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Jle.OHHUKH p, E2 - 8652 
06 onpeaeneHHH cnHHa X

0
(958) -~·eaoaa a peaKUHH K- p-.xt A 

00K838HO, qTo OTCyTCTBHe 8HH30TpOnHA B pacnpeaeneHHgx 8aeftpa 
B peaKUHH K-p-.X0 A npH 1,75 fsB/c (cos0c..,;>0,6) He ooaaqaeT nceaaocKa­
ngpaocTH X0(958) -Meaoaa. Eonee roro, yKa3aHHe aa o6paraoe noaeaeHHe 
8HH30TpOnHA npH 1, 75 fsB/c ( cos0c.m.>0,6) B cpaBHeHHH C 8HH30TpOITHliMH npH 
2,18 fs8/c(costt._>0,98)HHTepnpeTHpyeTCll K8K HOBblft apryMeHT B U01Ib3y 
CITHH8 2 .Qnll X0-Me30Ha, 00K838HO, qro 6onee qeTKHe 8HH30TpOUHH npH 
1,75 fsB/c MOlKHO OlKH.Q8Tb B HHTepaane 0,4~cos0c.m. ,;:;0,8. OonyqeHO COBMeCT­
HOe pacnpeaeneHHe no seeM pacnallHbiM xapaKTepHCTHKaM X0 -Meaoaa H A ; 
npeanaraeTCll Hcnom,aoaaHHe sroro pacnpeaeneHHll ang 6onee aocroaepaoro 
paaaeneHHll r Hnorea 0- H 2- anll cnHHa-qeTHOCTH X0 -Meaoaa, qeM a cnyqae 
HcnonbaoaaHHll oaHoMepHbiX pacnpeaeneHHil 8aelipa. 

Pa6oTa Bhmonaeaa a Jla6opaTopHH BbiCOKHX saeprHil 0115111. 

llpenpMHT 06beAMHeHHOro MHCTMTyT8 Jl,nepHbiX MCCJJe,nOBaHMA 
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Lednicky R. E2 · 8652 
About X0 (958) Spin Determination in the Reaction K-p-.X0 A 

It is shown that the absence of anisotropies in the 
Adair distributions for the reaction K-p-.X 0 A at 1.75 GeV/c) 
(rosOc.m. > 0.6) does not imply pseudoscalarity of the X (958)­
-meson. Furthermore, an indication of the opposite charac­
ter of the anisotropies at 1. 7 5 GeV I c (cos (}c ••• >O .6)compared to 
those at 2.18 GeV/c(cosOc.m.>0.98) is interpreted as a new 
argument in favour of the spin-2 X1 -meson assignment. More 
pronounced anisotropies at 1.75 GeV/c can be expected in 
the interval0.4 ~ cos8c .•. ~o.s.The joint distribution of all the 

x0 -meson and A-decay characteristics has been obtained; 
the likelihood analysis of this distribution, instead of . 
the one-dimensional Adair analysis, is suggested. I 

The investigation has been performed at the Laborator~ 
of High Energies, JINR. · 

Pn!print of the Joint Institute for Nuclear Research 
Dubna 1975 

1. At presflt the ambiguity in the X 
0 

(958) meson spin 
sti_ll exists, .J ( x0) = o- or 2-/1/ alth9ugh this question 
emerged more than seven years ago 1 2/. However, the 
majority of physicists prefer spin parity o - rather than 
2- ; in different kinds of theoretical estimates the X 0 

meson is supposed to be the ninth pseudoscalar meson, 
it is even called the 11' -meson. At the same time there 
exist the symmetry formulae 131 predicting the TJ' mass 
near the mass of another ninth pseudoscalar candidate -
E( 1420) meson. In addition, the 2- assignment needs 
special attention because in this case the X 0 -meson 
Regge trajectory should have the intercept near 1 and 
can play a serious role in spin forces at high energies/4/. 

It is now well-known/2,5/ that the X 0 -meson spin 
can be established only by studying the X 0 -meson pro­
duction and decay correlations * . Such an analysis has 
been performed for the reaction IC p _. X 0 A in several 
Brookhaven HBC experiments with beam momenta 
1.75 GeVjc/6(, 2.18 GeVjc/71, 2.885 GeV;c/8/ , 3.9 and 
4.5 GeV jc · 91 and in earlier Berkeley HBC experiments 
at 2.1, 2.47 and 2.65 GeV ;c/10 /.In all these data no signi­
ficant correlations between the x0 production and decay 
angles were observed when averaged over all production 
angles. In refs./6,7/ the small production angles Oc.m. 
were selected (x=cos0c.m.>0.6-0.8) again without revealing 

---*-Th~--D;lit;-"i>}~{-;~;l;sis of the X 0 -. TJ"" 
X 0 .• y rr+ "- decay,s <;annot distinguish between 
and 2- hypotheses I 1, 2, • 

and 
the o-
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any significant deviations from isotropy in the Adair dis­
tributions. Since a spin zero particle must decay isotro­
pically, this fact was interpreted as a strong support 
for the 0- hypothesis. 

However, after Ogievetsky, Tybor and Zaslavsky had 
remarked that an insufficient ec.m. cut could smooth 
the x0 meson spin. effects, tha data/? •10 I were reana­
lyzed in refs./11,12/. The Adair distributions critical for 
solving the ~ 0 meson spin alternative / 5/ were obtained 
for very small X 0 production angles ( x > 0.98) . The 
anisotropies in the angular ( eos e) distributions were 
observed at 2.18 GeV jc between the K- beam momentum 
~ 0 ~ 

( K*) in the X rest frame and the decay analyzers ( v) 
chosen along a) normal ( ~) to the X0 __, TJ rr rr decay plane, 
b) '/- meson momentum (k) in the xo--. nrrrr decay, 
c) ; - momentum ( k) in the :,;: 0 - y rr rr decay. The cor-

responding polar-equatorial ratios ~ = Nfuos8\ _2:.. 0. 5) _ 
E N ( \eos 8\ < 0. 5) 

shown in Table 1 have a probability (in a x2 sence) of 
a small fraction of a percent to be in agreement with 
isotropy /u/. Therefore, based on the angular momentum 
conservation only, these anisotropies essentially weaken an 
evidence for the possibility of the o- spin parity X 0 as­
signment coming from the Dalitz plot analysis. 

As we have pointed out in ref/ 13/, the absence of the 
anisotropies in the LBL data /H/ is possibly connected 
with the increase of energy (LBL data at 2.1 GeV jc re­
veal some anisotropy / 12/ ). We have also stressed/13/ 
a significance of the near threshold K- p -• X 0 A expe­
riment. In such an experiment the X0 -meson spin 
projections ±2 on the c.m.s. beam direction (i(} should 
be damped, i.e., the x0 spinalignmentandcorresponding 
anisotropies should appear at not too small production 
angles. In this context it has been pointed out in ref./ 6 

/ 

that the cut ,>0. 6 should reveal the anisotropies if only s­

and p -waves essentially contribute to the x0 A final state. 
The absence of higher waves can be expected in the near 
threshold experiment at 1. 75 GeV ;ci6 ~However, this expe­
riment reveals no significant anisotropies in the Adair dis-
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tributions ( x>0.6) similar to those found at 2.18 GeV jc 
( x > 0.98)!11/ . Furthermore, from Table 1 we see that 
the Polar-equatorial ratios at 1. 75 GeV jc ( x > 0.6) have 
a rather opposite character than the corresponding ones 
at 2.18 GeVjc (x > 0.98). 

Later on we'll show that such a behavior of the P/ E 
ratios at l. 75 GeV jc ( x > 0.6) can naturally be understood 
and, in fact, it is another argument in favour of the 2-
X 0 -meson spin-parity assignment. 

2. The distribution over the angle e between the 
production and decay X 0 -meson spin analyzers for the 
zero x0 spin is isotropic. If the x0-meson spin is 2, 
this distribution depends on the Legendre polynomials 
PL = d~o ( 8) , L = 0, 2, 4, it having the following general 
form (see Appendix): 

W(cos8)= ~ [l+ 1
7
° c 2 d~v)d~ 0(8)+1: c 4 d~vld: 0 (8)], (1) 

where the quantities c ~ 4 are determined by the produc­
tion mechanism only. Choosing the production analyzer 
(z -axis) in the Xtl production plane (say, along the 
c.m.s. beam momentum K ) and supposing parity conser­
vation in the production process, these quantities can be 
written through the normalized X0-meson spin density 
matrix elements in the form 

4 l 
c2=Poo+Pu-2P2z • c4=Poo-3Pn+3Pzz· (2) 

The quantities d~:~ depend on the X 
0 

decay mechanism 
only. They are determined by the formulae (A.l3) similar 
to eqs. (2), where the X0 -meson spin density matrix ele­
ments (with quantization ( - axis directed along decay 
analyzer v ) should be averaged over the decay phase space 
and then normalized. 

The x.O-meson spin will most clearly manifest itself 
in the distribution (1) if the x0 -meson production and decay 
analyzers are chosen in such a way that the corresponding 
quantities c L and dL achieve maximal absolute values. 
Note that these quantities are limited by the definition 

6 

-l:Sc 2 ,d 2 <;_l, 
2 --<c d <l 3 - 4' 4 - . (3) 

We have calculated the decay elements d<Lvl in ref/ 131 
and analyzed the question on the best decay analyzer in 
ref./14/. Here we briefly summarize the results: 

X0 -> y y decay. The only natural decay analyzer is 
the y momentum in the X0 -meson rest frame. Bose 
symmetry and y -quantum transversality unambiguo­
usly determine the decay matrix element (A.l4) which leads 
to the maximal possible dL values dz= d4 = l thus 
making the x0 _, yy decay especially attractive. 

In the three-particle x0 -. 7J rrrr and X0 -. y rr + rr-
qecays there are three natural decay analyzers: normal 
n to the X 0 decay plane, 77 -meson ( y -quantum) mo­
mentum k in the x0 rest frame and rr -meson momen­
tum q is the dipion rest frame. The matrix elements 
of these decays cannot be determined unambiguously; 
even in the lowest orbital momentum approximation they 
depend on free parameters. However, using the experi­
mental x0-decay information, the following estimates can 
be done (see Appendix): 

X 0 -. r1rrrr decay: 

(n) , (n) , (k) (k) ,, 
d

2 
=-O.<Jc--0.8, <1

4 
= 0.4- 0.25, d 2 =d 4 - 0.4, 

d<q> =d<q>..=o.6. (4) 
2 4 

x0 
__, rrr+rr-decay 

(n) (k) . (q) ~ d =0.3 ~ 0.8, d =+0 .. 3 ~ -0.8, d = -O.?~O .. 'J 
2 2 2 

i") = 0-0.3, 
4 

d < k l = 0 . .t ~ 0 . I , 
4 

d( q) = 0. 
4 

(5) 

The quantities c can vanish in the case when there 
is no diagonal X 0-m~son spin alignment, i.e., if Pmnfl/5 , 
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m = 0 , ±I, ± 2 . But in the X0 -meson forward production 
K- p ... X 0 A or at threshold of this reaction, the x0-meso!! 
spin projections ± 2 Dn the c.m.s. beam momentum K 
( z -axis) are forbidden, p22 = 0 . Consequently, 

I 
c2= z-<I+Poo>• I 

c .. = - ( 5p 2) ., 3 00- (6) 

so that the anisotropies should be presented in the distri­
butions (1) for an arbitrary p 00 value ( c

2 
::::_I/2) • Using 

the dL estimates (4) and (5) and the inequality c
2

:::_0.5 
the qualitative predictions given in Table 1 for the ~ 
ratios 

15 / 135 1 + - "P > - --<P > 
p 8 2 128 4 2 ( V) 

E= '<PL>=7cLrlL ' 
I- __!Q.<P > + .Ql>-<P > 

8 2 I28 4 

(7) 

can be obtained. They are in agreement with the Brook­
haven-Michigan data /12/ at 2.18 GeV jc ( x > 0.98). 

Let us now discuss the disagreement between the 
P/E ratios for 2.18 GeV jc ( x > 0.98/ 12/ and for 
1.75 GeVjc (x> 0.6)16/. It has been pointed out in ref/61 
that the cut ( x > 0.6) should be sufficient to essentially 
damp the p22 value assuming that only s- and p -waves 
are present in the final state of the reaction K- p -· X 0 A. 
Such an assumption is quite natural in the near threshold 
experiment at l. 75 GeV jc and is also supported by the 
costlc.m. distribution. This distribution 

W(x) = p 00 (x) + 2p
11 

{x) + 2p
22

(x) , (8) 

shown in Fig. 1, can be well described by the solid curve 
W( x) drawn in this figure; W( x) was fitted by the Legendre 
polynomials PL ( x) with L::;2 /6/ (higher moments <PL>, 
L ?. 3 are consistent with zero within two standard devia­
tions) thus indicating the absence of the orbital angular 
momentum waves with e ::::_ 2 . 

However, the disagreement between the P /E ratio 
predictions, obtained, if p 22 = 0 , and those P /E ratios 
obtained at l. 75 GeV jc ( x > o .6) leads us to another conclu-

8 

N 

30 

20 

10 

t( f+2 X+5X2
) Sln 28c m 

2 Z(1+2X+ x')sin2 1Jon 

3 f x2 Sl n'f), m. 

1~sin2 8cm 

231ev 

-1 -05 0 05 
X•COStJ,m 

20 

10 

Fig. 1. The coso distribution for the reaction 1<. -P • x 0 A 
at 1. 75 GeVjc /6,c.m for both the rr + rr-TJ and rr + rr-y decay 
modes. The solid curve W (x) is the lowest Legendre 

polynomial fit to this distribution: W (x) = 1 ~\":_!-A1.P 1 . (x) ; 

2 
I. =0 ,I, 2 

the dashed curve is -y- W ( x). Curves 1,2,3 and 4 describe 
possible 2 p 

0
( x) elements of the X 0 -meson sPin density 

matrix in fffe case when only orbital momentum waves 
with P::; 2 contribute t9 the x o A final state. The 
normaliziition ..-: p ( x) > = _..-: W(x )>is used. 

n 5 

sion. Namely, the waves with P ;:: 2 should essentially 
contribute to the p 22 element thus making the cut 
x > 0.6 insufficient for suppressing this element to the 
value much more smaller than 1/5. There are several facts 
supporting such a conclusion. 
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(a) Because the ±2 x0-meson spin projections cannot 
be constructed from the A and proton spin projections 
only, the p 22 value essentially depends on the £ z -com­
ponent of the orbital angular momentum. Roughly speaking, 
the averaged £ z -component is proportional to the maxi­
mal transversal momentum p T allowed by the x -cut. 
Therefore claiming the same PT -cut for 1. 75 GeV jc, as 
well as for 2.18 GeV jc ( x > 0.98, p T ;$ 100 MeV jc), we 
should require x > 0. 92 which is a much more stronger 
cut than x > 0.6. 

(b) The beam momentum 1. 75 GeV jc corresponds to 
the c.m.s. energy F = 2130 MeV just near the strong 
K- p resonance A ( 2100) 7/2- which can decay into the 
X0 A state with the orbital momenta E = 2, 4, 6. There-

fore, at least, a d -wave contri~ution ~hould be expected 
in the final stateofthereaction K p .... X A at 1.75 GeVjc. 

(c) Despite the fact that the cosO distribution is well 
. c.m. 

descnbed by the lowest Legendre polynomials PL ( x), 
L < 2, there are "'2a effects in the moments <PL(x) >for 
L: 6, 7 ,8. A rather strong p -wave contribution also in­
dicates that essential higher waves could be present. Be­
sides, the waves with£;::: 2 can contribute to the elements 
p and cancel in their s1,1m "(x) = l p (x). mm m mm 

In fact, we do not need many additional waves in order 
to explain the P /E ratios in the near threshold experiment 
at 1. 75 GeV jc. Below we'll show that even the only additio­
nal d -wave contribution is enough to obtain the p :u value 
near 1/5 in the interval x > 0.6 and thus to explain the 
absence of the anisotropies expected in the case of the near 
zero p 22 value. First we note that the p22 element should 
contain the amplitudes withfz ;:::1, i.e., P22(x)=0 if 

max e = 0 and generally 

p 22 (x) = F (x) sin 2 e , n c.m. (9) 

where Fn ( x) is a polynomial in x of the order of 
n = 2£ max - 2 . The p 22 value can be fixed from the fact 
that no anisotropies were seen in the overall decay angular 
distributions, i.e., "' l <W> 

<p mm>- 5 ' (10) 

10 

1 ,111ax 3 . 2 
where<p>= f pC,.)dx.For r = l we then have 2rz2 (x) = 10 sm ec.m., 

-1 
curve 4 in Fig. 1, yielding the averaged value <p22>=0.o5<d 
in the interval X> 0.6 . For £max = 2 the p 22 element5 

cannot be determined unambiguously. In Fig. 1. we show 
several functions 2 p 22 ( x) normalized by the condition 
(10), curves 1, 2, and 3, leading to large P22 values in 
the interval x > 0.6. Curve 1 yields the maximal possible 
p 22 values for x close to l, < p 22 > = 0.18 =-l/5 for 
x > 0. 6 ( <p 22 > = 0. II for x > 0.8) ; this curve also satisfies 
the positivity condition 2p 22 (x):: W(x) . Of course, the 
only additional d -wave contribution cannot explain the 
opposite character of the anisotropies for 2.18 GeV jc 
(x>0.98) and those for 1.75 GeVjc (x>0.6) .Supposing 
the P/E ratios at 1.75 GeV jc to be statistically meaning­
ful, the averaged p 22 value in the interval x >0 .h should 
be larger than 1/5 ( c 2 < 0) , i.e., the waves with !' :: :l must 
contribute. However, near threshold these waves cannot 
essentially change the qualitative p 22 ( x) behaviour as 
expected from the considerations of the waves with P::: 2 . 
The true x -dependence of the function 2 p 22 ( x) should 
then be close to curve 1 thus indicating p 22 > l/5(,. 2 < 0) 
in the interval 0.4 ::; x::; 0.8 . Therefore, in this interval 
we can expect more pronounced anisotropies of the same 
character as those found for x > 0.6. 

3. Based on the analysis demonstrated in the previous 
section, we thus come to the conclusion different from 
Baltay's et al in their paper/6 /. Namely, an indication of 
rather opposite a~i~otropies in the Adair distributions at 
1.75 GeVjc(x>0.6) 6 in comparison with those found at 
2.18 GeV jc(x>O .98(11 / is naturally explained and supports 
an evidence for the spin-2 assignment for the x0 -meson 
coming from the Adair analysis carried outin refs( 11

,
121. 

It should be stressed that not all experimental infor­
mation available has been analyzed. From the 6 natural 
analyzers in the decays X0 .... 1J rr rr and X 0 

.... y rr+rr- only the 3 
analyzers (see Table 1) were used in the Adair analysis 
even despite the fact that some time ago we pointed out 
to a great importance of three other analyzers /I3f: the 

II 



rr -meson momentum q in the dipion rest frame for the 
decays X0 

->T/ TTTT ( yrr+rr-) and the normal ; to the X0--.yrr+TT­

decay plane. The use of the best decay analyzers! 14/ could 
also be very helpful. However, present knowledge of the 
X

0 
-meson decay amplitudes may be insufficient for the 

determination of the best analyzer. 
The way for increasing the confidence level of the 

arguments in favour of or against the 2- \ 0-meson spin­
parity assignment, even without increasing the statistics 
available, is the likelihood analysis of the distribution 
(A.l2) containing all the \ 0 A -production and decay infor­
mation. We show in Appendix that the p.r:oduction informa­
tion is described by 30 real x -functions, being the bili­
near products of 10 complex amplitudes. In a given narrow 
x -interval 29 normalized production (multipole) para­
meters could then be determined. Note that in the 
case of the pseudoscalar \ 0 -meson there is only 1 
nonzero parameter describing the A -production. Allother 
28 production parameters should be equal to zero. This 
fact can be used in a preliminary simple analysis using 
the method of moments. 

The X o -decay information alone was actually analy­
zed by the likelihood fit in ref. /9/. What we suggest here 
is just an extension of this analysis including all the 
information available. Such a joint analysis should also 
improve the knowledge of the X o-meson decay parameters. 
For the 0- and 2- likelihood ratio we expect (based on 
the data in Table 1) a value less than 10 -3 . 

The problem of the X 0 -meson spin parity is of so 
great importance that further experiments are necessary 
for its final solution /I3.'. Probably, the most simple 
experiment is a study of the Adair distribution with the 
aid of electronics in the reaction rr- p --. X 0n /Is/. 

4 yy 

The author is much grateful to V .I.Ogievetsky, 
W.Tybor and A.N.Zaslavsky for very useful discussions. 
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Appendix 

The differential cross section of the reaction K-p--. X 0 

--> l .. a 
~ P 77 -·can be expressed through the joint spin density matrix 
elements in the production X 0 A process ( p nn: ) and 
spin density matrix elements in the X 0 and Am decays 
( r I, and r 2, ) determined in coordinate systems m m n n 0 
xiyizi and x 2 y 2 z 2 in the X and A rest frames, 
respectively, 

da=L ri, r2, pnn',(x)dxd (X;l...a)d
2

(A;prr-), (A.l) 
m m n n mm a 

Where X = COS tic.m. and the decay phase Space elements 
are of the form 

a d p. (4) a 
da (a;l. .. a) = n -~o (p -L p.), (A.2) 

j=I 2wj a i=l 1 

p. = ( p., iw.) is the 4-momentum of the particle j . With 
llie aid JofthJ vectors in the X o and A decays, the coordi­
nate systems ( 1 T/ I (I and ( 2 ., 2 ( 2 can be fixed. Let 
us denote the Euler angles of rotations xi Yi zi -->~\ T/i ( i by 
n i =( ¢ i, tli , !/li),i=1,2. The phase space elements in the two­
and three-particle decays a -• 12 and a _, 123 can then be 
written in the form 

k 
d 2 (a; 12) = --d ¢ d cos e ' 

4ma 

d 3 (a; 123) = ~- dm2jl coso d¢ d cosO dljt , 
8m a 

(A.3) 

where k' = p (a) is the momentum of particle 1 in the a -rest 
frame; if = 

1 p ~23) is the momentum of particle 2 in the 
c.m.s. of particles 2,3; m 23 is the effective mass of 
particles 2,3, and i'.i is the angle between the vectors 

I( and q . 
Note that the decay density matrix elements are deter­

mined through the X o and A decay amplitudes AlA! (m i), 
= 1,2: 

r ~ : m ~ L AlH ( m ) A h! ( m i ) 
1 1 

(A.4) 
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where I A. I are the helicities of the decay particles. Under 
the rotation xi Yi zi __. ~ i TJi ( i the decay amplitudes are 
transformed with the aid of the D -functions according 
to the law /16/ 

i' i J i A I , I ( p.. ) = I A I , I ( m .) D ( ¢. , e. , tfi. ) , 
1\ 1 IDj 1\ 1 mjflj I 1 1 

(A.5) 

·j 1 = 2 and ] 2=1/2. Using this transformation, the Qi 
dependence of the distribution (A.l) can explicitly be 
calculated 

L M * I 2 L I* 
da=I(2LI+l)(2L2+l)t 2 2 (x) 'T T D w •. ) X 

Ll Ml LINI L2N2 Ml N I . 

L2* -xDM N(Q 2 )dxd (X;l. .. a)d 2 (A ;p77), 
2 2 a 

(A.6) 

where the multipole parameters in the production and 
decay are expressed through the density matrix elements 
by means of the Clebsch-Gordan coefficients: 

L2 M2 * 
tL M (x) 

1 1 

m2m2 , 1 ' 1 =I p , (x)(2m
1
L 1M1!2m1)(2 m2L 2M2lzm 2), 

lml m1m1 
(A.7) 

Ti =I ri, O.IL.'L.N.IJ. fL.). 
LiNilfll !ljflj 1 1 I 1 1 I 

(A.8) 

Hermiticity of the p- and r -matrices implies 

t L2 - M 2 *= (-) M 1 + M 2 t L 2 M 2 
L1-M1 L1M1 

. N i i 
, T ~~ N _=(-) T L

1
. -N'i (A.9) 

I I 

From parity conservation in the production process 
(assuming that the z i -axes are chosen in the production 
plane) it follows 

tL2-M2=(-)LrtM1+LztM2tL2M 2. (A.lO) 
L 1-M l L 1 M1 

Note that for the Adair analysis it is useful to choose the 
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z
1 

-axis along the beam momentum in the overall c.m.s. 
-> -> 

and z 2 = -z 1 and y 1 = y2 = K x p x . 
Let us further fix the coordinate systems ~ i TJ i ( i. In 

a two-particle decay a__. 12(A->p77-,xo_.yy) it is natural to 
direct the ( -axis along the momentum Pfa>. Since the 
decay amplitudes cannot depend on the rotation around 
this axis (assuming the final spins are not measured), all 
the nondiagonal r -matrix elements should be equal to 
zero (Ni"=O),and we can put t/Ji =0. Inthe three-particle 
decays X o __. TJ 17 17 and xo __. y 17+ 17- we choose the ( -axis 
along the normal n to the decay plane and the ~ -axis 
along the TJ -meson (photon) momentum k in the X o 
rest frame. Note that parity conservation in the X 0 decay, 
in these coordinate systems, yields particularly simple 
relations 

T i N = 0 for odd L 1 or N 1 . (A.ll) 
I 1 

In the A __. p 17- decay, parity is not conserved implying 
the asymmetric A decay. The A asymmetry parameter 

6 . -- 2 'd' th t 2 1 aA = 0. 46; a,\=v'3 1 10 proVl mg a 1 00 = • 

Using the relations (A.9-ll), the distribution (A.6) can be 
rewritten in the form useful for calculations 

du = I (2•L+l) I t~~(x)[T~ 0 d~0 (81 ) +2I ReBLNd~N (81 )1+ 
L=O ,2,4 N=2, ... L 

+2 I t~~(x)[T~0 cosM¢} d~0 (e 1 ) +I (ReBufosM¢ 1 x 
M=l , .. L N=2 , ... L 

x d L+(e ) - Im B sinM¢
1 

d L- (e
1
) )j + 

MN 1 LN MN 

+ 2 y' 3 a A I Im t i~ (x) cos~ [ T l 0sin M ¢ 1 d ~0 ( () 1 ) + 
M=l , ... L 

+ I (ReBLNsinM¢1 d ~~ (81) + Im BLN cos M ¢ 1 d~N (81))1-
N=2, ... L 

15 



-v'6aA '! Im tL~ (x) sine 2 [T~0 sin(M¢ 1 +¢
2

)dMLO (e1 ) + 

M =0,±1 , ... ±L 

+ '! (ReB LNsin ( M¢ I+¢ 2) d ~;c e I) +1m BLifOS (M¢1 +¢ t d~Jel))] I· 
N=2, ... L 

xdxdn 2 da(X;l ... a), (A.l2) 

where B 1 1 eiNtf't and d L±=_!_(d L +d L )Production 
LN"' LN MN 2 MN- M-N ' 

characteristics are described by 30 real functions 
t ~~ ( x) , it t~ ( x) 

0
:nd it g, (.x) ; more precisely, we 

have 9 elements 'LM, L ~0,2,1, !\1 ~0,1 ... L, 6 ele-
ments Im t L'M , L = 2,4, M = 1, ... L and 15 elements 
Im t t~ , L = 0,2,4 , M =0 ,±1, ... ±·L~'Note that in the 
case of the zero X o -meson spin there are only two inde­
pendent elements t88 =p+++P- -and Imt ~&=-v~P+-;all other 
28 elements are equal to zero. ;3 

Integrating (A.l2) over the phase space and introducing 
the quantities d L and cL 

-JTI d (X d = + 
1 

7 LO a ; 1 ... a ) 
L -\- ----

2 I 
fTooda(X;l ... a) 

J too (x) dx 
7 ~----, 

, C L = + v 2 f t 00 (X) d X 
00 

L = 2,4, (A.l3) 

we get formula (1) for the W (cos e ) distribution. The 
xo -meson decay multipole parameters T lN have been 

*The multipole parameters, being the bilinear products 
of 10 independent complex amplitudes, depend on 18 real 
parameters ( common phase and normalization factor not 
included). In the collinear case I x! = l , only the 2 indepen­
dent amplitudes are left and from the 30 multipole flara­
metersonlythe5ones,i.e., t~00 ,t~00 ,lmtL 1 , 
L = 2, 4 can be different from zero. -

16 

calculated in ref. /14/ using, however, different normali­
zation factors. Let us briefly reproduce the calculation 
here. 

The X 
0 

... y y decay. The amplitude of this decay 
is unambiguously determined by the Bose-symmetry and 
by the y -quantum transversality 

A . . = k . ( e < 1 > x e (2) J 
I j , I j ' (A.l4) 

where eO ,2) are the y polarization vectors and k=k(0,0,1 ), 
The tensor representation is connected with the repre­
sentation of the x o -meson spin projections on the ( -
axis by the well-known relations: 

A (±2) =_!_(All-A22) ±.i(AI2+A21) 
2 2 

A (± 1) = +_!_(At3+A31) _i._(A23+A32) 
2 2 (A.l5) 

1 
A(O) = -=(2A33-An-A22 ). 

v6 

These relations automatically pick out the symmetric and 
zero trace parts of the amplitudes A ij . Among the ampli­
tudes (A.l4) only A 33 I= 0 , i.e., only the r 0 0 element 
is different from zero and according to (A.8) and (A.l3), 
we get 

T 
1 

= r , T 
1 

=- T 1 = -y =~ r , d = d = 1 . 
00 00 20 40 7 00 2 4 

(A.l6) 

The X 0 
... 71 7T TT decay. In the lowest orbital momentum 

approximation £71 = 2,£ 7777 =0 and £71 =0 , EmF 2 , the decay 
amplitudes are of the form 

A .. = wfi k . k · + w 2 q . q · , -I j .. U I j I J (A.l7) 

where k =k (0,0,1), q =q (cosa,sina, 0) in the~~ 71 1( 1 
system. Using again (A.l5) and (A.8), we obtain the decay 
multipole parameters 

17 



2[ 24 24 o~:222 l T00 =
3 

lw01 k +lw2 1 q +2Rew 0w2 k q d 00(o) _ 

1 '2 [I 12 4 2 4 * 2 2 2)] T
20

=
3

v
7 

w
0 

k +lw2 1 q -2Rew0 w2 k q (1-2d00(o) 

T = --
1-[lw 12 k 4+Rew w*k 2q 2+(Reww*k 2q~lw 12q

4\e2i0 J 
22 v 

21 
0 0 2 0 2 2 I 

1[1 24 241 22 2 T
40

=-= -(lw0 1 k +lw2 1 q )+-Rew0 w; k q (5+4d00(0))J 
v 14 2 9 

T =.lv'_2T 
42 2 3 22 

v 5 2 4 2 2 2io 2 4 4il5 
T 44 = f:Z [ I w 0 I k + 2 Re w 0 w2 k q e + I w 2 I q e ] . 

(A.l8) 

The parameters w f can depend on the m "" mass. Sup­
posing this dependence negligible, the only complex para­
meter w = w

2 
/w 

0
, is left. For the quantities d L we then 

get 

d (n) 

2 

1 Re w a 3 ( 
11

) 3 5 Re w a 3 
·- + ------, d 

4 
= -- +----2 , (A.l9) 

2 a 1+1wl2a
2 

8 12 a
1
+1w! a2 

where a 
1 

, a and a 3 are phase space integrals over 
the quantities ( 4, q 4 and k2 q 2 ; a 1 : ~ zi.a 3 =6.6:1: 1.5.The 
d L values for the decay analyzers k and q can be 

obtained by means of the rotation (A.5) /13,1-t/: 

( k) (k) 

d2 = d 4 
__ a_I__ d(q) = d(q) = 1-d(k) 

' 2 4 2 
a)+\w\ 2 a 2 

(A.20) 

If Re w :S 0, the extreme d 2 values are equal to /I 4/ 
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d min _ d (n) = -0 .5 , 
2 - 2 d max- d( v o>= 0 86 

2 - 2 • (A.21) 

where the vector ¥0 lies in the xodecayplane: v0 =(cosa, 
sin a , 0); the angle a is determined by the condition/14/ 

2ia T ~2 
e = --

1 T I I 22 
(A.22) 

The numerical estimates are given for an almost purely 
imaginary Brookhaven experimental value of w/11/ :w-l 
= -0.02 ± 0.05 + (0.35 ± 0.02) i . The real value w =-4 is 
however predicted by the Adler selfconsistency condi­
tion /2/ . Such a discrepancy can probably be explained by 
an essential m "" dependence of the parameter w2 re­
sulting from the final state "" -interaction/17/. 

The x 0 .... y "+" - decay. Taking into account only the 
Ml and E2 transition amplitudes in the dominating X 0 -->y p 0 

decay channel, we can write 

Ai
1
. =I gi q. [ kxe] .+ g 2e. [ kxq] .lf(m ) , (A.23) 

I J I J 1T 1T 

where f ( m 77 77 ) is the p 0 -meson propagator. Here the 
parameters g I ,2 are expected to be real and independent 
of the m 

77 77 
mass. Introducing a real parameter g= g2 I g I 

and omitting the inessential factor g I k q f ( m 77 77 ) , we get 
the following formulae for the decay multipole parameters 

T00 = l_ [ 10 +lOg + 7g 2 - (1 +lOg + 7g 2 )d ~0 (o) ] 
9 

T20 = -1- v 2[2. -14g -11 g2 + (2 +14g +llg 2 )d~0 (o) 18 7 2 

T 
22 

= 1 _ [ 2 + 7 g + 3g2 sin 2 o - ( 5 + 7 g ) e 2 i o ] 
4y21 

T 40 = _!_ iL [ - _2 +2g 2- (1 + 2g 2)d o2o ( o) J 
9 7 4 
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T 
42 

1 

12 
y _1 [ 1 - 2 g 2 sin 2 8 

7 

T = _v5 e2i8 
44 12 

+ e 2i 8 

(A.24) 

For the quantities d L corresponding to the analyzers 
~ , r< and q , we have the following expressions: 

(n) 
d 

2 

(k) 

d2 

l 

4 

-0.5 +2.8g +2.2~ - ' 
1 + g + 0.7 g 2 

1 0.7+2.8g+g 2 
= --

' 2 1+g +0.7g2 

(q) 1 + g -0.2g 2 
d = 0.7 ' 

2 
l+g+0.7g 2 

(n) 

d4 

(k) 

d4 = 

1 

4 

-0.5 +0.8g 2 

1 + g + 0.7 g 2 

--~~ 
1 + g +0.7g 2 

d (q) = 0. 
4 (A.25) 

The g -dependence of the quantities d 2 is shown in Fig. 2 
together with the extreme d 2 values. In Fig. 2 we also 
present the p 00 spin density matrix element of the p o -
meson produced in the X o __. y p o decay which (in the 
helicity frame) takes the form 

H 
p 00 

0.3 

1;-;-:-0 . 7 -;-2• 
(A.26) 

The experimental Poo value, shown also in Fig. 2, yields 
then the following estimates for the parameter g: g=-3.5,:::!x;.t 
and g=2.0 +"" . Besides, the small negative g values 
a.[e probab\; excluded by the anisotropy observed in the 
It I( distribution/III ( P/E < 1 implies d?) < u ). 
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1.0 

0.786 -~ ~---0.786 

I o•on )~/ . ·. I ~: ~ ~ - - a tr.., . , 1 1 t - .,. 6 
-6 -4 ...... -2 i ,'o 2 4 6 - -0.20 

···········=-0.714 

Fig. 2. The decay coefficients d 2 vs the mixing Para­
meter g of the E2 and M 1 transition amPlitudes in the 
X n _, y p o decay. The g -dependence of the p 00 -density 
matrix element (helicity jrame) of the p o -meson produced 
in the X 0 • y p o decay is presented as well. 
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