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I. Introduction 

The quantum theory of the field interacting with the 

time--dependent external ( i.e.,given classic) field or source 

is of great interest both for considerations of particular 

physical systems and as a linear quantum field model with real 

processes of particle creation and annihilation. 

However, to describe such a system in general therem no 

unique or distinguished way analogous to the familiar Fock 

second quantization for free quantum fields. The origin 

of th1.s non-uniqueness is the time variation of external 

conditions and following from this energy non-conservation for 

the quantum field. 

Till we deal with static external conditions the traditio-

na1 scheme of canonical quantization enables us to construct 

the especial representation of canonical commutation relations(CCR) 

in the Fock space in which the Hamiltonian of the quantum field 

is diagonal. It is just the Fock representation. If we formally 

change the creation operators c: and the annihilation 

operator:o~ CZ of the Fock representation by means of a Bogo--.,., 
1 ubov transfonnation to new C ~ 5 : 

r-J +· _:!. c: :::: .fL A c j + B • .I c i (1) 

---------
x) Here ~' j are collective indices for all possible 

quantum numbers. 
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then we obtain a new re]Jresentation in the space with the cyclic 

vector j 
0 

defined by the equation 

{_- 4 = (i 
" ... 

in which the familtonian is not diagonal. In this sense the new 

representation is not as good as the original Fook one and at 

the same time it is not unitary equivalent without strong 
+ . ± . 

restrictions on the ooeffioients ,fL i'J B~ I, 

Under time-dependent external conditions there is no 

representation in which the Hamiltonian is diagonal for all 

moments of time. One can only construct a set of equally good 

( or equally bad) quasi-Fock representations of whichncreation11 

and "annihilation" operators are connected by transformations 

of the type of Eq. (1). So in this case the problem arises of 

choice of a representation in which the time development of 

the system should be considered. If the external field ( or 

source) vanishes or at least becomes static in the remote past 

and future then there exist two special representations such 

that the Hamiltonian is diagonal for t __. + ~ in one representa

tion and for t ___, - oo in the other. In this case there is a ole

ar corpuscular interpretation of initial and final state 

vectors for t~:;:e><> respectively and the problem is 

reduced to determination of the unitary connection between 

them, i.e.,to the calculation of S-matrix if it exists (see, 
11-41 ) e.g. • However, the S-matrix approach is inadequate 

for description of the interaction with external gravitation 
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I 

in the framework of general relativity. In this case the problem 

of choice of a representation of CCR becomes ·mavoidable. 

One might attempt to extract information on the 

dynamics of the quantum-field in time-dependent external con

ditions from quantum Green functions, for example, fl1om the 

Feynman propagator G;,< x, x') • For the free field ( nonin

teracting at all) these functions may be determined without 

reference to the canonical quantization but an analogous 

procedure in the case under consideration does not lead to any 

unique result. 

141 /'1 ( ') The most general way to determine u-F :x,x or the causal 

Green function 'De (.x,x'J -=- i Gl" ex.:., x') is based on the 

analytic continuation into the complex plane of the so-called 

elementary solution 151 (1~\ x,x') of the field equations. 

However, the elementary solution it self is determined up to 

an arbitrary two-point regular solution Go <.x, .:x:.'J of the field 

equations, i.e.,only its singularities are determined uniquely 

and the same may be said about GF (X, X'J • If the external 

field vanishes sufficiently rapidly for t 7 !: c:>o 

one may hope to fix Go ( x, X') by the requirement of 

asymptotic coincidence of GF ( x, x 'J with its expression 

for the free field. In the general case (j-o \"', Jl- ') stays 

arbitrary. A priori the arbitrariness in GF<~.x~ is not 

necessarily equivalent to that in the choice of CCR representa

tion. The present paper is devoted just to comparison of the 

canonical fo~alis~ and the Green function in this aspect for 

a particular case of interaction of the quantum scalar field 

with an external gravitational field. A the latter we 

take the cosmological field of the homogeneous isotropic closed 
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univArs'l. In general relativistic terms we consider the quantum 

theory of a scalar field in the closed homogeneous isotropic 

space-time ( denote it as Hc1:~., 3 ).Apparently, in this case 

the S-matrix approach is the most in appropriate one. At the 

same time the system is of "applied" interest sine e in a vicinity 

of cosmological ( big-bang) singularities the quantum pair 

creation b~ the nonstationary gravitational field had possibly 

an essential influence on evolution of the Universe 16 •81 , 

Construction and comparison of some classes of representations of 

CCR is considerably simplified in H cl1,3 in view of existence 

of the t:I·oup of motions isomorphic to 0( 4), At last, as the 

space is closed we may use only discrete quantum numbersfbr 

description of q_uasi-one-particle states and thus avoid "volume" 

divergences when co~paring various representations. 

In Sec.2 we discuss what is the general form that the 

Feynman propagator should have in an arbitrary curved space-time 

and to what extent the propagator is arbitrary. In Sec.J the 

canonical field q_uantization in H d 1,3 is discussed briefly, 

It results in a great class of 0(4) invariant q_uasi-Fock repre

sentations of CCR which in general are not unitary eq_uivalent. 

In every representation one may introduce a propagator as the 

expectation value of the two time-ordered Heisenberg field 

operators in the cyclic state. Then in Sec.4 properties of these 

expectation values are compared with the general req_uirements 

for the Feynman propagator of Sec.2 and there we prove that the 

representations in which the req_uirements are fulfilled form 

a class of unitary eq_uivalence. This is the main result of the 

paper. 

6 

2, Structure of the Feynman propagator in 

the curved space-time 

In papers15 • 91 for the Feynman propagator of scalar 

field in an arbitrary curved space-time ( -v l ) with sign;ctturc -2 
l,e> 

the following general expression is fsiver. 

-' - 1 { tS'J. -. -GF ('X,.'\)- 1.31:1. ~ + -v e ... c.o.-Lo)+ k- I (2) 

~1. 
1 

1\: (./ and W being symmetric functions of .1::' and :·:-t·' , 

x,:x'~ v;_, 'i.e., ..>l-=Sl(:~:.,x.')= .D (x.x·J ' 
are defined as follows '. 

~~ is the geodesic interval between ~ 

etc, T'J.ey 

and ~· 

( i.e., one half the sq_uare of distance along the geodesic 

line). For a fixed ~· the eq_uation 

..!Ll-::\",) . .''):::::0 

determines the light conoid of the point :X' that is 

the locus of all null geodesics radjatin~ from :-r-· , 
We shall denote it by ,;l,((':x.'). ~ l satisfies the 

eq_uation 

2l.,.o. ~)..t_n = ::: .I'l 'C) 
(',._::=~ .. 

a.nd the initial condition iiw. {.1 (r. X') =:- 0 . 
:X -~)Ll 

(J) 

(4) 

Here and further all differentiations refer to the · variab-

le ): , 
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The function Ll(~·.·•') obeys the equation 

•<. . ) / A v ( .:.~ .•_, c~ :: -t~... , (5) 

where \1., is the covariant derivative, The initi~l condi-

tlor.for .!;;, i:'. c"~··• ..:lC<'.Y').-L. 
.-c.. -#A.' f 

Equatior.s for "J and t.v· result from a field equa-

tion, As the latter we prefer to adopt the conformal-cova

riant ( for •. .,_<. =0) eeneralization of special relativistic 

Foc1~-Kl ein-Gor<1on equation llO, 11 J 

,. 0 I~ ') .... (l \,. ,.. T ...... h~ .., -= ) o Y :;o v·( d.._~· ( c ~ t.. -= ~ ) (6) 

R bein13 the scalar curvature x) , Then 

. . n l.) . lU ... ., .... ,., t!:: c (7) 

1 • :J 

·c·'~";_'";\,,~,£'V)+ !,-Lfi.if+ f ~%(0+ ~ 'T" .. nb.'t.z .. 

- .1{.~ ' t" 
t (\ _Cl ( CJ I ~ -· f>t:.!) LI ~ 0, 

(8) 

Ex!lress.lon (2) is obtained by means of the correct ( i,e,, 

resultine in the same Hingularities on JC(::t.') as in the flat 

space-time case) analytic continuation of the elementary solu

t.lon '
5

' to corr.plex plane in ~ ( see also 191 ), Of course, 

the malytic continu..'l.t.lon is correct only provided 11:x. ll. 'I 

and ~-·l:.r,Y') are sufficiently regular on ,/('(.•1.·:, 'rhus, c·(x;t:'J 

x) 
However, the :re~mlt of the pape:r is valid for the 

theory with the traditioml scalar field equation\0,. •·•·.';- ~::.; 
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and w ("-, .AcJ should be sought in the form 

'\J(:X.,:lc') "' 1. v~ l:X., lc'J J2 "c.x.,.:t.') 
~~o 

-'Ufcx,,~._', L tJ~ lX, x';..fL "<x. :x:'J 
n:::"O 

with 'lf"o and Wo regular on ;i clOG') , Then substitution 

of these series into Eqs, (7) and (8) eivcs a system of 

recurrent equations for 'lf'o) · • ·) VM) and for ·wj, .> wM~ 

o"'Jl d"' U~- >!a, <J: ) + !'{ il~ 1f: ==- :! 6.- i;z ( 0 + g_ • m ._) Ll 1JL 
0 0 Jl. " 

"' ., j .1.-1;a, ll. a J2 a .. (<f •u~) + (r~dk\" 121!."'- ·;t; ( Cl. 6. m") \f.,.1. 

(9) 

(10) 

(11) 

(1?) 

" - b.-''a.( I(_ 1 _j't '0~ ;},. ~t; ''W,; + ln+i).1.-J'tw,- ---- 0 + - + mil. )(W.-r ;; J,-1)- t:. <!.., 
)_., b (lJ) 

All 'lf"'.s are determined uniquely by system (lJ) taken as a. 

whole because the integration constant for '\[.., is fixed by the 

equation for 'II~· i , On the cant rary, one may choo!le '\.Jo 

at will except for its reeularity on .1 c ( }(. ') . Tranc,ition 

from the given ~o to another is equivalent to addition of are

gular ( on £ C ( x.'J ) two-point solution of Eq. (6) to 

an originally chosen G-~ lx,x';. 

The vector d, fl. is tangent to the geodesic connecting x. 

with Jt.' , Therefore Eqs. (ll)-(lJ)may be inteerated along 

every geodesic as an ordi nCJ.ry differ cntin.l equation with a 

canonical parameter as the independent Yariable ( see,e,g. !91 ), 
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We cite the result for w .. (x,x'J: 

L" 

w (:X. ( t:J, X.'j =:- t/'t s<ii f'"lfl,.t(.xti:J,.X'j [ ~ ( 0+ ~ + m .. ) ( 'W.-l-.! J" .. -~)-
" 'L' ..... 1 "" ~ "' 

0 -v-.. }x.•l<('i?') 
(14) 

the integration being performed along the geodesic. At last it 

should be noted that all formulae and assertions of the section 

are valid only in such a domain of V1.,3 where any point x. 

can be connected with ;x; 
1 by a geodesic and this one is 

unique. 

Is there any reasonable restriction on Wo (;c..,x') in 

addition to its regularity on J.. Ccx'J ') In principle, 

it might have singularities in some points that do not belong to 

-L C C. X'). From general conditions on GF ( x, x') and from 

Eq. (14) it follows that any singularities off tL C ( x ') 

must be excluded in the domain of existence and uniqueness of 

geodesics. Equation (14) sets the minimal order of regularity 

of 'I.Afo which is necessary for regularity of '\J.J < :x., :X.'J 

in the domain. For the integral in Eq. (14) to be convergent on 

any geodesic radiating from ::c 1 the function ( of 1J ) 
0 u5 r1-.1 may, at most, 

{c:Cl 
\~r 

have a singularity of the type 

f~ < i 't:"= co .. st 

On a given geodesic of \Tj,~ with metria tensor ~ "'~ (X} 

one has 

:! ('t -t::"J.t. Jx""c13J 
1. --ol"2 

obc . .B<.tJ -r <J .. ~cx ti:JJ ~.fleX:, xHJ 
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where x" is th~ point at which ii == 'C '' , i.e. , 

.x"= X<-1;'')> X::o x<i'J. So if the geodesic connecting :x.. 

and x' passes through X" we are to have 

( -/¥ r 
0 'Wo(.x.,.:x.';J ='f1 (.:J<.,.X.'JJ2 d..(x_,x") + t,_\.:x.,.x.'), 

where 'L and T~. are some functions regular at x oX·: 
This condition is fulfilled by the substitution 

'Wocx:.x';= 'f3 <.x,x'JD.:t-~(-x-,:x."J ... Tl{(:x..,x.'J, 

T3 and T" being any functions with regular second 

derivatives at X 
11 

• It is ea.sy to be convinced of that such 

a behaviour of 'V.fo(x,x') guarantees regularity of all w"'s 
at x-'' • Obviously, this result may be formulated also so that 

Oo< UJ (x,x') is allowed to have, along a geodesic, a singula

rity of the form 

o,.UJpc.,x'J'"""' Tcx.x·;.n-.1'1 cx,x"! .f'<J., (15) 

?C 
11 

being a point on the geodesic. 

). Representations of ccn for a scalar field in H j i,j 

The metric formm a closed homogeneous isotropic space-lime 

may be written as 

J.S 2 
::c € 1

c7J ( d7 1 - h';! ( fJdf'Jf.l) i,j= 1,2,3' 

II 



where g ( '/) is a function of time-like co ordinate 't, r ~ 
are some curvilinear coordLutes rn a three-dimensional sphere 

( $3) of the unit radius. 

Canonical quantization of the scalar field, obeying 

Eq. (6), in H Jf,3 has been performed in paper 1121 and now we 

only reproduce its main results with slight changes in nota

t:l.ons. The field operator 'f may be represented by separation of 

variables in the form 

:1. oo es.v• (() _ 
f == e,('l! f ~ 1.A,cr(7) Jsc- [ ~(~)]. (16) 

(f) J J s c- [ l:t l ~ ) are ( c-nlll7lber) harmonic polynomials of power S 

in homogeneous coordinates h.''c f) , a = 1,2,3,4 on 

In other words 
~ 
fsc- is a spherical function on S 3. 

Sa. 
6' 

is a collective index for two quantum numbers that enumerate 

basis elements in the (S+:!)~ dimensional space of harmonic 

polynomials of fixed power S ; we shall not need more 

details of the basis, The operator 'User' satisfies the equation 

ii
5

.- + [cs•i)i. + mr.. gt(lz;J'Usa- "'0 (17) 

where the dots mean differentiation with respect to ~· 

At an initial moment of time "'_<> we impose the canonical 

oor.unutation relations between 'U,cr('l•) and ~>6""('1_o) which 

are equivalent to the relations between ..P ( '7 o, ~ ) and 

Oo 'f ( 7•, r) • As the form of ,C ( 7) is not fixed we may assume 

12 
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I 

~o = 0 without loss of eenerality. Then, in notations 

'(,sc: = 1Asc-l0) and psc- = Vsrr ( 0 J we have 

[ PsG", Ps•c-• J = 0, [ 'i->17'1 [/,. 5 •c-· J = 0 

L ~~c-, Ps·cr· J = ~ S_.s• S'(,-' 

Then 'U • .- ( 7 ) may be represented as 

'U ( 1) = Eo a ( 'U... 1A- ) -t " p 5c I n' ... "' - ) SC' -;--¥S<i' 5+ 5 ,-;:- I..""S- "'.> ' 
.a. :LvSo 

where So= fro1 J (s+tJ'-+mll'$, ~o :::- € (OJ, and -1A f = uf (1) 

(18) 

(19) 

are two complex conjugate c-nunber solutions of Eq. (6) defined 

by the initial conditions 

+ i • + 
'1.A~(0) = JSo J 'U~ (.0)::: :t ~.;--So • 

Using Eq. (19) we represent the field operator ~ in 

the form analogous to the expansion of the free field in the 

flat space-time in positive and negative frequency solutions 

ft:x.J= H~(') b { c;u-u;c7; + c~ .. cu;( 1;jc;;G' [I~(~J], 

where the operators 

c:G" = i=- ( Jso q,H' + :;_ P~.) 
vi vSo 

satisfy the usual commutation relations for creation ( C+) 

13 

(20) 



and annihilation C- operators. We realize c~~ as opera-

tors of creation and annihilation in a quasi Fock space cp 
with a 0(4)-invariant cyclic vector I o) defined by the equa-

tion 

C~c-lo> ::: 0 .. (21) 

However the representation of CCR thus obtained is not 

the unique 0(4)-invn.riant one. To find others we turn to expan-

sion (20). The functicns 

f f"' ( 1· 5) = 4~11 'U fc- ( 7 J rJ;c;- [ k (f) J 
form a basis in the space of solutions of Eq. (6) with the 

usual Klein-Gordon scalar product 

('±';~.,':±',_) = v.. f J r1 J ( * a'±' L d '±'~ ) 
b '1) ,..)3 ( ~ ':f~ - - _;f. '±'.. ' s3 a'L CJ'l 

(22) 

where the asterisk denotes the complex conjugation. In this space 

a representation of the group 0(4) is realized which is reducib-

le since for a fixed S each of the functions 't's~ 

and '1' ;" separately form bases of two equivalent irreducib-

le representations of 0(4). As a consequence of their equiva

lence the linear transformations exist which mix '±'\o-

and '±" ~c- and conserve scalar product (22) while commute with 

operators of the reducible group representation in the space of 
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solutions of Eq. (6). Correspondingly, there exists the 

Bogolubov transformation of C ~<r ( i.e., a transformation. 

that preserves the usual commutation relations for C~c-) 

which commutes with all generators of the group representation. 

Its general form is 

C ;c- ( ,A.) "' c ~ .... + ,A.i c ~C" 
~ -i - I .l.~ 1'-

(2J) 
I A-sl < i 

C~c-( /\J = c ; .... + ~...: c ~(;-

V 1 - I ).., Ia. 

+ • 
Obviously C S:r ::. C. SG"' (. 0) , 

These c;o-: ( 1.) are the creation and annihilation 

operators in a quasi Fock space with the cyclic vector IO, P,!) 
defined by the equation 

c;,.o.) I o, Usi > =- o 

So any choice of an infinite sequence { .tsJ" [ J.o, ).1.J··· J 
gives rise to a quasi Fock repreaentation of CCR. In particular 

our original representation corresponds to the sequence [ 0 J . 
In general, representations corresponding to different sequences 

are unitary non-equivalent. Two representations defined by 

sequences L }.s } and [ l; } 
series .... ' t. L (S•il'i.l~s-A.\ 

S;O 

are unitary equivalent if the 

oonvergesl121 • Thus in spite of 

the considerable symmetry of the system we have a large 

arbitrariness in the choice of representations of CCR. 
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How would the situation change if the external gravitational 

field were static? Suppose g ( 7; = go = con.> t J 

' i.JSo 'L ns then ~,~ ~ ~ ~' , and the group of motion 

of space-time is trivially extended to the direct product 

l-;: >< 0(4), where ~ is the one-parameter group of time trans-

lations. Representations of ~ X 0(4) in subspaces separa-

tcly spanned by '±'~('"' and 't' ~<" for fixed S are irreducib-

le and non-equivalent in view of different signs of the eigen

values of the generator i ~ • Consequently thereis no Bogo

lubov transformation of the form Eq. (2J) which commutes with 

all the generators of representation of the group in q? 
In thL; sense the original reJlresentation of CCR is unique. 

Such a uniqueness occurs also in the more general case when the 

group of motion consists of 1r0 merely, i,e,,the metric 

iH static without any spatial symmetry, see ,e.g. ,1131, 

4. The cyclic state expectation values of two 

time-ordered field operators vs. the Feynman 

propagator 

Now we shall search ~r the 0(4)-invariant quasi-Fock 

representations of CCR in which the cyclic state expectation 

value of time-ordered product of two scalar field operators 

GC:x..~·l{lsl)= <o.Od('T(f(x 1 -fcx-'J)iOd,o> 

can be reduced to the form of GF(x,x') ofScc.2. Inthe 

16 

(24) 

l 
I 

l 

representation defined by a sequence [ ), J v1e Ui:e the 
... 

expansion in C$.- ( ),) analogous to Eq. (20) and substitute 

it into Eq. (24), Then, applioation of the summation theorem for 

harmonic polynomials (see ,e,g.!14 l v.l, p,l6J) 

where 

gives 

(~ +1-lt. (r) 

L_ 5~, L h ~ JJ 
o=J. 

" I I 1 s: c- l II- l f J _j 

'( =: :!: a.rcc.o::, [ Re~ l ~) 1< 0
( y'J J , 

,::> + .l.i > i" \. S.+ i ) ~ 

1n :,i"t 

G c~.,~· 1 {Ad) G- (x..x.' l£on + G (x.:x.' 1 {.Ad)+ a: (x,.lC '( Ud), 
(25) 

where 

G(x,.x'l{oJ)= k \S+iJ ~i"(~+iJ~ [e~?-1') u;l·pU, ... (·z') + 

+ 9('( 1 J ulvu u~ (7'; JA '1·/.d')(U.) 
~ -
G ( x. x. ·I p, ~) -=o A (1·1.'· ¥) [ ~s•J.) ~i" L~+iJ.r .( R~ [ 1.~ ·u;, ~ 1 u;, ·(J J., (H) 

, = o 1 - I A~ I' -

~ 00 2 

G (x,x' 1 {A,]J-= At 1· f.rJ [cs • .~.).-U si~_(._~~>r Ht L u.:''L' ~~-(l'Jj o.a; 
Sc:J 1- I.J.:.J 2 

with 

A (1,1'. 01 = ['1n 1 €-116c(, s'~J>f 1 , 

We will show G (:X., X' I { 0 ~) 

rities on J. C (X') as Q.F (.x,x'; 

to have the same singula

has, To this end we make 
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use of the uniformly cor.vergent series of interactions in powers 

of ( s+i;-1 for u; q; obtained in llJI. We write out 

explicitly just the terms which can give rise to divergences of 

series (26) and so singularities in G (;x.,x.' I {.A,}); 

..... _,!. l..\,.lo~.1.>1. r _i_ 
'U ~ ''ll - \... l. ,~+~)~, .. 

. 't 
± ~ ( t 

,t(S+.1J''2 ~ g (1'1J'1_
1 

t QlS..Ji'LJ] 

After substitution of this expression into Eq. (26) and writing 

out explicitly only divergent terms we have 

G (.x.,x.'l{o U c=: A q.7:,o L e-i:;/ 7 -1'1 Sin Sl [i- L1~'-j )~d~'' ~~1''J[J+ 
sot . 1' 

+ Gi t_x,x'i{ol). 

The series in the first term diverges everywhere but it has a 

generalized suo which may be calculated by means of regulariza

tion via the substitution l ~- 'l' I ~ I 1- 't' I - i. ~, E: "> 0. 

The result is 
~ 

G(ll x.'l{oJ)::: [8n1 G'tl~Lt'Jf~ [~-~" - i.m'- e,(e~-~t:i)~~J~e~~~+ 
J J •q ).5,onK J ,, 

., 
+ G., ( x.,x.') j) t1)01 (~u.tE,*~J (i~) 

II 

Here 
pcx.,x.';== Co::.~-Co,<. 1 -·l'J ~._30) 

a regular function. It is easy to see that the surface j>(JC,X')=O 

is just J.C-(x.'), 

and 

What is a connection between the geodesic interval Jl (x.x.'J 

_p ( x., x'> ? Suppose that 

J2 ( :l(' )(,' J :::; b i.. 7 I ~ (1 'J _r/t.t (:X.' X.') l ()(.' X') ' 

where f'x.,:x')-=1=0 when -_ycx.,x.'1= 0 in a finite 

neighbourhood of :x.' • Substitution of this expression 

into Eq. (4) leads necessarily to v= 1 and to an equation 

for fA (x, :x::') that may be represented in the form 

(Jl) 

o~o .. fu+ rv. 31
'- ~'V [cos~ .. c.o~c7-~1'1• i ~ j-2f .. = 

J ~('1.) 6c7! (J2) 

= _Q 'r 1 ( 1· 7 I d' I &, ( r' Oc1 r ) ' 

If :x::EIJ!cx') ,i.e.,ilcx,x.'J=O this is an equation 

along a null geode sic. In the case of H J 1, 3 Eq. (5) for 4 

may be reduced to the same form of Eq. (J2) up to replacement 
(i:"' • ' •• 

of s 1. ( ·n.'· t> ( e, J'..l, Oo<J"') by some 'I.e l?· 'l'J t· €, I. G, .6, do~.D). 
so j"'(x,.x.') and .6 cx.,x'J satisfy the same equation on J.C(x') 

and under the condition €.."" f\.A (.x,x.'J = i these functions 
)(.-).X. r J 

coincide with each other there. Note that ~(X, x'J ,... 0 

and consequently f"' ~Ill. ( x, :x.') > 0 in a neighbourhood of J C Cx:') 
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in the domo.in under consideration since Q_.., Ll ( ~. X') = i 
X _,.X.' 

and 6 (X,..<-';=0 onlyfor the points of inter-

section of geodesics ro.diatine from :x:.' 1 i, e., for points 

which o.re outside the domain, Therefore we may write now 

G (:;.., J..' /{ oJr- (.Sn"f'" { t/'• -
.Il<O 

~m1 e,'l,ff,;,·. ~ (12-:o;! ~ 1'"-J'JJ I+ 
:l. "'" K 1' 

i-G 3 (x,x.•;j, t-'0· 

Hence it is seen that G ( .x., A-' l L o} ) has the same singula-

rities as 

require that 

G-F (..X., ;x_') 

G\.-~:,A-' IP>.IJ 

( Eq, (2) ),and we are left to 
~ 

and G- ( .x., x' l { ). .) J should have 

the reeularity properties of ·w,x.,:;c.'J. 

We start with serles (27) o.nd vrrite out eX]1licitly the 

"dangerous" terms 
00 

,_,G , - 1 A , \ Son<..'-dJ0 ['' 1 lX.,A- ,tJ.,)) = • l7,'l ,t) L ' 1'\.C f\~ Co~(Sti)(1+7')-
"'- S=o :1-l.l.,i 

- j m i\s s '" ( ;,+ 1 J ( 'l + 'l' J + 0 ( ~) j. 
S+l 

(Jl) 

Comparison with Gl.x..x' I toJ) shows that if the sequence 

{).d were arbitrary ( but I;._, I< i ) G (x,.x.' l {Ad) 

might hav& singularities on the light conoids of some points 

:X."$ X'. For example 1 if 

..PC "J ,, can be on cJ- ( x X 

€.\.M a.r~ )s ='0 then the singularity 
s~.., 

having the coordinates, -~ ', f ', 

20 

According to Sec,2 we have to impose such conditions on 

behaviour of As for S-?<>o that exclude any singularities from 

G(x,x'I{A,~) but in principle admit singularities of the 

form of Eq, (15) for do(G-(x,.x.'l{..id; • To this end we consider 

the deri"M.tive with respect to ~ or 1 of the trigonometric 

series in Eq_, (JJ), According to the knovm theorem, see,e.r-.1 15 l 
following from the Parseval equality, the sum of the derivative 

is a square-integrable function of the variables 7 + 'L';: ( 
00 t 

if the series L (.s...tlt.l-si converges and vice versa, This means 
l>=O , 

that at most a .. G- (:x:,x' IL.A.l) may have singularities 

of the form 

.. 
ac~.G<x.~'l p,jJ ""c.o ... ~t ('l .. 'i'tJ· •r!r~ u < i ' 

c being a constant, This condition coincides with 

the one of Eq. (15) in view of Eq. (Jl) with v=land 

definition of fl by Eq, (JO) , 

Now we recall that representations of CCR defined by 

sequences {J.s] satisfying the condition 

L ( S+ i )1- ( As l.t < oo 

form a class of unitary equivalence that contains the one 

defined by { 0 } and as we have seen only in this class 

G-c:x,x' /{).,}) satisf.ies the minimal requirements on GF (JC,x') 

of Sec.2, In spite of the particular character of the considered 

external field the result seems to be inteTesting for it p~ovldes 

a possible way to essential constraints on the choice of 

representation of CCR in the general case, 
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