> ОБЬЕАИНЕННЫЙ ИНСТИТУТ
> ЯАЕРНЫХ ИССАЕАОВАНИЙ

$$
9 / 1-75
$$

$$
H-39
$$

CANONICAL REALIZATIONS
OF THE LIE ALGEBRAS gl(n,R) AND sl(n,R).
I. FORMULAE AND CLASSIFICATION

E2 - 8646

M.Havlíček, W.Lassner

CANONICAL REALIZATIONS OF THE LIE ALGEBRAS gl(n,R) AND sl(n,R).

 I. FORMULAE AND CLASSIFICATION

 I. FORMULAE AND CLASSIFICATION}

Submitted to "Reports on Mathematical
Physics".

Гавличек М., Ласснер В.

E2 - 8646
Канонические реализашии алгебр Ли $\operatorname{gl}(\mathbf{n}, \mathbf{R})$

$$
\text { и } \operatorname{si}(\mathrm{n}, \mathrm{R}) \text {. І. Формулы и классификаиия }
$$

В работе генератор ал алгебр Ли $\mathbf{g l}(\mathbf{n}, \mathbf{R})$ и $\mathbf{s l}(\mathbf{n}, \mathbf{R})$ рекуррентно выражены через полиномы квантово-механических канонических переменных q_{i} и p_{i}. Эти реализации антиэрмитовы, операторы Казимира в них кратны единице и в зависимости от числа использованных канонических пар зависят от $\mathbf{k}(\mathbf{k}-\mathbf{1}$ для $\operatorname{sl}(\mathbf{n}, \mathbf{R})$) $\mathbf{k}=\mathbf{2}, \ldots, \mathbf{n}$ свободных действительных параметров.

Работа выполғена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1975

Havlíček M., Lassner W.
E2 - 8646

$$
\begin{aligned}
& \text { Canonical Realizations of the Lie Algebras } \\
& \operatorname{gl}(\mathbf{n}, \mathrm{R}) \text { and } \mathrm{sl}(\mathrm{n}, \mathrm{R}) \text {. I. Formulae and }
\end{aligned}
$$ Classification

The generators of the Lie algebra of the general linear group gl(n, R) and of the special linear group sl(n,R) are, recurrently, expressed through polynomials in the quantum canonical variables p_{i} and q_{i}. These realizations are skew-hermitean, the Casimir operators are realized by constant multiples of identity element and, in dependence of the number of the canonical pairs used, they depend onk(k-1 for $s(n, R)$), $k=2, \ldots, n$ free real parameters.

The investigation has been performed at the
Laboratory of Theoretical Physics,JINR.
Preprint of the Joint Institute for Nuclear Research Dubna 1975

1. INTRODUCTION

Realizations of classical Lie algebras in the Weyl algebra or in an associated quotient division ring have been considered in the last years from different points of view. Besides the study of the Weyl algebra and different algebraic structures associated with the Weyl algebra itself and the presentation of various classes of realizations of Lie algebras in these algebraic structures there was the problem of minimal canonical realizations which has been treated successfully. The minimal number $N_{\text {min }}$ of canonical pairs q_{i} and p_{i} which are needed for faithful realizations of classical Lie algebras are determined almost completely $/ 1,2,3 /$. As to the Weyl algebra the number $N_{\text {min }}$ equals n ($=$ rank) for the algebras A_{n} and C_{n} and

$$
\mathbf{N}_{\text {min }}=\begin{array}{lll}
2 n-2 & \text { or } 2 n-1 & \text { for } B_{n} \\
2 n-3 & \text { or } 2 n-2 & \text { for } D_{n}
\end{array}
$$

(the uncertainty can be removed for algebras with small dimensions).

It is further shown that minimal canonical realizations are Schur-realizations, i.e., all Casimir operators are realized by multiples of identity element. As, however, the number of canonical pairs is as small as possible the set of minimal canonical realizations is not too rich and some "degenerations" among them can be expected. It is shown in $/ 3$ / , e.g., that with exception of some low-dimensional cases, in any realization of the Lie algebras $B_{n}\left(D_{n}\right)$ in the Weyl algebra by means of $2 n-1(2 n-2)$ canonical pairs only one independent Casimir operator exists at most.

To remove this degeneration one has to try to enrich the set of realizations and to this purpose the Weyl algebra with $\mathrm{N}_{\text {min }}$ pairs must be enlarged. The simple change of the number of canonical pairs may be combined with the algebraic extension of the Weyl algebra, e.g., its embedding in quotient division ring or in the matrix Weyl algebra.

It may happen, however, that removing degeneration the realization will not be further a Schur-realization as in non-minimal realizations this property needs not to be necessarily fulfilled. The question whether ''non-degenerrated" sets of Schur-realizations exist had been positively solved in ${ }^{/ 5 /}$ for the Liealgebra $o(n, m)$ in the framework of matrix canonical realizations.

In this paper we deal with the same problem for Lie algebras $g l(n, R)$ or $\operatorname{si}(n, R)$, respectively. In contrast to the case of $o(n, m)$ the investigated realizations of these algebras are contained in the Weylalgebra with an appropriate number of canonical pairs. We give a family of ($d+1$) -parametric classes, $d=1,2, \ldots, n-1$, of realizations in the Weyl algebra by means of $N(d)=\frac{d}{2}(2 n-d-J)$ canonical pairs. These realizations possess the following "good" properties.
(i) The Casimir operators are multiples of the identity element.
(ii) The realizations are ''inequivalent'' (non-related) up to endomorphisms of the Weyl algebra.
(iii) The realizations are skew-hermitean.
(iv) The realizations of the ($\mathrm{d}+\mathrm{l}$) -parameter set possess Casimir operators the eigenvalues of which can be polynomially expressed by ($d+1$) independentsymmetric functions of the parameters.
The last property will be considered in detail in the second part of this paper where the Casimir operators of the given realizations are studied.

2. BASIC NOTIONS

The Weyl algebra $\|_{2 \mathrm{~N}}$ is the associative algebra
over C with identity generated by $2 N$ elements q_{i} and $p_{i}, i=1,2, \ldots, N, \quad$, which satisfy the relations

$$
\begin{equation*}
p_{i} q_{j}-q_{j} p_{i}=\delta_{i j} 1 \quad i, j=1,2, \ldots, N \tag{1}
\end{equation*}
$$

According to the Poincare-Birkhoff Theorem a basis in $W_{2 N}$ is given by the ordered monomials

$$
\begin{equation*}
q^{k_{p}}{ }^{1}=q_{1}^{k_{1}} \cdots q_{N}^{k_{N}}{ }_{p_{1}}^{l_{1}} \cdots p_{N}^{l_{N}} \tag{2}
\end{equation*}
$$

i.e., every element x of $W_{2 N}$ can be uniquely written in the form

$$
\begin{equation*}
\mathrm{x}=\sum_{\mathbf{k}, \mathbf{1}} a_{k 1} q^{k} \mathrm{p}^{1} \quad a_{k 1} \in \mathbf{C} . \tag{3}
\end{equation*}
$$

Definition 1: A canonical realization of a Lie algebra L in $W_{2 N}$ is an homomorphism ϕ

$$
\phi: \mathbf{I} \rightarrow \mathbb{W}_{\mathbf{2 N}}
$$

We shall consider this homomorphism in all cases already to be uniquely extended to a homomorphism of the enveloping algebra UL of L into $W_{2 N}$. (If we speak in the following about realizations we mean always canonical realizations).
Definition 2: The realization ϕ is called to be a Schur-realization if every central element z of the enveloping algebra UL is realized by a multiple of the identity

$$
\phi(z)=\lambda_{z} 1 \quad \lambda_{z} \in \mathbb{C}
$$

Definition 3: Two realizations ϕ and ϕ^{\prime} are called to be related if an endomorphism θ of $W_{2 N}$ exists such that either

$$
\phi^{\prime}(\mathrm{g})=\theta(\phi(\mathrm{g}))
$$

$$
\text { or } \quad \phi(g)=\theta\left(\phi^{\prime}(g)\right) \text { for all } g \in L \text {. }
$$

For possible applications to representation theory we introduce in $\mathbb{W}_{2 N}$ the involution "+" through the following relations

$$
\begin{align*}
& \mathbf{q}_{\mathbf{i}}^{+}=\mathbf{q}_{\mathbf{i}}, \\
& \mathbf{p}_{\mathbf{i}}^{+}=-\mathbf{p}_{\mathbf{i}} . \tag{4}
\end{align*}
$$

A realization ϕ of the real Lie algebra L is then called skew-hermitean if

$$
\begin{equation*}
\phi(g)^{+}=-\phi(g) \quad \text { for all } g \in L \tag{5}
\end{equation*}
$$

holds.
Besides realizations of the Lie algebra $\mathrm{gl}(\mathrm{n}, \mathrm{R})$ we consider also those of the subalgebra $\operatorname{sl}(\mathrm{n}, \mathrm{R})$. The Lie algebra $s l(n, R)$ is simple and a noncompact real form of the complex Lie algebra A_{n-1} of the Cartan classification. The rank of $\operatorname{si}(n, R)$ equals $n-1$. Canonical realizations of sl (n, R) can exist only in $H_{2 N}$ with $N>n-1$ (see $/ 1,2 /$). The standard basis of $\mathrm{gl}(\mathrm{n}, \mathrm{R})$ is given by the n^{2} elements $e_{i j}$ which are, in their nxn-matrix representation, matrices with the matrix elements $\left(\mathrm{e}_{\mathrm{ij}}\right)_{\mathrm{k} 1}=\delta_{\mathrm{ik}} \delta_{\mathrm{j} 1}$. The commutation relations have the form

$$
\begin{equation*}
\left[\mathbf{e}_{i j}, e_{k l}\right]=\delta_{j k} e_{i l}-\delta_{l i} e_{k j}, \quad i, j, k, I=1,2, \ldots, n \tag{6}
\end{equation*}
$$

The element

$$
\begin{equation*}
e=\sum_{i=1}^{n} e_{i i} \in g l(n, R) \tag{7}
\end{equation*}
$$

commutes with all $e_{i j}$ and the elements

$$
\begin{equation*}
\mathbf{a}_{i \mathbf{j}}=\mathbf{e}_{\mathbf{i j}}-\frac{e}{n} \delta_{\mathbf{i j}} \tag{8}
\end{equation*}
$$

obey the same commutation relations as $e_{i j}$:

$$
\begin{equation*}
\left[\mathbf{a}_{i j}, \mathbf{a}_{\mathbf{k}!}\right]=\delta_{\mathbf{j k}} \mathbf{a}_{\mathbf{i l}}-\delta_{\underline{\underline{i}}} \mathbf{a}_{\mathbf{k j}} \tag{9}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i i}=0 \tag{10}
\end{equation*}
$$

the n^{2} elements $a_{i j}$ are not independent; the $n^{2}-1$ elements $a_{i j}$ without $a_{n n}=-\sum_{\nu=1}^{n-1} a_{\nu,}$, form a basis of the subalgebra $\operatorname{sl}(n, R) \quad$ of $g l(n, R)$.
The realization of an element $x \in L$ will be denoted by the same but capital letter.
3. CANONICAL REALIZATIONS OF gl(n,R) AND sl(n,R)

Theorem 1: Let $f_{\mu \nu}, \mu, \nu=1,2, \ldots, \mathbf{n}-1$, be a canonical realization of generators of $g(n-1, l i)$ fulfilling (6) in $W_{2 m}$. The following formulae define a realization $\mathrm{I}_{\mathbf{i j}}=\mathrm{I}_{\mathbf{i j}}\left(\mathrm{I}_{\mu,}, u\right)$ of $g!(n, R)$ in $H_{2(n-1+m}$.

$$
\mathbf{E}_{\mu \nu}=\mathbf{q}_{\mu} \mathbf{P}_{\nu}+\mathbf{F}_{\mu \nu}+\frac{\mathbf{l}}{2} \delta_{\mu V^{\prime}} \mathbf{1}
$$

$$
\mathbf{F}_{\mathbf{n} \mu}=-\mathbf{p}_{\mu}
$$

$$
E_{\mu \mathbf{n}}=q_{\mu}\left(\boldsymbol{q} \mathbf{p}_{\nu}+\frac{\mathbf{n}}{2}-\mathbf{i} \alpha\right)+q_{\nu} \mathbf{l}_{\mu v}
$$

$$
\begin{equation*}
E_{n n}=-q_{\nu}, p_{\nu}-\frac{n-1}{2}+i \alpha 1, \alpha \in \mathbf{C} \tag{11}
\end{equation*}
$$

(summation over,).
This realization has the following properties.
(i) The realization is skew-hermitean if α is real and if $F_{\mu v}$, are skew-hermitean.
(ii) The realization is a Schur-realization if the realization of $g(n-1, R)$ is a Schurrealization.
(iii) Two realizations (11) with different values of the parameter a are non-related.
(iv) Two realizations (11) differing only in the realization of $\mathrm{gl}(\mathrm{n}-1, \mathrm{R})$ are related if and only if these realizations of $\mathrm{g}(\mathrm{n}-1, \mathrm{R})$ are related.

In the proof we use two assertions which are easy provable and generalize known properties of $W_{2} / 6$. (We remark that $\left[q p^{\prime}, q^{k} p^{1}\right]=(k-1) q^{k} p^{1} \quad$ holds ${ }^{2}$ in $\left.W_{2}\right)$. Assertion 1: If $x \in \mathbb{F}_{\mathcal{V}_{N}}$ commutes with $p_{i}\binom{$ (resp }{$q_{i}}$ then x does not depend on q_{i} (resp. p_{i}).
Assertion 2: Assume that for $x \in W_{2 N}$ there holds

$$
\begin{aligned}
& {\left[q_{1} p_{1}+\ldots+q_{N^{\prime}} p_{N^{\prime}}, x\right]=m x} \\
& \text { for some } m=0, \pm 1, \pm 2, \ldots \text { where } N^{\prime} \leq N .
\end{aligned}
$$

Then

 not depend on $q_{1}, \ldots, q_{N^{\prime}}, p_{1}, \ldots, p_{N^{\prime}}$.
(i) We shall not write here the explicit verification that E_{ij} from (11) satisfy the commutation relations (6) and that they are skew-hermitean for real values of the parameter a and skew-hermitean $\mathrm{F}_{\mu \nu}$.
(ii) Let us consider a central element z from the enveloping algebra of $\mathrm{gl}(\mathrm{n}, \mathrm{R})$.By Z we denote its realization induced by (11),

$$
\mathrm{Z}=\sum_{\mathrm{k}, \mathrm{l}} a_{\mathrm{k} 1} \mathrm{q}^{\mathrm{k}} \mathrm{p}^{\mathbf{l}}
$$

where $a_{k l}$ are polynomials in $F_{\mu \nu}$, i.e., $a_{k l} \in W_{2 m}$ and $\mathrm{q}^{k_{p}{ }^{1}=q_{1}{ }_{1} \cdots q_{n-1}^{k_{n-1}}{ }_{p_{1}}^{1} \cdots p_{n-1}^{1} .}$
Since

$$
\left[Z, E_{\mathbf{n} \mu}\right]=-\left[\mathbf{Z}, \mathbf{p}_{\mu}\right]=\mathbf{0}, \quad \mu=\mathbf{1}, 2, \ldots, \mathbf{n}-\mathbf{1}
$$

from assertion 1 it follows that Z does not depend on $\mathbf{q}_{\mu}, \mu=1,2, \ldots, n$

$$
\begin{equation*}
\mathbf{Z}=\sum_{\nu} a_{0} \mathbf{p}^{\nu} \tag{12}
\end{equation*}
$$

The relation

$$
\mathbf{0}=\left[\mathbf{Z}, \mathbf{E}_{\mathbf{n n}}\right]=\left[\mathbf{Z},{\underset{\nu}{\nu}}^{q_{\nu}} \mathbf{p}_{\nu}\right],
$$

assertion 2 for $m=0$ and equation (12) simply give

$$
\mathrm{Z}=a_{\mathbf{0 0}} .
$$

It remains to show that $a_{\mathbf{p 0}}=a_{00}\left(\mathrm{~F}_{\mu \nu}\right)$ does not depend on $F_{\mu \nu}$. But this is a direct consequence of

$$
\left[a_{00}, \mathbf{E}_{\mu \nu}\right]=\left[a_{0}, \mathbf{F}_{\mu \nu}\right]=\mathbf{0},
$$

because the realization of $\operatorname{gl}(\mathrm{n}-1, \mathrm{R})$ was assumed to be a Schur-realization.
(iii) and (iv). Let $E_{i j}$ and $E_{i j}$ be two related realizations (11). That means there exists an endomorphism $\theta \in \quad$ End $\mathbb{W}_{2(n-1+m)}$ such that

$$
\theta\left(E_{i j}\right)=E_{i j}^{\prime} \quad \text { for all } i, j=1,2, \ldots, n
$$

We show first that then $a=a^{\prime}$.
From equation

$$
\theta\left(\mathbf{E}_{\mathbf{n} \mu}\right)=\mathbf{E}_{\mathbf{n} \mu}^{\prime}=-\mathbf{p}_{\mu}, \mu=\mathbf{1}, 2, \ldots, \mathbf{n}-\mathbf{1}
$$

we get

$$
\begin{equation*}
\theta\left(\mathbf{p}_{\mu}\right)=\mathbf{p}_{\mu} \tag{13}
\end{equation*}
$$

As $\theta(1)=1$, the equation

$$
\theta\left(\mathbf{E}_{\mathbf{n} \mathbf{n}}\right)=\mathbf{E}_{\mathbf{n} \mathbf{n}}^{\prime}
$$

can be rewritten in the form

$$
\begin{equation*}
\left(\theta\left(\mathbf{q}_{\nu}\right)-\mathbf{q}_{\nu}\right) \mathbf{p}_{\nu}=a-a^{\prime} \tag{14}
\end{equation*}
$$

Since $\left(\theta\left(q_{\nu}\right)-q_{\nu}\right) \quad$ as element of the Weyl algebra cannot have a negative p_{v}, -degree, equation (14) can hold only in the case $a=a^{\prime}{ }^{\prime}$. This proves (iii). To show (iv) we assume that $a^{\prime}=a$ and hence we write equation (14) as

$$
\begin{equation*}
\theta\left(\mathbf{q}_{1}, \mathbf{p}_{1}\right)=\dot{q}_{v}, \mathbf{p}_{\nu} \tag{15}
\end{equation*}
$$

Now we use the relation

$$
\left|0\left(\mathbf{p}_{\mu}\right), \theta\left(\mathbf{q}_{\nu}\right)\right|=\theta\left(\left[\mathbf{p}_{\mu}, \mathbf{q}_{\nu}!\right)=\left[\mathbf{p}_{\mu}, \mathbf{q}_{\nu}\right]\right.
$$

which together with equation (13) gives

$$
!\mathbf{p}_{\mu}, 0\left(\mathbf{q}_{1},\right)-\mathbf{q}_{1}, \mid=\mathbf{0}, \quad \mu, v^{\prime}=\mathbf{1}, 2, \ldots, \mathbf{n}-\mathbf{l}
$$

and we can conclude, that according to assertion 1 , the elements $\theta\left(q_{1},\right)-q_{\nu}$, do not depend on q_{μ}. That means $\theta\left(q_{1}\right)$ is of q_{1}-degree one.

Further the relation

$$
\left|0\left(q_{1}, \mathbf{p}_{1},\right), \theta\left(\mathbf{q}_{\mu}\right)\right|=0\left(q_{\mu}\right)
$$

leads, due to eq. (15), to the relation

$$
\left[\mathbf{q}_{1}, \mathbf{P}_{1}, \theta\left(\mathbf{q}_{\mu}\right)\right]=0\left(\mathbf{q}_{\mu}\right)
$$

and applying assertion 2 for $m=1$ we see that

$$
\begin{equation*}
\theta\left(q_{\mu}\right)=q_{\mu} \tag{16}
\end{equation*}
$$

Since the remaining m canonical pairs of $H_{2 m}$, whichare used for the realization of $g l(n-1, R)$, commute with $q_{i / i}$ and $p_{\mu}, \mu=1, \ldots, n-1$ we see from (13) and (16) that $\theta\left(p_{\rho}\right)^{/ i}$ and
 and $\theta\left(p_{\rho}\right), \rho=n, n+1, \ldots, n-1+m$, cannot depend on $q \mu$ and $p_{\mu}, \quad, \mu=1,2, \ldots, n-1$. That means the endomorphism θ of ${\underset{\sim}{*}}_{2}(n-1+m)$ restricted to $H_{2 m}$ is an endomorphism $\tilde{\theta} \quad$ of $W_{2 m}$.
From the relation

$$
\theta\left(\mathbf{E}_{\mathbf{i j}}\right)=\mathbf{E}_{\mathbf{i} \mathbf{j}}^{\prime}
$$

we get therefore

$$
\tilde{\theta}\left(\mathbf{F}_{\mu \nu}\right)=\mathbf{F}_{\mu \nu}^{\prime} .
$$

On the other hand, if $F_{\mu \nu}$ and $F_{\mu \nu}^{\prime}$ are related, the
endomorphism $\tilde{\theta}$ of $\mathbb{F}_{2 \mathrm{~m}}$ for which

$$
\bar{\theta}\left(\mathbf{F}_{\mu \nu}\right)=\mathbf{F}_{\mu \nu}^{\prime}
$$

can be extended to an endomorphism θ of $W_{2(n-1+m)}$ by setting

$$
\begin{aligned}
& \theta\left(\mathbf{q}_{\mu}\right)=\mathbf{q}_{\mu} \\
& \theta\left(\mathbf{p}_{\mu}\right)=\mathbf{p}_{\mu}, \quad \mu=\mathbf{1}, \mathbf{2}, \ldots, \mathbf{n}-\mathbf{1}
\end{aligned}
$$

This yields

$$
\theta\left(\mathbf{E}_{\mathbf{i j}}\right)=\mathbf{E}_{\mathbf{i} \mathbf{j}}^{\prime}
$$

and the proof is completed.
Now we use theorem 1 in an iterative manner to construct new realizations of $g(n, R)$ with more than one parameter. For notation of the new realizations we introduce, by analogy with the representation theory, the notion of "signature".
Definition 4: The ($n+1$) tuple, $n \geq 2$
$\left(d ; 0, \ldots, 0, a_{n-d}, \ldots, a_{n}^{-}\right)$
with $d=1,2, \ldots, n-1$ and $a_{i} \in R, i=n-d, \ldots, n$ is called signature.
Theorem 2: To every signature ($d ; 0, \ldots, 0, q_{n-d}, \ldots, a_{n}$) there corresponds a canonical realization of $\operatorname{gl}(n, R), n \geq 2 \quad$ in $W_{2 N}$ with $N=N(d)=$
$=\frac{d}{2}(2 n-d-1)$.This realization is defined as follows.
a) $\left(1 ; 0, \ldots, 0, a_{n-1}, a_{n}\right)$ denotes the realization (11) of $\mathrm{gl}(\mathrm{n}, \mathrm{R}) \quad$ with $a=a_{n} \quad$ and $\mathrm{F}_{\mu \nu}=\mathrm{i} a_{\mathrm{n}-1} \frac{\delta_{\mu \nu} 1}{\mathrm{n}-1}$
b) $\left(\mathrm{d} ; \mathbf{0}, \ldots, 0, a_{\mathrm{n}-\mathrm{d}}, \ldots, a_{\mathrm{n}}\right), \mathrm{d}>1$, denotes the realization (11) of $\mathrm{gi}(\mathrm{n}, \mathrm{R}) \quad$ with $a=a_{n}$
where the realization of $\mathrm{gl}(\mathrm{n}-1, R)$ has the signature ($\mathrm{d}-1 ; 0, \ldots, 0, a_{n-d}, \ldots, a_{n-1}$) The realization with signature ($d ; 0, \ldots, 0$, a_{n-d}, \ldots, a_{n}) has the following properties.
(i) This realization is skew-hermitean.
(ii) This realization is a Schur-realization.
(iii) Two realizations are related if and only if their signatures are the same. The proof follows from theorem 1 by simple induction. Note only that the realization of the algebra $g l(n-1, R)$, $F_{\mu \nu}=\mathrm{i} \alpha_{n-1} \frac{\delta_{\mu \nu}^{\prime}}{n} \quad$ (not included in our set) is non-related to a 1 ealization of $\mathrm{g}(\mathrm{n}-1, \mathrm{R})$ with any signature.

The described realizations have the following two simple properties.
Lemma 1: (i) In a realization with signature (d; 0, ..., 0 ,

$$
\left.a_{n-d}, \ldots, a_{n}\right) \quad \text { the element } E=\sum_{j=1}^{n} E_{j j}
$$

is given by $E=i \sum_{j=n-d}^{n} a_{j} 1$.
(ii) If we denote by $E_{i j}^{\tau(\lambda)}$ the generators of the realization with signature $(d ; 0, \ldots, 0$,

$$
\left.a_{n-d}-\frac{(n-d) \lambda}{n} \quad, a_{n-d+1}-\frac{\lambda}{n}, \ldots, a_{n}-\frac{\lambda}{n}\right)
$$

$\lambda \subseteq \mathbf{R}$, then

$$
\mathbf{E}_{\mathbf{i j}}^{r(\lambda)}=\mathbf{E}_{\mathbf{i j}}^{\tau(0)}-\mathbf{i} \frac{\lambda}{\mathbf{n}} \delta_{\mathbf{i j}} \mathbf{I}
$$

Proof: For $d=1$ both the assertions follow immediately from formulae (11). Further we proceed by induction.
Now we shall specify our results for the subalgebra sl(n, R). We denote the set of all signatures by Σ and its subset consisting of all signatures with $\sum_{i=n-d}^{n} a_{i}=0$ by Σ_{0};
clearly $\Sigma_{0} \neq \Sigma$. We consider the realization of the Lie algebra $s!(n, R)$ with the basis

$$
\begin{equation*}
A_{i j}=E_{i j}-\frac{E}{n} \delta_{i j} \tag{17}
\end{equation*}
$$

(see eq. (8)) where $E_{i j}$ is a realization of $g l(n, R)$ with signature $\tau \in \Sigma$, The realization of $\operatorname{sl}(n, R)$ with the generators (17) will be denoted also by the signature τ. As $\operatorname{si}(n, R)$ is a subalgebra of $g l(n, R)$ non-related realizations of $\mathrm{g}(\mathrm{n}, \mathrm{R})$ may lead to related realizations of sl(n, R). The question, which realization of $\operatorname{sl}(n, R)$ can be omitted, is solved by the following theorem.
Theorem 3: (i) Two realizations of sl(n,R) with signatures from Σ_{0} are non-related.
(ii) For any realization of $s l(n, R)$ with signature $\tau \in \Sigma$ there exists a related realization with signature in Σ_{0}.
Proof: (i) The first assertion of lemma 1 implies $E=0$ for realizations with signatures from Σ_{0}, therefore, $A_{i j}=E_{i j}$. Hence, the realization of $s l(n, R)$ is the particular case of the realization of $g l(n, R)$ and assertion (iii) of theorem 2 can be applied.
(ii) Denote $\lambda=\sum_{j=n}^{n} \alpha_{j}$ and together with signature

$$
\tau(0)=\left(\mathrm{d} ; \mathbf{0}, \ldots, 0, a_{\mathbf{n}-\mathrm{d}}, \ldots, a_{\mathrm{n}}\right)
$$

consider the signature

$$
r(\lambda)=\left(d ; 0, \ldots, 0, \alpha_{n-d}-\frac{(n-d) \lambda}{n}, a_{n-d+1}-\frac{\lambda}{n}, \ldots, \alpha_{n}-\frac{\lambda}{n}\right)
$$

The corresponding realizations of $s(n, R)$

$$
\mathrm{A}_{\mathrm{ij}}^{\tau(0)}=\mathbf{E}_{\mathbf{i j}}^{\tau(0)}-\frac{\mathbf{E}^{\tau(0)}}{\mathbf{n}} \delta_{\mathbf{i j}}=\mathrm{E}_{\mathbf{i j}}^{\tau(0)}-\mathrm{i} \frac{\lambda}{\mathbf{n}} \delta_{\mathbf{i j}}
$$

and

$$
\mathrm{A}_{\mathbf{i j}}^{\tau(\lambda)}=\mathbf{E}_{\mathbf{i j}}^{\tau(\lambda)}
$$

lie in $H_{2 N(d)}$ and due to assertion (ii) of lemma 1 the realizations are the same $A_{i j}^{\tau(0)}=A_{i j}^{\tau, \lambda)}$, i.e., they are trivially related.

4. CONCLUDING REMARKS

1. With exception of skew-hermiticity and its consequences all assertions are valid also for the complex Lie algebras $\mathrm{gl}(\mathrm{n}, \mathrm{C})$ and $\mathrm{sl}(\mathrm{n}, \mathrm{C})$.
2. Realizations with signatures ($1 ; 0, \ldots, 0, a_{n-1}, a_{n}$) are minimal realizations of $g l(n, R)$ or (with $a_{n-1}=-a_{n}$) of $\mathrm{sl}(\mathrm{n}, \mathrm{R})$ respectively.
3. The relations (11) contain the possibility to obtain further realizations of $\operatorname{gl}(\mathrm{n}, \mathrm{R})$, different from the studied one, because the $F_{\mu \nu}$'s must not necessarily be canonical realization in $W_{2 \mathrm{~m}^{\circ}}$. Relations (11) define a realization of $\mathrm{gl}(\mathrm{n}, \mathrm{R})$ whenever the $\mathrm{F}_{\mu \nu}$'s fulfil the commutation relations of $\mathrm{gl}(\mathrm{n}-1, \mathrm{~K})$ and commute with the canonical variables $q_{\mu}, p_{\mu}, \mu=1,2, \ldots, n-1$. Of course, if the used realization of $\mathrm{gl}(\mathrm{n}-1, \mathrm{R})$ will not have such properties as skew-hermiticity, etc., the same properties cannot be expected from the realization of $\mathrm{gl}(\mathrm{n}, \mathrm{R})$.

Acknowledgements:
The authors would like to thank Professor A.Uhlmann for a critical reading of the manuscript and for comments.

REFERENCES

1. A.Simoni, F.Zaccaria. Nuovo Cim., 59A, 280 (1969).
2. A.Joseph. Comm. Math. Phys., 36, 325 (1974).
3. M.Havlícek, P.Exner. On the Minimal Canonical Realizations of the Lie Algebra ${ }^{0}{ }_{\mathrm{c}}(\mathrm{m})$, JINR, E2-8089, Dubna, 1974.
4. A.Joseph. J. Math. Phys., 13, 351 (1972).
5. M.Havlíček, P.Exner. Matrix Canonical Realizations of the Lie Algebra $0(\mathrm{n}, \mathrm{m}) \mathrm{I}, \mathrm{II}, \mathrm{JINR}, \mathrm{E2-8533}, E 2-8700$, Dubna, 1975.
6. J.Dixmier. Bull. Soc. math. Franc., 96, 209 (1968).

Received by Publishing Department on March 3, 1975.

