





Jleaunuku P, E2 - 8652
O6 onpeneneHnn clHHA X°(958) ~-Me30Ha B peaknnu K_p-.on

[TokasaHo, 4TO OTCyTCTBHe aHM30TPOINMHE B pachnpeneneHmsx dadefipa
B peaxkuun K p>X A 1upn 1,75 TsB/c (cosfcm>0,6) He o3Hazaer mcepaocka-
napuoctn  X%058) ~meaona. Bomee TOro, yxKaldaHHe Ha ofpaTHOe ITOBeleHHe
anpsorponu#t mpu 1,75 I'sB/c (cosf g, >0,6) B cpapHeHHH C AHH3OTPONMHEAMH IpH
2,18 FsB/C(coso >0 ,98)uHTepnpeTHPYETCH KaAK HOBHIH apryMeHT B NOML3Y
cnuHa 2 aag X°—Meaona. [Toka3aHo, 9To 6onee YerkHe AHH3OTPOIHH IPH
1,75 T'sB/c MoOXHO OXHOAaTk B HHTepBale 04§ws(9¢_m_~ 8. [TonyueHo copmecT~
HOe pacrpefe/leHEe II0 BCeM pacnaaHblM xapakTepuctukaM X' -me3ona u A ;
npeaslaraercs MCIOJb3OBAHHE 3TOrO pacnpefeleHHs ol 6ojee QOCTOBEPHOro
pasnenenus rumoresa 0 u 2  aas cnuHa-getHocTH X®-Mesona, WeMm B cayuae
HCMOJIb30BAHMH OJHOMEpPHLIX pacnpefenenuit dnekpa.

Pa6ora prmonnena B JlaGoparopuu snicokux sHepru#i OUSIH.

Mpenpunr O6beaMHEHHOr0 MHCTHTYTA ANEPHHX MCCAeNoBaHMit
Jdy6ua 1975

Lednicky R. E2 - 8652
About X%(938) Spin Determination in the Reaction K}»XOA

It is shown that the absence of anlsotroples in the
Adair distributions for the reaction K p - X®A at 1.75 GeV/c)
(cwsb, p >0.6) does not imply pseudoscalarity of the X (9®) -
-meson. Furthermore, an indication of the opposite charac-
ter of the anisotropies at 1.75 GeV/c (cosf, ,>0.6)compared to
those at 2.18 GeV/c (cosf, 4 >0.98) is interpreted as a new
argument in favour of the spin-2 X®-meson assignment. More
pronounced anisotropies at 1.75 GeV/c can be expected in
the interval®.4 < cosf, , $0.8.The joint distribution of all the

x?-meson and A-decay characteristics has been obtained;
the likelihood analysis of this distribution, instead of
the one-dimensional Adair analysis, is suggested.

The investigation has been performed at the Laboratory]
of High Energies, JINR.
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1. At presgnt the amblgulty m the X (958) meson spm
still exists, J (X% =0~ or 2 N/ althou /gh this question
emerged more than seven years ago/2 However, the
majority of physicists prefer spin parity 0~ rather than
27 ; in different kinds of theoretical estimates the x?
meson is supposed to be the ninth pseudoscalar meson,
it is even called the 7’ -meson. At the same time there
exist the symmetry formulae predicting the 5 mass
near the mass of another ninth pseudoscalar candidate -
E(1420) meson. In addition, the 2~ ass1gnment needs
special attention because in this case the X® -meson
Regge trajectory should have the intercept near 1 and
can play a serious role in spin forces at high energies/4/.

It is now well-known/2,5/ that the X° -meson spin
can be established only by studying the X %-meson pro-
duction and decay correlations *. Such an analysis has
been performed for the reaction K p- X %A in several
Brookhaven HBC experiments with beam momenta
1.75 GeV/c:_ 5/ 2.18 GeV/c’"/, 2.885 GeV/c/% , 3.9 and
4.5 GeV/c~ s/ and in earlier Berkeley HBC experiments
at 2.1, 2.47 and 2.65 GeV/c/1%/In all these data no signi-
ficant correlatlons between the Xx° production and decay
angles were observed when averaged over all production
angles. In refs./6,7/  the small production angles 6. .
were selected (x=cosf, . >0.6-0.8) again without revealing

* The Dalitz plot analysis of the x?. nmn and
X% L yata- decay/s (;annot distinguish between the 0~
and 2© hypotheses .
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any significant deviations from isotropy in the Adair dis-
tributions. Since a spin zero particle must decay isotro-
pically, this fact was interpreted as a strong support
for the 0— hypothesis.

However, after Ogievetsky, Tybor and Zaslavsky had
remarked that an insufficient O m. cut could smooth
the X meson spin effects, tha data’/"'®/ were reana-
lyzed in refs./1112/ The Adair distributions critical for
solving the X =~ meson spin alternative /3/ were obtained
for very small X° production angles (x> 0.98) . The
anisotropies in the angular (co=<6) distributions were
observed at 2 18 GeV/c between the K~ beam momentum
(K*)m the X rest frame and the decay analyzers (v)
chosen along a) normal (n) to the X% nnn  decay plane,
b) 5 - meson momentum (k) in the X0 nmn decay,
¢) . - momentum (k) inthe X . y» » decay. The cor-

responding polar-equatorial ratios P _ Nlcostl > 0.5)

E N(lecos6] < 0.5)

shown in Table 1 have a probability (in a Xz sence) of
a small fraction of a percent to be in agreement with
isotropy- 12/, Therefore, based on the angular momentum
conservatlon only, these amsotroples essentially weaken an
evidence for the possibility of the 0 spin parity x®
signment coming from the Dalitz plot analysis.

As we have pointed out in ref./ 13/, the absence of the
anisotropies in the LBL data /14/ g possibly connected
with the increase of energy (LBL data at 2.1 GeV/c re-
veal some anisotropy /12/ ). We have also stressed/13/
a significance of the near threshold K p - x%A expe-
riment. In such an experiment the X% -meson spin
projections :2 on the c.m.s. beam direction (K) should
be damped, i.e., the X% spinalignmentand corresponding
anisotropies should appear at not too small production
angles. In this context it has been pointed out in ref./§
that the cut x»0.6 should reveal the anisotropies if only s—
and p-waves essentially contribute to the XA final state.
The absence of higher waves can be expected in the near
threshold experiment at 1.75 GeV/c/G{However, this expe-
riment reveals no significant anisotropies in the Adair dis-
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Table 1
Number of polar events (P) and number of equatorial events (E) for

the Adair distributions discussed in the text;

N, is the number

of standard deviations, the respective entries differ from equal

numbers of P and E (isotropic distribution)

1.75 Gev/c'®

x> 0.6

Prediction

2.18 Gev/c/11:12/

x > 0.98

Experiment

for the case

<100 MeV/c

T~

< 200 MeV/c

p

p

P/E

P a2

-

E

Decay
analyzer

43

24 . 23

34

34
24

(q)

A
T

20

22

}/(E)

a)

7T7T(
These are background-subtracted numbers.
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tributions (x>0.6) similar to those found at 2.18 GeV/c
(x> 0.98)/11/.Furthermore, from Table 1 we see that
the Polar-equatorial ratios at 1.75 GeV/c (x> 0.6) have
a rather opposite character than the corresponding ones
at 2.18 GeV/c (x> 0.98) .

Later on we’ll show that such a behavior of the P/E
ratios at 1.75 GeV/c (x>0.6) cannaturallybeunderstood
and, in fact, it is another argument in favour of the 2~
X? -meson spin-parity assignment.

2. The distribution over the angle ¢ between the
production and decay X? -meson spin analyzers for the
zero X9 spin is isotropic. If the x’-meson spin is 2,
this distribution depends on the Legendre polynomials
P - dgp(9),L = 0, 2,4, it having the following general
form (see Appendix):

1 10 2 4
W (cos0) =5 [1+rcydy’d ao(0)+ e ddgo ()1, @)

where the quantities c, , are determined by the produc-
tion mechanism only. Choosing the production analyzer
(z -axis) in the xe proguction plane (say, along the
c.m.s. beam momentum K ) and supposing parity conser-
vation in the production process, these quantities can be
written through the normalized X’-meson spin density
matrix elements in the form

- 4 1
cp=Pgot P11 ~2P 22 » 4= Poo ~ FPut gPa2z- ()

The quantities d(zv’l depend on the X 0 decay mechanism
only. They are determined by the formulae (A.13) similar
to egs. (2), where the X0 -meson spin density matrix ele-
ments (with quantization ¢ - axis directed along decay
analyzer v ) should beaveragedover the decay phase space
and then normalized.

The X’-meson spin will most clearly manifest itself
in the distribution (1) if the X?-meson production and decay
analyzers are chosen in such a way that the corresponding
quantities ¢ and d; achieve maximal absolute values.
Note that these quantities are limited by the definition

2
—lscz,d2<_1, —-§§c4,d4<_1. 3

We have calculated the decay elements d'*’ in ref./13/
and analyzed the guestion on the best decay analyzer in
ref./14/ Here we briefly summarize the results:

X5 yy decay. The only natural decay analyzer is
the y momentum in the X? -meson rest frame. Bose
symmetry and y -quantum transversality unambiguo-
usly determine the decay matrix element (A.14) which leads

to the maximal possible d,; values d,-d4 = 1 thus
making the x%., yy decay especially attractive.
In the three-particle X° - nrn and X0, ynta~

decays there are three natural decay analyzers: normal
n to the X0 decay plane, ; -meson ( y -quantum) mo-
mentum & in the X? rest frame and ~ -meson momen-
tum ¢ is the dipion rest frame. The matrix elements
of these decays cannot be determined unambiguously;
even in the lowest orbital momentum approximation they
depend on free parameters. However, using the experi-
mental x?-decay information, the following estimates can
be done (see Appendix):

x%. nun  decay:

(k)

(n)_
- 4

2 = 0.4,

d™. _0.5.-0.8, d f'“) - 04 - 025,45 =4

(q)~ (q) =
A, =4, =00, 4)

x°. yotnT decay

™ _o3-08, dM-s03--08, d'P=-07-05
2 2 2 .

(n)

" =0-03, dM o0 -0, 4P-0. (5)

4 4

The quantities ¢, can vanish in the case when there
is no diagonal X0-meson spin alignment, i.e., if p,71/5 ,
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m=0,+1,:2, But in the X%-meson forward production
K p-X%A or at threshold of this reaction, the X°—mesog
spin projections *2 on the c.m.s. beam momentum K
(z -axis) are forbidden, p;,=0 . Consequently,

c,= —21—(1+Poo)’ c4=3i(5poo“2) ©)

50 that the anisotropies should be presented in the distri-
butions (1) for an arbitrary Poo Vvalue (¢, >1/2).Using
the d; estimates (4) and (5) and the inequality cy;>0.5
the qualitative predictions given in Table 1 for the %
ratios

l+%<P2>_11-738§<P4>
- c<P=Zet”,
£ 1- 15<P >+—13—5—<P> !
8 2 128 4

can be obtained. They are in agreement with the Brook-
haven-Michigan data /12/ at 2.18 GeV/c (x> 0.98) .

Let us now discuss the disagreement between the
P/E ratios for 2.18 GeV/c (x>0.98)/'? and for
1.75 GeV/c (x> 0.6)/8/ It has been pointed out in ref./6/
that the cut(x>0.6) should be sufficient to essentially
damp the P2z Value assuming that only s- and p -waves
are present in the final state of the reaction K'p > XA,
Such an assumption is quite natural in the near threshold
experiment at 1.75 GeV/c and is also supported by the
cos6, .. distribution. This distribution

WEx) = pge(x) + 20, () + 20 (x) , ®)

shown in Fig. 1, can be well described by the solid curve
W(x) drawn in this figure; W(x) was fitted by the Legendre
polynomials P, (x) with L.<2 /6/ (higher moments <Pyp>,
L >3 are consistent with zero within two standard devia-
tions) thus indicating the absence of the orbital angular
momentum waves with { > 2.

However, the disagreement between the P/E ratio
predictions, obtained, if p,,~0, and those P/E ratios
obtained at 1.75 GeV/c (x >0.6) leads us to another conclu-

N
1 .Z_(%*zx‘sxz)sm?ﬂcm 30
30 2 %(142x~ %?)sin?Bem
3 g-xzs:nlﬁz m
4 1%5["’0:.»!
W)
20 231ev T 20
/ 1, ~2Pu")
10 / 2 ) 10
3/
// ¢
W -
-1 -05 0 05 1
X=C0S6cm

. . - 0

g. 1. The (st distribution for the reaction K™ » X"A

g‘tlgl 75 GeV/éofﬂf'”‘for both the n*n—n and n+7-y decay

modes. Thé solid curve W (x) is the lowest Legendre
1

g%i‘Al‘Pl, (%) 5

polynomial fit to this distribution: W (x) :150,1,2

2 , )
} describe

dashed curve is-5-W (x). Curves 1,2,3 and 4 ]
g:fssible 2p..(x) ele;ents of the X° -mesonspindensity
matrix in the case when only orbital momentum waves
with <2 contribute tg the x °A final state. The

normalizdation -, (x) > = ?4 W(x )>is used.

22

sion. Namely, the waves with ¢ > 2 should _essentlally
contribute to the p 3, element thu§ making the cut
x > 0.6 insufficient for suppressing this element to the
value much more smaller thanl/5. Thereare several facts

supporting such a conclusion.



(a) Because the +2 x%-meson spin projections cannot
be constructed from the A and proton spin projections
only, the »p value essentially depends on the f , —com-
ponent of the orbital angular momentum. Roughly speaking,
the averaged !{; -component is proportionaltothe maxi-
mal transversal momentum py allowed by the x -cut.
Therefore claiming the same p, -cut for 1.75 GeV/c, as
well as for 2.18 GeV/c (x>098, p, < 100 MeV/c), we
should require x > 0.92 which is a much more stronger
cut than x > 0.6.

(b) The beam momentum 1.75 GeV/c corresponds to
the c.m.s. energy s = 2130 MeV just near the strong
K™ p resonance A(2100) 7/2~ which can decay into the
x%A state with the orbital momenta ¢ =2, 4, 6. There-
fore, at least, a d-wave contribution should be expected
in the final state of thereaction K p - X" A at 1.75 GeV/c.

(c) Despite the fact that the cos Oc.m. distribution is well
described by the lowest Legendre polynomials P, (x),
L < 2, there are ~20 effects in the moments <P (: )>for
L= 6,'7,8 A rather strong p-wave contribution also in-
dicates that essential higher waves could be present. Be-
sides, the waves with { > 2 can contribute to the elements
p and cancel in their sum W(x) =3 p (x).

mm m mm

In fact, we do not need many additional waves in order
to explain the P/E ratios inthenear threshold experiment
at 1.75 GeV/c. Below we’ll show that even the only additio-
nal d -wave contribution is enough toobtainthe ,__ value
near 1/5 in the interval x> 0.6 and thus to explain the
absence of the anisotropies expected in the case of the near
Zero p ,, value. Firstwe notethatthe p22 €lement should
contain the amplitudes with [, ie., paa(x) =0 if
¢™**_ 0 and generally

Pay (x) = Fn(X)sinzec_mk, ' 9)
where F, (x) is a polynomial in «x of the order of
n =2fmax _ 92 The Pos value can be fixed from the fact
that no anisotropies were seenin the overall decay angular
distributions, i.e., ~ 1

Pum” =5 W (10)
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3 .
where<p>—fp(x)dx For " =1 we then have 2, (x) = o sin® O m. .,

curve 4 in F1g 1, yielding the averaged value Ppy” = 0.05<<4
in the interval x> 0.6 . For M3 -2 the p,, element”
cannot be determined unambiguously. In Fig. 1. we show
several functions 2p,, (x) normalized by the condition
(10), curves 1, 2, and 3, leading to large pz; values in
the interval x> 0.6. Curve 1 yields the maximal possible
pas values for x close to 1,<py>=0.18=1/5 for
x> 0.6 (<p,, >=0.11 for x>0.8); this curve also satisfies
the positivity condition 2p,, (x x) < W(x) . Of course, the
only additional d -wave contribution cannot explain the
opposite character of the anisotropies for 2.18 GeV/c
(x>0.98) and those for 1.75 GeV/c (x>0.6) . Supposing
the P/E ratios at 1.75 GeV/c to be statistically meaning-
ful, the averaged p,, value in the interval x >0.0 should
be larger than 1/5 (c, <0) , i.e., the waves with { ~ 3 must
contribute. However, near threshold these waves cannot
essentially change the qualitative p,, (x) behaviour as
expected from the considerations of the waves with (< 2 .
The true x-dependence of the function 2p,, (x) should
then be close to curve 1 thus indicating p,y > 1/5(cy < 0)
in the interval 0.4 < x< 0.8 . Therefore, in this interval
we can expect more pronounced anisotropies of the same
character as those found for x> 0.6.

3. Based on the analysis demonstrated in the previous
section, we thus come to the conclusion different from
Baltay’s et al in their paper 6/, Namely, an indication of
rather opposite al}lsotropies in the Adair distributions at
1.75 GeV/c(x>0.6) in comparison with those found at
2.18 GeV/c(x>0. 98)/ v is naturally explained and supports
an evidence for the spin-2 assignment for the x® -meson
coming from the Adair analysis carried outin refs/ 11,12/,

It should be stressed that not all experimental infor-
mation available has been analyzed From the 6 natural
analyzers in the decays X0 >nam and x? »y#'m only the 3
analyzers (see Table 1) were used in the Adair analysis
even despite the fact that some time ago we pointed out
to a great importance of three other analyzers /13/. the




7 -meson momentum ¢ in the dipion rest frame for the
decays X® sp 77 (y»*7”) and the normal n tothe X0 yrtn™
decay plane. The use of the bestdecay analyzers/l‘1 could
also be very helpful. However, present knowledge of the
X" -meson decay amplitudes may be insufficient for the
determination of the best analyzer.

The way for increasing the confidence level of the
arguments in favour of or against the 2~ X% meson spin-
parity assignment, even without increasing the statistics
available, is the likelihood analysis of the distribution
(A.12) containing all the X% A -production and decay infor-
mation. We show in Appendix that the production informa-
tion is described by 30 real « -functions, being the bili-
near products of 10 complex amplitudes. Ina given narrow
x -interval 29 normalized production (multipole) para-
meters could then be determined. Note that in the
case of the pseudoscalar \'-meson there is only 1
nonzero parameter describing the A -production. All other
28 production parameters should be equal to zero. This
fact can be used in a preliminary simple analysis using
the method of moments.

The X0 -decay information alone was actually analy-
zed by the likelihood fit in ref. /9/. What we suggest here
is just an extension of this analysis including all the
information available. Such a joint analysis should also
improve the knowledge of the X% -meson decay parameters.
For the 0- and 2- likelihood ratio we expect (based on
the data in Table 1) a value less than 10 -3 .

The problem of the X“ -meson spin parity is of so
great importance that further experiments are necessary
for its final solution /13.". Probably, the most simple
experiment is a study of the Adair distribution with the
aid of electronics in the reaction =-p - )ion s/,

Yy

The author is much grateful to V.1.0gievetsky,

W.Tybor and A.N.Zaslavsky for very useful discussions.
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Appendix

The differential cross section of the reaction ](’pax0
>1..a

A -can be expressed through the joint spin density matrix
Lpw ; 0 ,
elements in the production X"A process ( pon, ) and
spin density matrix elements in the X0 and "A decays
(rl, and r2. ) determined in coordinate systems

mm nn . 0
X1y1Z1 and x3yyzy; inthe X" and A rest frames,
respectively,

1 2 "o . A
do =3 L p:::“,()\) dxd (X5 1...a)d,(Asp77), (A.D)
where x = cos fc.n. and the decay phase space elements
are of the form
dp. 4
dy (a;1...0) = fi SR s%p % ), (A.2)
j:l 20) ,] a i=1 !
p;=(p,,iw ) is the 4-momentum of the particle j . With
the aid of thé vectors in the X0 and A decays, the coordi-
nate systems £y (1 and £, 5, ¢, can be fixed. Let
us denote the Euler angles of rotations x;y;z;»¢,7,{; by
Qi=(d;,0; ,¥;),i=1,2.The phase space elements in the two-
and three-particle decays a - 12 and a - 123 canthenbe
written in the form
dy (a;12) =K _d¢ d cosd,

m g,

(A.3)

dj(a;123) = I;q —dmggd cosd dep d cos O dys
a

where K=p{® is the momentum of particlelin the a -rest
frame; ¢ = B{23) is the momentum of particle 2 in the
c.m.s. of particles 2,3; mqj is the effective mass of
particles 2,3, and & is the angle between the vectors

K andq .
Note that the decay density matrix elements are deter-
mined through the X9 and A decay amplitudesA{iM (mi),
1= 1,2:

r =3 A{f\’g‘(m’i)AiM(mi) (A.4)

i
m.m, {
i i
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where {A | are the helicities of the decay particles. Under
the rotation x;y;z;>¢&; 7;¢i the decay amplitudes are
transformed with the aid of the D -functions according
to the law /16/
iT(p) =3 AJ DJi 0,0, A5
Afay (e =2 AL DL (800, 00,) (A-5)

1 1

}

‘=2 andJ2:1/2.Using this transformation, the Q,
dependence of the distribution (A.l) can explicitly be
calculated

L 1*

P12 D (@ x

oL LD eL s 220 T
do=3 (2L +1) CLr )t =0 (x L N, LN, M, N,

1 1
L -
ngfl‘V;%)dx d_(X;l...a)dy (A 3pn7) (A.6)

where the multipole parameters in the production and
decay are expressed through the density matrix elements
by means of the Clebsch-Gordan coefficients:

Lo Mg * mgymy , | _1_
e, M2 (x) = 3 p 272 (x)@m L M, |2m) (GmyL,Mylg m,),
11 fm} ™™
(A7)
TV <% b, (J p L NJJ u ). A.8
LiNi{ll* B Jl#l i 1|J| i ( )
Hermiticity of the p- and r -matrices implies

L2-M2*- _M1+M2 L2M2 i % __Ni i

‘LM =) “Lmy T ) Ty N, (A9)
From parity conservation in the production process
(assuming that the z; -axes are chosen in the production
plane) it follows

tL2—M2= a L +M |+ LotMy tL g M 2 (A.lO)
LM, LMy

Note that for the Adair analysis it is useful to choose the
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L-
4 S (ReB psinMg; d yu (6)) + ImByy cos Mo dyy (6)
L

Z -axis along the beam momentum in the overall c.m.s.
and z3=-z and yi=y; =K xp .

Let us further fix the coordinate systems ¢, 7,¢,. In
a two-particle decay a -» 12(A-pr-,X0>yy) it is natural to
direct the ¢ -axis along the momentum “[31(3). Since the
decay amplitudes cannot depend on the rotation around
this axis (assuming the final spins are not measured), all
the nondiagonal r -matrix elements should be equal to
zero (N, =0),and we can put ; =0. Inthe three-particle
decays X0 > 5 » » and X0 - yz+ 7— we choose the ¢ -axis
along the normal 5 to the decay plane and the ¢ -axis
along the 7 -meson (photon) momentum k in the x©
rest frame. Note that parity conservationin the X9 decay,
in these coordinate systems, yields particularly simple
relations

1
TL1N1: 0 forodd L,or N,. (A.1D)

In the A -pr~ decay, parity is not conserved implying
the asymmetric A decay. The A asymmetry parameter
ap = 0.646; ay=v3 T2 providing that T2 =1.

Using the relations (A.9-11), the distribution (A.6) canbe
rewritten in the form useful for calculations

do- 3 QLD {t%[T! dL (6 ) 25 ReB _dL (6 )]+
L0 2.4 LO LO 001 N=Z,... L LN ON 1

2235 1990 [T} jcosMey dyg(6)) +E  (ReBy gosMg | x
M=l1,..L N=2,...L

L+ . L-
deN(()l) - lmBLNsmMgél dMN(()l))J +

+2\/?aA 3 llmt i(;l(x)cos()z[TﬁosinMgbldl{io(@l) +
M=1,...L

N=2,...

N1-
15



Sz . 1 N
~V6ay 2 Im ti;d(x)sm02[TLosm(M¢l+¢2)dML0(01) +
M=0,%1,,..1tL
.Fsz (l:eBLNsin(MqS l+¢;2)d;l‘;(01)+lmBLl\fos(M¢l+¢2)d;;;I(01))]}-
xdx dQyd(X;1...qa), (A.12)
where B, T'fNeiNL’ll and d;/;i:_zl_(dMlNidn‘f_N)_Production

characteristics are described by 30 real functions
190 () , u}8(x) and ull(x): more precisely, we

have 9 elements ;g‘;“ , L=0,2,4,M=0,1...1., 6 ele-
ments Im t{% | L -24,M -1,...L and 15 elements
Ime 4, L -0,2,4 , M-0,tl,..+L"Note that in the

case of the zero X0 -meson spin there are only two inde-
pendent elements tgg =pthp - and Imc (')})z_\/gp+-; all other
28 elements are equal to zero. 3

Integrating (A.12) over the phase space andintroducing
the quantities d,; and ¢
[Tl d (X5la) — Jt0®dx
vV —= 5

00
ftOO (x)dx

R W

gl

o
I
I+
<.
I\)!\ll

l .
[Tyed, (X31...a)

L =24, (A.13)

we get formula (1) for the W(cos ¢ ) distribution. The
X0 -meson decay multipole parameters TI‘AN have been

* The multipole parameters, being the bilinear products
of 10 independent complex amplitudes, depend on 18 real
parameters ( common phase and normalization factor not
included). In the collinear case |x| = 1,only the 2 indepen-
dent amplitudes are left and from the 30 multipole para-
meters only the 5 ones, i.e., 9% , }% Imddy
L =2,4 can be different from zero. '
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calculated in ref. /14/ using, however, different normali-

zation factors. Let us briefly reproduce the calculation
here.

_ The x° . yy decay. The amplitude of this decay
is unambiguously determined by the Bose-symmetry and
by the y -quantum transversality

Aij= |.(i[g(1)><g(2)]j , (A.14)
where ¢(1.2) are the y Ppolarization vectors and k-k(0,0,1 ),
The tensor representation is connected with the repre-
sentation of the X ¢ -meson spin projections on the ¢ -

axis by the well-known relations:

1 i
A(£2) = 5(A1)-Ag) 404 50 A )

) : .
A GD = 22 (A5 Ay -2L(A23+A32) (A.15)

A0 - L—(2A33‘A11_A 22 )-
v6
These relations automatically pick out the symmetric and
zero trace parts of the amplitudes A, . Among the ampli-
tudes (A.14) only A33 £ 0, i.e., onfy the ry, element
is different from zero and according to (A.8) and (A.13),
we get

T! -t ,T10=-T41 -2

- =d = A.l6
00 00 2 0 7 00 d *d4_1' ( )

2

2

The X° - = » decay. In the lowestorbital momentum
approximation ¢, =2 ,¢/,,-0 and 277 =0 ,?,~2 , the decay
amplitudes are of the form

(A.17)

Aij=“bkikj t W 495
where k -k (0,0,1), q - q (cosd,sin , 0 ) in the g, , 141
system. Using again (A.15) and (A.8), we obtain the decay

multipole parameters
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2 2 4 2 2.2
T00=32-_[|w0[ k% wy1%q % 2Rew wik %q%d 23(8) ]
1 /2 2, 4 2 4 2 2 2
Tyg=+ V2 Uwy 2k Pelw, 1% g -2Re wywi kg (1-24 %))
1 21 4 2 2 122 2 4\.2ib
T22: ______[|w0| k *+ Re Y w;k q +(Rew0w2k q +|w2] q*rec9]

v 2l

1 2 2 2
T, %[i(|w0|2k4+(w2 12q v Rew ™3 kZq%(5+ad2 ()
\/ .

=-1—."_—§T
12”3 V3 22

VS 2 4 2 2 2id 2 4 4id
T,,= T2—[|w0l k +2Rew wh k q ¢ +|w,| q e 1.

(A.18)

The parameters wjy can depend on the m;; mass. Sup-
posing this dependence negligible, the only complex para-
meter w - w,/w,, is left. For the quantities {4, we then

get

(n) 1 Rew ag (w) 3 5 Rew aq

ey = e—— e —— ———

, > (A.19)
Y8 12 ap|wila,

(1]+‘W12a2

where «, , a, and a4 are phase space integrals over
the quangities K%, q% and k2q2 ; aj:ag;a3-66:1:15The
dy, values for the decay analyzers  and ¢ can be
obtained by means of the rotation (A.5) /13,14/;

d(ki d(k): ay d(q)

(q) (k)
,=d, _d' ¥ 1.4

’ 2 4 2 ’

(A.20)
a1+|\\v|2a2

If Rew < 0, the extreme d, values are equal to /14/

drm_aM =z o, amax_ g Vo)~ g4

2 yr=d, . (a2D

where the vector 7, lies in the x?decay plane: ¥, =(cosa ,
sina ,0):the angle 4 is determined by the condition/14/
2ia Tl
" - 22 (A.22)
T, |

The numerical estimates are given for an almost purely
imaginary Brookhaven experimental value of y/11/ .w-L
= -0.02 * 0.05 +(0.35% 0.02)i. The real valuew =-4 is
however predicted by the Adler selfconsistency condi-
tion /2/. Such a discrepancy can probably be explained by
an essential m;; dependence of the parameter vy re-
sulting from the final state 7~ -interaction/17/",

The X° 5y »*z~ decay. Taking into account only the
M1 and E2 transition amplitudes in the dominating X%,y ,°
decay channel, we can write

Aij :{glqi[kxe]j+ gzei[kxq]j}f(mnﬂ), (A.23)
where f(m_.) is the p® -meson propagator. Here the
parameters g1 2 are expected to be real and independent
of the m__ mass. Introducing a real parameter g=g, / g,
and omitting the inessential factor g, kqf (m,,), we get

the following formulae for the decay multipole parameters

1
Tyo = 5 [10 +10g +7g2 - (1 +10g +7g2)d 2, (8) ]

T =1—\/%[—§-—14g ~11g% 4 2 +14g +11g%)d2 (5)

20 18 2

T,, = 21— [2+7g +3&@sin28 - (5+7g)e2i® ]
4421

T40=%V/__3[__%+2g2_(1+2g2)d30(5)1



T =L 311 -2g%sin2s 420

12 12 7

T, o V5 (20 (A.24)
44 12

For the quantities dj corresponding to the analyzers
n,K and q, we have the following expressions:

¢g™_ 1 _05.28g+22g%2 ™ 1 05,088
- = , d, =

2 4 l+g + 07g2 l+g+07g?2
(k)_ 1 07 +2.8g +g2 d(k)— 02g2

2 T 75 A S

2 1.g +0.7g2 1+g+0.7g2
1+g-02g2 ()

d(bq) =0.7 —*8-"°8 , d4q =0. (A.25)
2 l+g +0.7g2

The g -dependence of the quantities d, isshownin Fig. 2
together with the extreme d» values. In Fig. 2 we also
present the p,, spin density matrix element of the ,0 -
meson produced in the X% yp9 decay which (in the
helicity frame) takes the form

H 03 (A.26)

The experimental pgyy value, shown also in Fig. 2, yields
then the following estimates for the parameter g: g=—3.5* oc;J‘
and g=2.0 _‘_f"“a . Besides, the small negative g Vvalues
are probably excluded by the anisotropy observed in the
KK distribution/11/ ('P/E <1 implies dF¥ <0 ).

20

0786

= 0714

Fig. 2. The decay coefficients d , US the mixing para-
meter g of the E2 and M1 transition amplitudes in the
X0 » ypo decay. The g-dependence of the ,,-density
matrix element (helicity frame) of the p? -meson produced
inthe X9 ., yp0 decayis presented as well.
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