Ill u <I Hp:! ll <1, 

" 
The final form of these equations is achieved multiplying 
by ( 1 t i )' >,, <1: 

5 

I ( 1 ! i r ) ll l <J: o . 
5 I' 

(34) 

Inserting (34) into the left-hand side of (33) we see that 
they are equivalent. 

A scalar superfield satisfying one of eqs. (34) is called 
in /5, "chiral superfield". Our general formulae (27) and 
(28) show that these "chirality" conditions can extract the 
two superspins j from a super field with the same exter
nal spin j . Jt is worthwhile to point out that in the two
component for'llalislll of Van d£-'r Waerdt:;n • ~Pe, e.g., 10 ) 

*It should be mentwnf'd that in ' hotf! (31) and (32) 
are required at the same time ,dthoufh l' Wf' see, one 
of them is suffi· 1ent. 
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these conditions become extremely simple - the super
field should depend only on ()a or ea. 

The same method can be applied to the spinor super
field. The initial equation for super spin 1 reads (see (28)): 

( II ) /3<11 - <11 1 a {3- a 
or 

~ ( ~ l - f3 ~)a {3( 1- A) <11 {-3= <11 a, (35) 

Using (21) a necessary condition is established 

A<lla = 0 , i.e., DD <t a = 0. (36) 

Then (35) reduces to (see (19)) 
{3- 2 

(pflaflVy5)n Diyuy5D<Ilf3=-2p <lla. 

Multiplying by D u (with summing), using (A.5) and taking 
into account (36) one obtaines 

-
Da <iJ = 0 a . (37) 

Eqs. (36) and (37) are not only necessary but also 
sufficient for (35) to hold. The second condition (37) has 
clear interpretation: it excludes a scalar superfield D (l <11 

0 

contained in the spinor superfield <11 u . 
In the case of the lowest supers pin 0 the same method 

leads to equations 
- - -{3 - ?~ 
D D <P a _ 0 , D a D <11 f3 - 2,(1 a dJ rr 
The vector superfield is treated analogously. For the 

highest superspin 3/2 the conditions are again simple 

DD<Il =0, 
~( 

(yflD) <ll = 0. 
a ll 

(38) 

Clearly, the second excludes a spinor superfield out of the 
vector one. 

In the case of external spin larger than 1/2 the initial 
equation for the lowest superspin is 

II <11 =<ll • 
j-~ (j) (j) 

It seems there is no way to simplify it. 
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Finally, spin 3/2. As it can be expected, the initial 
equation for the highest superspin 2 

(II - l)<ll = 0 
2 afl 

reduces to the common condition 
DD<IJUjl = 0 , 

to the condition (37) for the spinor index and to the condi
tion (3~ for the vecto:n index. However, due to the equality 
( y ll) a <~>su=O the second condition appears to be a conse
quence of the third. So only two equations 

-
DD <1> ali = 0 

( II) Pn <1J = 0 
y a p f31I 

(39) 

remain. 
In the cases of all other integer or halfinteger spins 

the highest superspin is singled out by condition (38) 
or (39) imposed on one of the vector indices (due to the 
symmetry of these indices). 

I would like to thank V.LOgievetsky both for sug
gesting the problem and for his advice and encourage
ment. I also thank L.Mezincescu for discussions. 
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VI. APPendix 

Dy D = 2p 
II II 

-
D a D = 0 

IIV 

D aDD = DDD a + ( 2!1 D) a 

D aD y 5 D = - D D ( y 5 D) a + ( 2 P' y 5 D) a 

-
DaD i y IIY 5D = - D D ( i y1t y 5 D) a + 2 i p II ( y 5 ll) a 

(A.l) 

(A.2) 

(A.3) 

(A.4) 

(A.5) 
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Dy 5DD a= -DD( y5 D) a 

- - A 
Di y y " D n a = - D IJ ( i y y 5D ) - ( 2 p a , y 5 D) 11 ,, 11 a 1\ 1'- a 

- - A--
llll.lly5D =-2ip DiyAy 5 D 

Dy 5 D. DD = 2ipADi Y,\_Y 5 D 

-
Dl>oDiy r~D =2ip lly 5ll 

fl .• fl 

-
n i y r n . IHJ = - 2 i p n r n 

fl 5 fl 5 

- 2 - •) 
(Dy 5 D) ~ (I:D)-

- -
n i )' n. n i ,. , " cc - ~ i p on 

5 'I'-' 5 1'-

- -
Dir Y~n.nr.n =2ip nn fl ,) ,) fl 

- - - 2 
D i y y D 0 n i y y D = g ( llll) + 

fl 5 l' 5 f1 I' 

+2ipAt \ DiyPy5D -4(g p 2 -p p) 
1\fl !' p fll' fl u 

D ( IJD)2 =( 2" D) ( IH)) a f' a 
- 3 2-

( DD) = 4p DD 0 
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