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Canonical Realizations of the Lie Algebras 
gl ( n, R) and sl ( n, R) • I. Formulae and 

Classification 

The generators of the Lie algebra of the general li-
near group gl(n,R) and of the specia:;, linear group 
sl( n, R) · are, recurrently, expressed through polynomials 
in the quantum canonical variables Pi and qi • These rea
lizations are skew-hermitean, the Casimir operators are 
realized by constant multiples of identity element and, in 
dependence of the number of the canonical pairs used, they 
depend onk(k-1 for sl(n,R)). k=2, ... ,n free real parameters. 
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1. INTRODUCTION 

Realizations of classical Lie algebras in the Weyl al
gebra or in an associated quotient division ring have been 
considered in the last years from different points of view. 
Besides the study of the Weyl algebra and different al
gebraic structures associated with the Weyl algebra 
itself and the presentation of various classes of realiza
tions of Lie algebras in these algebraic structures there 
was the problem of minimal canonical realizations which 
has been treated successfully. The minimal number Nminof 
canonical pairs q i and p. which are needed for faithful 
realizations of classical lie algebras are determined al
most completely /1,2,3/. As to the Weyl algebra the number 
N min equals n ( = rank) for the algebras An and C n and 

N . mm 
2n - 2 or 2n- I 
2n - 3 or 2n- 2 

for Bn 
for Dn 

(the uncertainty can be removed for algebras with small 
dimensions). 

It is further shown that minimal canonical realizations 
are Schur-realizations, i.e., all Casimir operators are 
realized by multiples of identity element. As, however, the . 
number of canonical pairs is as small as possible the set 
of minimal canonical realizations is not too rich and some 
"degenerations" among them can be expected. It is shown 
in /3/ , e.g., that with exception of some low-dimensional 
cases, in any realization of the Lie algebras Bn( D n) in 
the Weyl algebra by means of 2n- 1 ( 2n- 2) canonical pairs 
only one independent Casimir operator exists at most. 
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To remove this degeneration one has to try to enrich 
the set of realizations and to this purpose the Weyl al
gebra with N min pairs must be enlarged. The simple 
change of the number of canonical pairs may be combined 
with the algebraic extension of the Weyl algebra, e.g., 
its embedding in quotient division ring or in the matrix 
Weyl algebra. 

It may happen, however, that removing degeneration the 
realization will not be further a Schur-realization as in 
non-minimal realizations this property needs not to be 
necessarily fulfilled. The question whether ''non-degener
rated" sets of Schur-realizations exist had been positi
vely solved in 15

/ for the Lie algebra o( n ,m) in the frame
work of matrix canonical realizations. 

In this paper we deal with the same problem for Lie 
algebras gl(n,R) or sl(n,R), respectively. In contrast 
to the case of o ( n, m) the investigated realizations of these 
algebras are contained in the Weyl algebra with an appro
priate number of canonical pairs. We give a family of 
( d + I) -parametric classes, d = 1,2, ... , n -· 1 , of realizations 
in the Weyl algebra by means of N (d) =4- Un- d-1) cano
nical pairs. These realizations possess the following 
"good" properties. 
(i) The Casimir operators are multiples of the identity 

element. 
(ii) The realizations are "inequivalent" (non-related) up 

to endomorphisms of the Weyl algebra. 
(iii) The realizations are skew-hermitean. 
(iv) The realizations of the ( d + 1) -parameter set possess 

Casimir operators the eigenvalues of which can be 
polynomially expressed by ( d + I) independent sym
metri~ functions of the parameters. 

The last property will be considered in detail in the second 
part of this paper where the Casimir operators of the 
given realizations are studied. 

2. BASIC NOTIONS 

The Weyl algebra "2N is the associative algebra 

4 

over C with identity generated by 2N elements q 1 and 
p 1 , i = 1,2, ... , N , , which satisfy the relations 

p
1
qJ-qjp 1 =o 1JJ i,j=l,2, ... ,N. (1) 

According to the Poincare-Birkhoff Theorem a basis in 
W 2N is given by the ordered monomials 

kl kN 11 1 N 
qkp1 = ql ... qN Pt ... pN ' (2) 

i.e., every element x of W
2

N can be uniquely written in 
the form 

~ k I 
X = ,:., ak I q p 

k ,I 
ak I ~ C • (3) 

0" e fin it ion 1: A canonical realization of a Lie algebra 
L in W 

2
N is an homomorphism ¢ 

¢: L _, W2N. 

We shall consider this homomorphism in all cases already 
to be uniquely extended to a homomorphism of the envelop
ing algebra U L of L into W2N • (If we speak in the 
following about realizations we mean always canonical rea
lizations). 
Definition 2: The realization 9 is called to be a 

Schur-realization if every central ele
ment z of the enveloping algebra UL is 
realized by a multiple of the identity 

</J(z) =A J z A ~C. z 

De fin it ion 3: Two realizations ¢ and ¢' are called 
to be related if an endomorphism () of 
W2N exists such that either 

¢'(g)= ()(¢(g)) 
or ¢ (g) = ()(¢'(g)) for all g ~ L 

For possible applications to representation theory we 
introduce in \\2N the involution "+ " through the follow
ing relations 
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+ 
qi = q i , 

p+ =-p .. 
j I (4) 

A realization ¢ of the real Lie algebra L is then called 
skew-hermitean if 

¢(g)+ =-¢(g) for all g ~; L (5) 

holds. 
Besides realizations of the Lie algebra gl ( 11, R) we con
sider also those of the subalgebra sl ( n, R). The Lie algebra 
sl ( n, R) is simple and a noncompact real form of the 
complex Lie algebra A 0 _ 1 of the Cartan classification. 
The rank of sl (n , R) equals n - l . Canonical realiza
tions of sl ( n, R) can exist only in \\2N with N > n - l 
(see / 1

•
2

/ ). The standard basis of gl ( n, R) is gfven by 
the n

2 elements ~'ij which are, in their nxn -matrix 
representation, matrices with the matrix elements 
( eii )kl = !i ik 8 H The commutation relations have the 
form 

[ e ij ' e kl J = 0 jk e il - 0 li (' kj ' 

The element 
n 

e = ~ e ii I; gl ( 11 , R) 
i=l 

i,j,k,l = 1,2, ... ,n. 

commutes with all e ii and the elements 

a = e - .!:.....o·· 
ij ij n 1l 

obey the same commutation relations as e .. 
IJ 

[a ij , a k! J = o jk a il - o H a kj 

Since 

6 

n 
~ a .. = 0 

i = 1 II 

(6) 

(7) 

(8) 

(9) 

(10) 

l 

the n2 elements aii are not independent; the nz- l ele
n-1 

ments a ij without ann=- v ~ 1 av1/ form a basis of the sub-

algebra sl ( n, R) of gl ( n, R) • 
The realization of an element x ~; L will be denoted by 
the same but capital letter. 

3. CANONICAL REALIZATIONS OF gl(n, R) AND sl(n,R) 

Theorem 1: Let F
11

v, fL,v= 1,2, ... , n -l , be a canoni
cal realization of generators of gl (n- I, H) 
fulfilling (6) in W2m • The following for
mulae define a realization E i.i =-1<: ii ( 1·;1 1,, a) 

of ~~ ~ n , H) in \\ ~ n- 1 + m ~ · 

E =qp+F + 1 o 1 ill/ !1 V fll/ 2 (Lil 

Enr = - PtL 

EtLn = qfL (qvflv + ~ - ia) + qvFfLI' 

E = - q P n- I . 1 (" nn 1/ v- --y- + 1 u , u I; , (11) 

(summation over 1, ). 

This realization has the following proper
ties. 
(i) The realization is skew-hermitean if 
a is real and if F are skew-hermi-

fL I' 
tean. 
(ii) The realization is a Schur-realization 
if the realization of gl ( n-1, H) i~ a Schur
realization. 
(iii) Two realizations (11) with different 
values of the parameter a are non-relat
ed. 
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(iv) Two realizations (11) differing only 
in the realization of gl( n- 1, R) are related 
if and only if these realizations of gl(n-l,R) 
are related. 

In the proof we use two assertions which are ~,sy pro-
vable and generalize known properties of W2 /& • (We 
remark that [qp, qk p 1 1 = ( k-l) qk p 1 holds in W 2 ). 

Assertion 1: If x~W2N commutes with Pi (resp q i) 
then x does not depend on q i (resp. pi ). 

Assertion 2: Assume that for x ~ W2N there holds 
[q1p1+ •.• + qN,PN'' x] = mx 

for some m = 0, ± 1,± 2, ••• where N '~ N . 
Then 

X = I, 
k,l 

k -l=m 
where 

akl qkpl, 

l _ k 1 kN, 11 1N' 
aklq"p -ak k 1 1 q ••• q P ···P 

1 , •.• , N'' e···' N' 1 N' 1 N' 

k-1=k 1+k2 + •.• +kN'-1 1 - ••• IN' and a k1 do 
not depend on q1 , ••• , qN', p1 , ••• , PN'· 

(i) We shall not write here the explicit verification that 
Eij from (11) satisfy the commutation relations (6) and 
that they are skew-hermitean for real values of the para
meter a and skew-hermitean F

11
v. 

(ii) Let us consider a central element z from the envelop
ing algebra of gl( n,R) .By Z we denote its realization 
induced by (11), 

Z = I, a kl qk p 1 ' 
k,l 

where ak1 are polynomials in F 
11
v, i.e., akl ~ W 2m and 

where k k 1 1 
k l 1 n-1 1 n -1 

q P = q 1 •·• qn -1 P 1 ·•• p n -1 • 

Since 
[Z , En 111 = - [ Z , p 11 1 = 0 , 11 = 1,2, ..• , n - 1 
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I 
\ 

I 

' 

from assertion 1 it follows that Z does not depend on 
q 

11
, 11 = 1, 2, ... , n 

Z=I.aopv 
v v 

The relation 
0 = [ Z, E00 ] = [ Z , I. !fv p vl , 

v 

assertion 2 for m=O and equation (12) simply give 

z = aoo • 

(12) 

It remains to show that a 00 =a 00 ( F v) does not depend 
on F

11
v. But this is a direct consequ~nce of 

[ a 0 0 ' E ILV l = [ a 0 0' F ILV l = 0 ' 

because the realization of gl( n -1, R) was assumed to be 
a Schur-realization. 
(iii) and (iv). Let E ij and E tj be two related realiza
tions (11). That means there exists an endomorphism 
() ~ End W2 (n- 1 +m) such that 

()(Eij) =E;j 

We show first that then a= a' 
From equation 

for all i, j = 1,2, ••. 'n. 

() (E"Il ) = E~ 11 = - p 
11 

, 11 = 1, 2, ••• , n- 1 

we get 

()(pll)=pll. 

As () ( J ) = J, the equation 

()(Enn) = E'nn 

can be rewritten in the form 

(e (q ) -q )p =a-a'. 
v v v 

(13) 

(14) 
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Since ( e ( q v) - q v) as element of the Weyl algebra cannot 
have a negative p 

1
, -degree, equation (14) can hold only 

in the case a= a ' . This proves (iii). To show (iv) we 
assume that a' o~ a and hence we write equation (14) as 

0 ('I p ) = q l'p" . 
I' l' v 

(15) 

Now we use the relation 

\ {) ( Jl / ( ) ' {) ( fJ I) \ 0~ (} (( p /1 ' q II \ } o,[ p /L ' q ) ' 

which together with equation (13) gives 

!11 ,O(n )-q \=0, IL ., I' ,, 
IL, I'= 1, 2, ... , n - I 

and we can conclude, that according to 
elements o ( q 

1
,) - 'l ,, do not depend on 

o (" ) is of q -degree one. .,,, l' 

Further the relation 

\O(q I' ) ,O(n) \ =O(n) 
l' l' . IL ., fL 

leads, due to eq. (15), to the relation 

[o, p ,O(q )i =O(q) 
l' l' IL ll 

assertion 1, the 
q . That means 

IL 

and applying assertion 2 for m =I we see that 

e(q) =q,(. 
ll 

(16) 

Since the remaining m canonical pairs of \\2m , which are 
used for. the realization of gl ( n- l, H) , commute with 'I 1, and 
p , 11 = l, ... , n- l we see from (13) and (16) that 0 (p P ) and 
tit p ) , p = n, n + 1, ... , n - l + m ,commute with 11 and p fL , 

11
! 1, 2, ... , n- 1, and therefore due to assertioh 1 the il ( q ) 

and &( Pp) , p = n, n + l, ... , n -1+ m ,cannot depend on ~ 11 arld 
p , , 11 = 1,2, ... , n - 1 . That means the endomorphism o of 
~( n -1 + m ) restricted to \\ 2m is an endomorphism 
e of w 2m • 

From the relation 

8(Eij) = Ejj 
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t 
'I :1 

we get therefore O(F )=F' 
/lV /lV 

On the other h~nd, if Fp.v and F' v 
endomorphism e of w

2
m for which 11-

-
8(Fp.v) =F~v 

are related, the 

can be extended to an endomorphism e of W2 (n-l+m) by 
setting 

fJ(qp.) =q/1 

e, ) 
~ p fL P fL ' fL = 1, 2, ... , n- 1. 

This yields 

0 ( E ij ) o. E tj 
and the proof is completed. 

Now we use theorem 1 in an iterative manner to 
construct new realizations of gl ( n, R) with more than 
one parameter. For notation of the new realizations we 
introduce, by analogy with the representation theory, the 
notion of "signature". 
Definition 4: The ( n + 1) tuple,, n > 2 

(d;O, ... ,O,a d, ... ,a-) 
n- n 

with d= 1,2, ... ,n-1 and ai~,;R,i=n-d, ... ,n 
is called signature. 

Theorem 2: To every signature(d;O, ... ,O,q..d, ... ,an) there 
corresponds a canonical realization of 
gl ( n, R) , n > 2 in W with N = N ( d) 

- 2N 

= ~ ( 2n - d -1}. This realization is defined 

as follows. 
a)(l;O, ... ,O,an-1 ,an) 
za tion ( 11) of gl ( n , R) 

. ofLvl 
F/lv = I an -1 --;-:-I 

denotes the reali
with. a = a n and 

b) (d;O, ... ,O,an-d , ... ,ag),d>1, denotes 
the realization (11) of gl ( n, R) with a= an 
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where the realization of gl ( n- l, R) has the 
signature (rl-l;O, ... ,O,an-d , ... , an-V .The 
realization with signature ( d; 0, .. . , 0 , 
an-d, ... ,an) has the following proper-

ties. · 
(i) This realization is skew-hermitean. 
(ii) This realization is a Schur-realiza
tion. 
(iii) Two realizations are related if and 
only if their signatures are the same. 

The proof follows from theorem 1 by simple induction. 
Note only that the realization of the algebra gl ( n - I, R), 

0 1 
F ~v =ian_ 1 _IL~ 1· (not included in our set) is non-re
lated to a 1 ealization of gl ( n- l, R) with any signature. 

The described realizations have the following two 
simple properties. 
Lemma 1: (i) In a realization with signature (d; 0 , ... , o 

n 

an- d , ••• , an ) the element E = I E JJ 
j= 1 

n 
is given by E = i I aJl. 

j=n-d 

(ii) If we denote by E ~}A) the generators 
of the realization with signature ( d; o , ... , 0, 

a _ (n-d)A 
n-d - --n 

A A 
'an-d+1-n'''''an- -;) 

A.:::;: R , then 

r(A) r(O) . A 
E tJ = E tJ - I " o ij J • 

Proof: For d = I both the assertions follow immediately 
from formulae (11). Further we proceed by induc-
tion. 

Now we shall specify our results for the subalgebrasl (n ,R). 
We denote the set of all signatures by I and its subset 

n 
consisting of all signatures with I a 1 = 0 by I 0 

i=n-d 
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c 
clearly ~ o =I L . We consider the realization of the Lie 
algebra s! ( n, R) with the basis 

A ij = E ij - fo .. 
n 1J 

(17) 

(see eq. (8)) where E ij is a realization of gl ( n, R) with 
signature r ~ :£ . The realization of sl ( n, R) with the 
generators (17) will be denoted also by the signature r . 
As sl ( n, R) is a subalgebra of gl ( n, R) non-related rea
lizations of gl { 11, R) may lead to related realizations of 
sl ( 11, R) . The question, which realization of sl ( 11, R) can 
be omitted, is solved by the following theorem. 
Theorem 3: (i) Two realizations of sl(n,R) with signa-

tures from 2. 0 are non-related. 
(ii) For any realization of sl ( 11, R) with 
signature r 4;;: 2. there exists a related 
realization with signature in :£ 0 . 

Proof: (i) The first assertion of lemma 1 implies E=O for 
realizations with signatures from ~ 0 , therefore, A ij = Eij. 
Hence, the realization of sl ( 11, R) is the particular case 
of the realization of gl ( 11, R)and assertion (iii) of theorem 2 
can be applied. 

n 
(ii) Denote A = 2. aj and together with signature 

j=n-d 
r(O) =(d; 0, '"'' 0, an-d, ... , an) 

consider the signature 

() ( 
(n-d)A ,\ ,\, 

r ,\ = d; 0, ... , 0 , a d- ---, a d 
1

- -, ... , a - - J • n- n n- + n n n 

The corresponding realizations of ~1 ( n, R) 
r(O) 

Ar_<_O)= E~~O)_ ~--15 .. = E~~O)_ i ~ 8 .. l 
1J 1J n 11 1J n 11 

and 
{(.~) = E :.(,\) 

1] 1] 

lie in ~ 2N <d) and due to assertion (ii) of lemma 1 the 

realizations are the same A~~o > = Ar?), i.e., they are tri-
1J 1] 

vially related. 
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4. CONCLUDING REMARKS 

1. With exception of skew-hermiticity and its conse
quences all assertions are valid also for the complex 
Lie algebras gl ( n, C) and sl ( n, C) . · 

2. Realizations with signatures ( 1; 0 , ... ,0 ,an_1 ,an) are 
minimal realizations of gl( n, R) or (with a 1 =-a ) n- n 
of sl { n, R) respectively. 

3. The relations (11) contain the possibility to obtain 
further realizations of gl ( n, R) , different from the studied 
one, because the F 

11
v 's must not necessarily be canonical 

realization in W
2

m. . Relations (11) define a realization 
of gl ( n, R) whenever the F 

11
v 's fulfil the commutation 

relations of gl ( n- lJUand commute with the canonical 
variables q

11
, p 

11 
, 11 = 1, 2, ... ,n- l. Of course, if the used rea

lization of gl ( n- 1, R) will not have such properties as 
skew-hermiticity, etc., the same properties cannot be 
expected from the realization of gl ( n, R) . 
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