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I. Introduction

In the previous paper/l/the connection between the different

renormalization approaches was studied and the conversion ior-
mulag were derived. These formulag allow us to reconstruct renor-
malization group functions of any renormalization scheme irom
those of 't Hoort's scheme with the use of only lower-order ext-
ra information. A special role of 't Hooft's scheme is based on
its remarkable features, which are disgcussed in Sec.II. The neces-
sary relations of this scheme are presented in Sec.III, where also
the most convenient way to periorm the R—-operation is described.
Then, in Sec. IV the 't Hooit scheme is used ior two-loop cal-
culationg in three renormalizable theories: scalar electrodyna-
mics, pseudoscalar theory with Yukawa-type coupling and super-
symmetric Wess-Zumino model.

Note that this paper is a sequel to Rer. 1 and should be re-
ad in conjunctiax with it, especially when the properties oi renor-
malization group equations are concerned. Hereairter the prerix I
will refer to equations of Ref., 1.

I wish to express my gratitude to D.V.Shirkov .ior interest in

this work and helpiul discussions.



II. 't _Hooi't's scheme of renormalization

The dimensional regularization method / 2/ has .generally been
recognized mainly because of its remarkable property to maintain
the initial symmetry of the Lagrangian in the regularized expreg-
sions. The proof of thig property, though not for the Vmost gene-
ral cage, can be found in /2’3/. The different kinds of subtracti-
on preocedure can be used to obtain the finite results.‘Probably
the most natural and convenient scheme was proposed by 't Hooft/4/.
It is manifestly gauge invariant and leads to a new form of renor-

/5,6,7/

malization group equations Some interesting propertles of’
these equations will be congidered later.

The proof of Bogoliubov-Parasiuk's theorem /8/ for 't Hooft's
scheme is given in /3’9/, where also the following important fact
(which is the necessary condition of renormalizability) ie estab-
lished: all R-operation counterterms have only the polynomial de-
pendence on the external momenta. Consequently, the renormalizati-
on constants do not depend on the ratios of external momenta at
all /6/, and we can simplify the calculations by setting some of
the external momenta to be zero /10/ « It is shown in paper/11/
that the counterterms are also polynomials in masses if there is no
normal ordering in the theory. It results in the mass-independence
of all renormalization constants, all the masses being renormali-
zed multiplicatively. However in the present paper only the asymp-
totic rorm of renormalization group equations is studied so that

all masses can be put equal to zero from the very beginning.

I1I. Renormalization group_equation in 't Hooft's scheme.

It is necessary now to write down the basic lormulas oIl

}

't Hoort's approach to clarify the derinitions which will ove used
in the following section. Consider the two-cnarge theory with

a gauge r'ield. The renormalizations look as follows:
- (he 5 2bdl)
4 (hg)
=4S (g+ 5 J_j-r_z/
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where subscript "BY relers to unrenormalized quantit-es, o ig

the gauge parameter, =i§—'l and M is the "dimension oi space-

- 1e .
-time". The functions avandli,are independent of « / ‘/. liote

that the renormalization constants of the propasators are, as usu-

_1 . .
al, denoted by Z . lhe renormalized Green iunction is
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One can obtain the Ovsiannikov equation oi the type (I.14) by
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dirferentiating ( 2) with respect to
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where all diiferentiations are carried out with hB, gg and /g
(os well as Kand € ) Tixed. The runctions a, 8) ¢ and d can be
determined uniquely <rom (2) order by order in h andg » However
we shall evaluate the renormalization group functions (3) using

/3,

R-operation or ’J/, becauge it is completely equivalent to
't Hooit's prescription. The functions (3) do not depend on the
ratios ol external momenta. Thererore,only a certain part of each
diagram which is independent of external momenta caﬂ contribute
to the renormallzatlons (1).Given any diagram G, we denote this
part by KR 6,

RG = é{" K/RIG »
where R is a symbol of R-operation in the sense of 13,9/ and the
operator K keeps only the pole terms in the Laurent series in € .
In other words, the operation R’ performs subtraction of all the
subgraphs of € but does not subtract the diagram G as a whole.
The KQ‘G» is the polynomial in the extermal momenta, so that in
the case of logarithmically divergent diagram it does not depend
on them at all. This is valid also in the case of linear divergence
i1’ we introduce the trivial momentum factor prescribed by the
corresponding Feynman rule into the definition of KR , I'or examp-
le, RG'/, =é{—l(//}' k/G'- . ie can rcpresent K& in the fol-

lowing iorm:
. p ) B
ely) - eh) =Tl g ey =2 L

where G%} is the diagram & with some of its subgraphs contracted
~into a point. Let k,r be the result oi acting of ,e, upon each
diagram of the Green runction F(k;cts upon tree diagrams and one-
-loop diegrams as the unity operator). Comparing (4) with (2) yields

the required formula to calculate the renormalizations:

Z/* =4 - kﬂlfv
This relationship allows us to choose the external momenta in the
most convenient manner, for instance, setting some of them equal
to zero.

IV. Two-~loop calculations in 't Hooft's scheme.

In this section the results of two-loop calculations ol the
renormalizations (1) and renormelizetion group iunctions (3) are

presented.

A. Scalar electrodynamics

Consider the interaction of photon /y and of a scalar iso-

doublet ¥y, ¥z by the Lagrangian

of,d’e /f&/.‘/z ‘74 V/ 4’+V’/ ;lAﬂ V‘/

The calculations have been periormed in a general gauge with the

photon propagator chosen in the form

A~ /i}', /c/_{/ /

where a’ is the gauge parameter. We use the rollowing notation ror

the Green functions and their renormalization constants
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Hence 1or the coupling constants we tind

2 — 2 -2
€s =§*«2/Eezz,.f Zjiz ., he =§"/£/" Zg Zs .
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Taking into account the Ward identities
Z/}, =Z/13 =ZA

we obtailn
2 2j€E 2 _ —+4
eg =(r e Z,
Thus we need only the renormalizations of,a) Aand a .
To simplii'y the calculations the momenium arguments of the Green

ifunction L] are chosen in the following way
2} K

K o
s0 that we obtain the propagator-type integral

J dpdg F(p, g, )
P29 —g)* (-p (c-7)*
where ‘F/f; g, k/: ak? 4 f/)’ +Cyz+ d{k-ﬂ/z-f- e[k—7/2+ fﬂ””l

with cg 3... being the numerical constants. The integral associated

with the Ilirst term in -fY},?,K/is convergent and has to be omit-
ted while the others can easily /10/ be evaluated. The results of

two-loop calculations are given below
’ ¢ €
2 € 2 e e Z 2
ef p et oot £ (1 2
8 é‘(/ € et Grjv (g2 T €f
e 3 G5/ (4x/*

= ' 2 ze?
c./g - d/_{ - 3:(;‘_}2 - E(fh'/g/ )
)t iy

These functions get contributions only rrom diagrams o: the
photon propagator.‘The cancellation of the corrections to its
longitudinal part was directly conrfirmed. Note that the secona
term in}?‘3 has the same sign as the iirst, like in the case oy
spinor electrodynamics. The remaining results are listed below

-1 B-d) , et /4 2 fe 4 4
ZA =—{-—‘L—/+£—$}F7/z'—gd+4/* 2 /zé€9+.*

E(ts)? £(sx)* 28/’

= E4 £ _ 2 __9 4 (25, 2 :
o =L g (Fhorsettr £ (4 a5
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. P . _
ﬁA/ef 'I‘/ =(h_/zél'z. 5‘1624_1[57-4(/%/9/—%?434_ '2?{/’1@24' %’/neg—ﬁw’esj_

Just as it was expected /0,12,13/ both the Gell-kann-Low tunctions
have appeared to be independent of the Zauge parameter. As have
been mentioned there is no dependence or the ratios ol the exter -
nal momenta in the above equations as well. Je are now in a posi-
tion to write down the Ovsianmikov equations (in two-loop approxi-
mation) for the Green iunctions and invariant charges oi scalar
electrodynamics in 't Hooft's approach. Using the normalization
conditions one can represent the solutions to these equations as
the perturvation series in "the efiective coupling constants"/S/.
However the most convenient Torm of renormalization group equati-
ons seems to be the Lie form, so it is attractive to proceed in
the Tollowing way. From the two-loop Ovsiannikov equations and
one-loop normalization i{unctions (calculated tor the particular
momentum dependence of the Green iunction under consideration) one
obtains two-loop Lie equations using the conversion formulas of

Ref.1. The Lie equations oi the form (I.Y), (I.15) are valid for



an arbitrary renormalization scheme, because the iunction lf’r. does
not vary irom one scheme to another. For instance, one can solve
thece ecuations in the irame of /\ -scheme, which is attractive

vy the triviality o1 the normalization conditions. However to simp-
lity the calculations one can choose to work with the equations in
the rorm (I.9a), (I.15a),

It should be noted that ,Be (e‘) in two-loop approximation coin-
cides with the corregponding tunction 7é{ez/ of the Lie eguation.
Itis acongequence of h -independence of ﬂe . llence the tunction
fe(e)has no zeros outside the origin, so there occurs the well-~

-known ghost-pole trouble in two-loop scalar electrodynamics.

B. _Pseudoscalar Yukawa interaction.

The interaction Lagrangian of iermion and pseudoscalar boson
fields is
Lud = 9T hpy =Ly’
#We use the rollowing notation. Z;iand Z;_._iare the renormalizations
of boson and fermion propagators respectively, Z,~ and Zg are
the renormalizations of three and four-point vertices, so that

g;=}~7£00’2,.2 2;12;1 and ﬁs %}’22”ztzare charge renormalizations.

The two-loop calculations result in the following

£ 297
20 By i (K -5
-1 2 _11?* 23 9
Ze =t Gt ygl/;,/f ﬂs‘%:/* ’
2 — L (30%, 0%
Zr =1 +£§w/1 +£‘ (h—/‘ 25(#/’/33 *d

= 2y ¢* __i__/i 2 2 ¢
Zp =1+ 25(4:}‘ ~iwfm tee (iR 3 $69 -
3 /3 1— 2 ¢ 6‘/
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Prom these, using (3), one can easily obtain the anomalous dimen-

sions. Wultiplication of the corresponding renormalization cons-

tants allows us to rind

9

/33/? L = (9:’"‘(#}*/?; %% - ;57’ (5)
/81‘(? A/ ief /l 4?2[—?7 (.;f—/,,/'f‘?f—@’/. *J"f%”—"ﬂf/

Now we can write the Ovsiannikov equation i'or the Green :iunctions
and then, according to the above prescriptions, transtorm it in-
to the two-loop Lie equation of (I.15a) -type.

First of all we have to investigate the system

%i,é{zﬁjy = £y Gyug' b, ule g 4,
'lﬁ_/&jji/g/gh/;} /x,ffx,[ 3 /x,dq’, A//.

2 b x
¥ith the use of the explicit form of ﬂj and ;h it can be shown

that there is only one ultraviolet stable rixed point on the whole
muse piame  (3g,8) ) vanety ¥ F L G ET= 1
The values ? and ?;'» are limits ot %/x’jf A} and ?,./X,Jz, l,},
respectively as X tends to intfinity (see rig.1). Hence a
certain Green iunction ['/X } , as it tollows from

(1. 15a), in the asymptotic reglon behaves as X (’J (;j izc}

To find the asymptotic vpehaviour of the boson and lermion propa-
gators we are to evaluate the one-loop contribution to the corres-
ponding p(ji /;} and to use (I.lo). The calculations result Ii-

nally in
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Pig. 1. The phase plane of the Yukawa model in two-loop
approximation. The arrows indicate the direction of the

momentum increasge.
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The two-loop approximation of the Yukawa theory have already been
considered in paper /14/ where the Feynman cut-off method was
used and the asymptotic form of & one-parameter set oi Green func-
tions was calculated. The momentum dependence of each member of
the family was characterized by a parameter . The number o1
fixed points was found to change with changing @ . Cne can see
from the conversion formulas that in the non-perturbative approach
thé number of zeros of the Gall-Mann-Low function cannot change,
but in any given order it can, as was directly observed by the
authors of paper /14/. The conversion iormulas may be used to com-
pare the results of the calculations in /14/ with those of the
present paper. We only notice that the expression (5) must not
depend on the remormaligation scheme used so that the conversion
formulas cannot explain the discrepancy between (5) and the ana-
logous equation in /14/.

It has been mentioned, that the equations /13%71:/%(?7‘/&11(1
139"; =}Aéf‘lﬂescribe the change oi‘jland /1 za.s/l,z varies, all ob-

servable quantitiesg remaining constant. It is interesting that

in the Yukawa theory (in contrast with scalar electrodynamicg, for
instance ) there are two solutions of these equations which pass
through the origin of the phase plane of the charges 2?1 and A .
Hence suggesting that the quartic meson interaction is generated

by the Yukawa fermion-megon coupling, we can consider h to be
dependent on (?2 . This dependence is actually given by the solu-
tion, passing through the origin. The first two terms in the exXpan-

2
sion of h in powers ofi can be obtained from (5) and (6):



2] 2, ¢ -+ €
h/(y/— «g°+p9" + 0(3*/
19; 3530 -2 - 96

» B = 2 («4-2) ’

C. The Wess and Zumino model

/15/

The Lagrangian oi' this supersymmetric model is
ot =94 8 vay -4 (4% 8Y)°
wt =L BY - gVAY —G (A8
where §/ is a liajorana spinor, /4 and l? are scalar and pseudoscalar
boson iields respectively. The notation of renormalizations is the

same as oI the previous example. The calculation yields
Zf =j )
; ¢
E 4 6
- _ - = + »
Egg = EZ;— £Z£7 E.ls/ :J* 5(?N/¢
PG =224 / BRAN
First o1 all, we see that the Ward identities /16/ have proved to
be valid at the two-loop level. Besides that there is an ultravio-
let stable fixed point in this theory due to the existence of ze~
4 2 A
ro in at the point ;=77 = —— . The above expression for
'347/ P G d= = 7 P
ﬁg# is applicable to an arbitrary scheme o1 renormalizations.
Therelore the Wess and Zumino model analyzed in the two-loop app-
roximation exhibits the finite asymptotic behaviour. Tne invari-
ant charge is a product of the propagators. Hence one can find,
using the vWard identity 93&/ 9}‘/{ , that the lsymptotic
behaviour oi the Green :unctions is algo finite. Indeed, g "'9,: 93
'QF =93 » 80 that Q) —const as 3 —93: , and similarly
for the iunction E] In other words the corresponding Green func-
tion obeys the equality'VZ?;)=0. In both the Yukawa-type models

considered above, by analogy with the scalar electrodynamics, we

14

put some external momenta equal to zero to simplify the calcula-
tions ol the diagrams. The only requirement on the choice o. the
momentum dependence of the given diagram is to prevent the appe-
arance or the spurious infra-red divergences. It is easily achi-

eved, ror instance, in the following way
1
4 0 K

\\
KAK ‘(’lﬂ\\o

It should be noted that it is only 't Hooft's scheme that
enables us to make such a simplification without changing the

results.



9.
10.
11.
12.
13.

14.

15.
lo.

Relerences

A.A.V1adimirov. JINR Preprint, E2-8650C , Dubna,l1S75.

G. 't Hooft, l.Veltman. kucl.Phys., B44, 189, 1472.
L.R.Speer. J.kiath.Phys., 15, 1,1974.

G. 't Hoott. Lucl.Phys., Bol, 455, 1973.

S.¥einberg. Phys.Rev., D8, 3497, 19Y73.

J.C. Collins, A.J.liactfarlane. Phys.Rev., D10, 1201, 1974.
K.Shizuya. Wucl.Phys., B73,339,1974.

H.J.Holwerda, ¥.L. van Neerven, R.P van Royen. Nucl.Phys.,

B{S, 302, 1974.

S.Y.Lee. Phys.Rev., D10, 1103, 1974.

1.4.Bogoliubov, 0.S.Parasiuk. Acta Math., 97,227, 1957;
K.Hepp.Comm.Math.Phys.,2, 301, 1966.

H.J. de Vega, F.A.Schaposnik. J.Math.Phys., 15, 1998,1974.
D.R.T.Jones. Nucl.Phys., B75, 531, 19Y74.

J.C.Collins. Nucl.Phys., B8O, 341, 1974.

L.Banyai, S. karculescu, T.Vescan. Lett.Nuovo Cim., 11,151,1974.
W.E.Caswell, F.Wilczek. Phys.lett., 12?,291,1974;

R.E. Kallosh, I.V.Tyutin.Yad.Fiz., 20,1247,1974.

G.M. Avdeeva, A.A.Belavin, A.P.Protogenov.Yad.Fiz., 18,1309,
1973.

J.Wess, B.Zumino.Phys.lett., 495, 52, 1974.

J.Iliopoulos, B.Zumino.Nucl.Phys., B/6,310,1974.

Received by Publishing Department
on March 3, 1975.



