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Canonical Field Quantization in an External
Time-Dependent Gravitational Field: Restric-
tions from the General Properties of Feynman
Propagator

The Green functions of the quantum scalar field inte-

racting with gravitation of the homogeneous isotropic clo-
sed Universe are studied.They have been determined as an

expectation value of the time-ordered product of two field
operators in the cyclic states of various,in general,unita-
ry-nonequivalent representations of canonical commutation

relations. The reqularity properties of these functions are
showg E8/be the same as of the Feynman propagator obtained
in /94 for arbitrary Riemannian space-time only in the
representations that form a class of unitary equivalence.

The investigation has been performed at the
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I. Introduction

The quantum theery of the field interacting with the
time~dependent external ( i.e.,glven classic) field or source
is of great interest both for considerations of particular
physical systems and as a linear quantum field model with real
processes of particle creation and annihilation.

However, to describe such a system 1n general thereis no
unique or distinguished way analogous to the famillar Fock
second quantization for free quantum fields. The origin
of thls non-uniqueness is the time variation of external
conditions and following from this energy non—~conservation for
the quantum field.

7111 we deal with static external conditions the traditio~
nal scheme of canonical quantization enables us to construct
the especial representation of canonical commutation relatlons (CCR)
in the Fock space in which the Hamiltonian of the guantum field
is diagonal. It 1s Jjust the Fock representation. If we formally
change the creation operators Ci and the annihilation
operators C: of the Fock representation by means of a Bogo-

e
lubov transformation to new C:‘S-

~ + . f_ .
¥ _ p At ' N
Ct=AtlC] + B Y (1)
%) Here L,J are collective indices for all possible

quantum numbers.



then we obtain a new representation in the space with the cyclic

o~

vector j o defined by the equation

c.%.-0
in which the Hamiltonian is not diagonal. In this sense the new
representation 1s not as good as the original Fook one and at
the same time it 1is not unitary equivalent without strong
restrictions on the coefficlents 05;}, B;J_

Under time-dependent external conditions there is no
representation in which the Hamiltonian is diagonal for all
monents of time. One can only construct a set of equally good
( or equally bad) quasi~Fock representations of which’creation’
and "annihilation" operators are connected by transformations
of the type of Eq. (1). So in this case the problem arises of
choice of a representation in which the time development of
the system should be considered. If the external field ( or s
source) vanishes or at least becomes static in the remote past
and future then there exist two speclal representations such
that the Hamiltonian is diagonal for t >+00  in one representa-
tion and for t -—>-oe in the other. In this case there is a ole —
ar corpuscular interpretation of initial and final state
vectors for t — 3y oo respectively and the problem is
reduced to determination of the unitary connection between
them, il.e.,to the calculation of S-matrix if it exists ( see,
e.g.'1'4' ). However, the S-matrix approach is inadequate

for description of the interaction with external gravitation

in the framework of general relativity. In this case the problem
of cholce of a representation of CCR becomes -mavoidable.

One might attempt to extract information on the
dynamics of the quantum—field in time—dependent external con—
ditions from quantum Green functions, for example, fwom the
Feynman propagator G#(-L,If) « For the free field ( nonin-
teracting at all) these functions may be determined without
reference to the canonical quantization but an analogous
procedure in the case under consideration does not lead to any
unique result.

141 to determine G‘F (x x’) or the causal

The most general way
Green function @c (x,x’y = LG/: (x, x’) 1s based on the
analytic contlinuation into the complex plane of the so-called
elementary solutionlsl (;“(x,xﬁ) of the field equations.
However, the elementary solution itself is determined up to
an arbitrary two-point regular solution (;o (x,x") of the ficld
equations, i.e.,only its singularities are determined uniquely
and the same may be 3aid about (;F (xX,X7 , If the external
field vanishes sufficiently rapidly for t 2> * oo
one may hope to Tix G‘a (x,x’) by the requirement of
asymptotic coincidence of (G (X, X’) with its expression
for the free field. In the general case Gb (x,x’) stays
arbitrary. A priori the arbitrariness in GF(I,EU is not
necessarily equivalent to that in the choice of CCR representa—
tion. The present paper is devoted just to comparison of the
canonical formalisg and the Green function in this aspect for
a particular case of interaction of the quantum scalar field
with an external gravitational field., A: the latter we
take the cosmological field of the homogeneous isotropic closed



universe. In general relativistic terms we consider the quantum
theory of a scalar field 1n the closed homogeneous isotropic
space~time ( denote it as Hd,, ). Apparently, in this case
the S-matrix approach is the most 1n appropriate one. At the
same time the system 1s of “applied" Interest since in a viclnity
of cosmological ( big—bang) singularities the quantum pair
creation by the nonstationary gravitational field had possibly

an essential influence on evolution of the Universe‘6’8\
Construction and comparison of some classes of representations of
CCR 1s considerably simplified in Flgxa in view of existence
of the group of motions isomorphic to 0(4). At last, as the

space 1s closed we may use only discrete quantum numbers for
description of quasi-one-narticle states and thus avoid "“volume"
divergences when comparing various representations.

In Sec.2 we discuss what 1s the general form that the
Feynman propagator should have 1n an arbitrary curved space-time
and to what extent the propagator 1is arbitrary. In Sec.3 the
canonical field quantization in F{Jx‘3 1s discussed briefly,
It results in a great class of 0(4) invariant quasi-Fock repre-
sentations of CCR which in general are not unitary equivalent.
In every representation one may introduce a propagator as the
expectation value of the two time-~ordered Heisenberg field
operators in the cyclic state. Then in Sec.4 properties of these
expectation values are compared with the general requirements
for the Feynman propagator of Sec.2 and there we prove that the
representations in which the requirements are fulfilled form

a class of unitary equivalence. This is the main result of the

paper.

?. Structure of the Feynman propagator in

the curved space-~time

in papersl5’9'

for the Feynman propagatcr of scalar
field 1n an arbitrary curved space-time ( XG.B) with signature -2

the following general expression is given

| 43 (2)
C—F (’X,.’r') = TT—‘I {?C‘f}._.b—& + "U’frl,(ﬂ‘lio)'k 1 ;

) A and W belng symmetric functions of .t and Xy

’
x, ' & ’15 ’ i-e-,._slz_(l(':n_r): Q x,x) etcs They
are defined as follows °

o)
_&'—

( i.e.,0ne half the square of distance along the peodesic

is the geodesic interval between ¢ and X

line). For a fixed ™' the equation

D (. x)= 0 3

determines the 1ight conoid of the point 2X° that is
the locus of all null geodesics radiating from L’ .

We shall denote it by L C (). L) satisfies the
equation

<

o \nl Qo .
8&_('1 o N=20 O oy )

)

W

and the initial condition im Qxxy=0,
e e W

Here and further all differentiations refer to the variab-

le X




The function A(™, ') obeys the equation

Vilawn) =44, &)
where U, 1is the covarianl derivative, The initial condi-
tion for A i cq%:, ARy o

Equatiors for < and L result from a field equa-
tion. As the latter we prefer to adopt the conformal-cova—
rtant ( for m* =0) generalization of speclal relativistic
Fock-Klein-Gordon equation 10,111

R

” oA
Qg eilNe0,  O¢=vy (cob-2 (6
R being the scalar curvature ) « Then

(ARESRTSY I )

U] P P
DAY + F4 ’“U+%. A 2(U+-§- wnd) a2,

+ zf\_ j/':,Q (Lj ' R -t i'Lz)L’f’O ®
N - s

Exnression (2) is obtained by means of the correct (ieea,
regulting in the same singularities on o{C(l) as in the flat

space—~time case) analytic continuation of the elementary solu—

. )
tion to complex plane in () ( see also 191 ). Of course,

the analytic continuation is correct only provided U(x. Xx‘

and S (x %) are sufficiently regular on ,ff'(-'l' - Thus, '(x,x’)

However, the result of the paper is valid for the
theory with the traditioml scalar field cquation \D RN,

‘
o

and (X, x) should be sought in the form

00

vexay = X, (x, %) 2", xh) (9)
n=Q

i, Z wWa (X, X-'/_Q."(x.x') (10>
n-0

with Vo and wWoe  regular on L Cwy . Then substitution

of these serles into Egs. (7) and (8) gives a system of

recurrent equatlons for Vo,..., Un, ... and for W, W,
N 2. (a” e g =- 3 Aﬂilz(D+ R, m)atn
% Yo ) + & @ 3 A (11)

-y
0 3. (4 )+ (eadd MU~ S0 (0 E ) Vs
12)

A% 2. (7MW + (ned o R Wn " ’%}IL(D* %* M) (Waam 2 na) - 52U, (1)
A1l U.’S are determined uniquely by system (13) taken as a
whole because the integration constant for Ua 1s fixed by the
equation for Vaes . On the comtrary, one may chonse Wo
at will except for 1ts regularity on £ C(x’ « Transition
from the glven Wo to another 1s equivalent to addition of a re-
gular ( on LCxy ) two-point solution of Eq. (6) to
an originally chosen Ge (%, x'y.

The vector 9«1l 1s tangent to the pgeodesic connecting x
with x' , Therefore Egs. (11)=(13)may be integrated along
every geodesic as an ordinary differential equation with a

canonical parameter as the independent variable ( see,e.g. £9\ )




We cite the result for Wh (x,x');

-
U (x T 2y = _Tﬁ_\:% Ed Fo g (x®),x) {%_(D*’—ga,mt)(wn-r% Jn-1)~ (1)
° -Un }x,: x(T)

the integration being performed along the geodesic. At last it
should be noted that all formulae and assertions of the section
are valid only in such a domain of vi,a where any point =x
can be connected with ' by a geodesic and this one 1s
unique.

Is there any reasonable restriction on Wo (X, x’') 1p
addition to its regularity on &Cexy » In principle,
it might have singularities in some points that do not belong to
£ Cx « From general conditions on GF (%, x')  and from
Eqe (14) it follows that any singularities off 4 C(xY
must be excluded in the domain of existence and unlqueness of
geodesics. Equation (14) sets the minimal order of regularity
of o which is necessary for regularity of W (2, x’j
in the domain. For the integral in Eq. (14) to be convergent on

7

any geodesic radiating from x’ the function ( of T )

OWas: may, at most, have a singularity of the type

{(%)‘“ f"‘<i T"=-const
(T-1")

On a gilven geodeslc of Vi,.a wilth metrioc tensor Sdﬁ(x)
one has
1 (F opnt 2N B (E)
-8

FES T%' dﬁ(xnt)):ﬂ(x,x)

10

where X" 1s the point at which T =T" s lees,

x= x(T"), = x(TJ. 30 1f the geodesic connecting x

and X’ passes through X" we are to have
N7 :
D(—wo(l,ll)_]:’};(l‘li).(z L(x,x") + ?;kxlx)e

where ?1 and ?’1 are some functions regular at x-x"

Thils condition is fulfilled by the substitution
Wo o, x) = Ty QP& (e x) + Ty (2, 1),

?3 and Tu being any functions with regular second

7

derlvatives at x « It 1s easy to be covnvinced of that such

a behaviour of Wo(X, X’/ guarantees regularity of all J, 'S
at x"

Aua

« Obviously, this result may be formulated also so that
W (x,x) is allowed to have, along a geodesic, a singula-

rity of the form

Qua W(x,x') ~ T(x.x’)ﬂ_ﬁ (,x") el (15)

o belng a point on the geodesic.,

3. Representations of CCR for a scalar field in H 31,3

The metric formdof a closed homogeneous 1sotropic space-Lime

may be written as

ds’z: 51(7/ (d7l‘Ay(f/‘{fL0(§'/} A‘J‘:j,z,j,




vwhere g(?/ is a function of time-like coordinate 4, ¥ ¢
arc some curvilinear coordinates ~n a three~dlmensional sphere
(,g3 of the unit radius.

Canonical quantization of the scalar field, obeying
Eq. (6), in HJ1,3 has been performed in paper 121 and now we
only reproduce its main results with slight changes in nota-
tions, The field operator ¥ may be represented by separation of

variables in the form

=) (jo])‘ -
- _4(_ S5 sen) PoCheg) ] (16
s-o =4

) :
fscr‘ E R g)J are (c~-number) harmonic polynomials of power §
in homogeneous coordinates k.a(f) y O = 1,2,3,4 on Sa.
7 N
In other words fsc' 1s a spherical function on 3. 6
is a collective index for two quantum numbers that enumerate
2
basis elements in the (S+1)- dimensional space of harmonic

polynomials of fixed power S s we shall not need more

detalls of the basis. The operator UYse satisfles the equation

Uge + [Csra)t + m¥ €%y Juse =0, an

where the dots mean differentiation with respect to 7.

At an initial moment of time Mo we impose the canonical
commutation relations between Use (o) and U se ( fle) which
are equivalent to the relations between $(ne, &) and
de f (7“ ?J . As the form of {(7) is not fixed we may assume

Qo =0 without loss of generality. Then, in notations
¢xc‘ = Uge (0) and Psc - 7).90'(0) we have

LPse, Psrc]=0, [ qur, Goed= O

. (18)
L qse, Psor 1= i Osst Sepr -
Then “Use(n) may be represented as
_ s . - - Py N - 19
Use (1) = qu¢(us+us)+u%(us—u,), (19)

- - _ o, 1
where So = 874 V(s+i)temies ) bo = €10y, end /“.f = Ug (1)

are two complex conjugate c-nunber solutions of Eq. (&) defined

by the initial conditions

’u(O)- 4:4;"(0)::‘&./23.

d 0
Using Eq. (19) we represent the field operator < in
the form analogous to the expansion of the free field 1n the

flat space~time in positive and negative frequency solutions

\P(x’):ﬁig(p 'u;(7) + C;,.?x;(pf @r [R(S)J,

20)

where the operators

;rr(\/—oq/er-J—g‘—oPsa')

satisfy the usual commutation relations for creation (c*)

13




- *
and annihilation c operators. We realize Cse as opera—
tors of creation and annihilation in a quasi Fock space @
with a 0(4)-invariant cyclic vector [0OD> defined by the equa-

tion

Cocl0d =0 = (2)

However the representation of CCR thus obtained is not
the unique 0(4)-invariant one. To find others we turn to expan~

sion (20). The functicns

. NG
Yoo 5= g Uie (o) dop ki)

form a basis in the space of solutilons of Eq. (6) with the

usual Klein-Gordon scalar product

oot * oY, x 2
(‘i’il‘i’,.)— Lévp {;3::’.52(;)(\1"1 SZ_ aa_?z.tz ‘f,_), (22)

where the asterisk denotes the complex conjugation, In this space
a representation of the group 0(4) is realized which is reducib—
le since for a fixed S  each of the functions Yoo

and \f;,- separately form bases of two equivalent irreducib-
le representations of 0(4). As a consequence of their equiva-
lence the linear transformations exist which mix \f‘so-'

and Y so and conserve scalar product (22) while commute with

operators of the reducible group representation in the space of

4

solutions of Eq. (6). Correspondingly, there exists the
Bogolubov transformation of Céo- ( i.e.ya transformation
that preserves the usual commutation relations for Ci,,)
which commutes with all generator‘s of the group representation.

Its general form is

Cie(As)= C3r+ A Che

PN (2
23)
[ As] < 4
Co( n) = Cie t A Cie
¢
\} 1- llslg' ’
Obviously Céﬂ. = C;,«(O).
These C‘;r CAs) are the creation and annihilation

operators in a quasi Fock space with thegrclic vector [0 {3,i)
defined by the equation

Cw(alo{asiy=0.

So any choice of an infinite sequence {ks} = {lo, A, _}
glves rise to a quasi Fock representation of CCR. In particular
our original representation corresponds to the sequence {_0}
In general, representations corresponding to different sequences
are unitary non-equivalent. Two representations defined by
sequences {_ls} and {),’} are unitary equivalent 1f the

oo

series S (sd)"lks-ki\" oonverges'lz‘ o« Thus in spite of
s:o

the considerable symmetry of the system we have a large

arbitrariness in the choice of representations of CCR.




How would the situation change if the external gravitational

field were statlic? Suppose g(y/: 6o = const,
o D]
then Y>~ ~ LLJS T jsr s and the group of motion

of space—time 1is trivially extended to the direct product

71 x 0(4), where rT: is the one—paramcter group of time trans—
lations. Representations of rjz X 0(4) in subspaces separa-
tely spanned by ‘flc and Yse for fixed S are irreducib-
le and non—-equivalent in view of different signs of the elgen-
values of the generator ¢ 5% . Consequently thereis no Bogo-
lubov transformation of the form Eq. (23) which commutes with
all the generators of representation of the group in i? .

In this sense the original representation of CCR is unique.

Such a uniqueness occurs also in the more general case when the
group of motion consists of rT:) merely , i.e.,.the metric

14 static without any spatlal symmetry, see,e.g.,u3l.

4, The cyclic state expectation values of two
time—ordered field operators VSe the Feynman

propagator

Now we shall search or the 0(4)-invariant quasi=Fock
representations of CCR in which the cyclic state expectation

value of time—ordered product of two scalar field operators

G (e x| {})= <O,{)~31(T(~P(1 y ) [k, 0> (24)

can be reduced to the form of G}:tx.xf) of Scc.2. In the

representation defined by a sequence { )5} we uge the
expansion in C:rk)>), analogous to Eq. (20) and substitute
it into Eq. (24). Then, application of the summation theorem for
harmonic polynomials ( see ,e. g.&l4l vel, p.163)

(;A)"n ~ ‘ .
jsr““%/.] Sgw LRL?’/J‘ = 22l °“‘\5*1)X’
G=1 n Siny
where
Y = *arcews [ ha(g) Qa(f’)J
gives

G Gox [ Ad) = Glrxltoh)r & (oatidg)s & xx (LAY,
(25)

where
d

G(I.JL L \S+1) Siv\(,si'i)l [9(?_1') M;p,) u;('z’) +
+ O ud uipy JAGp(26)
, ! X) = + in S+
G (xx'|{\Y) = A"l’l ()Z ks_i_is__k}_ﬁlee[L US o usag)d, (am

At
G (JC,JL'J“,}) A(,? 7' d;j 215,1)‘ls| S\n(&*l)(i LU-\\'L’ i (7, )J (28)
I-1aq?
with

- -4
A Gt = [unt €964, sing ]

We will show G (x| {o}) to have the same singula-
rities on & C (XY as (p(x,%x')  has. To this end we make



use of the uniformly corvergent series of interactions in powers

of (s+1)1 for “: (7) obtained in‘lm

. We write out
explicitly just the terms which can give rise to divergences of

series (26) and so singularities in G (x,x' 1{A}):

. 1
+ ~ ,\t’uu*i)vl{ i + er_’: S Lo da! s LS"ﬁ‘)} .
Uy 7~ © Ty in L (s ) 4 a1 O
After substitution of this expression into Eg. (26) and writing

out explioitly only divergent terms we have

Gxxtl{of) = Alpriy Z_ e S 1l ginsy [i- %" ]S dn" @%7”)“*’
$z4 . 7

+Gikx.1'l{0§)-

The series in the first term diverges everywhere but it has a
generalized sum which may be calculated by means of regulariza-
tion via the substitution ly-q'l—> In-q'|-i€, €>0.

The result is

1
. 4
G(xlx'H_Oj) = LSJI'- Q&peul')_l—i {j—??‘:_f: - :T-:; fn (J,_Lei)‘%!;@q,l+

-

"

+ G,. (x,x,')j , €456, (eutet‘-#e) (a9

Here
P(x,x'): Cosy - CosCy-q") 30)

a regular function. It 1s easy to see that the surface j)(x,x’)=0
1s just £ C(x.

What 1s a connectlon between i:he geodesic interval N (x,x')
and Px, x') 2 Suppose that

,Q(x,x’) = 6(71€(']'IIU‘”'(1,1')PV(X'Jx') ’ (31)

where I\A(X.X') #0 when -9 (x,x)= 0 in a finite
neighbourhood of Xx’ . Substitution of this expression
into Ege. (4) leads necessarily to v= 1 and to an equation

for Ju(x, x') that may be represented in the form

4 v 6oy P ;
aﬂb.,.'{u+ju/z %_%;'%J) [COSK+CO$L7»VZ)+1 ﬁj_gfu_ .

=Q% (156 6,ju M) -

1f xe £C(x) , te., L(x,x") =0 this is an equation
along a null geodesic. In the case of H Ji,3 Eq. (5) for A
may be reduced to the same form of Eq. (32) up to replacement
of 51(1—1',3, 5,5,Ju, adfu) by some ?gkrz»‘z’,g,é,g,g)a, 9 0).
So  M(X,X) and O (x,X') satlsfy the same equation on afC'(xQ
and under the condition lim ™ (x,x') =1 these functions

x> x'
coincide with each other there. Note that A(x,x') - O

and consequently (4 Y2 ¢x,x’') »0O 1in a neighbourhood of rfC(x')



in the domaln under consideration since x&amx' A(x x')=41

and H (X, x£y=0 only for the points of inter—

section of geodesice radiating from x’/ y lee.,for polnts

which are outside the domailn. Therefore we may write now

Ye ) p R
Glaaifoh=my | A - bl g o) €yl v
.Q“A-O zgn’nx 1‘

+G3(1,x_‘)-} ,y>0-

Hence it 1is seen that (3 (%, x'| {o}) nas the same singula—
rities as G—F (x, x') ( Eqe (2) ),and we are left to
require that G, x ({As§) and g Cx, " [ { A4 should have
the regularity propertles of wW(x, x’').

We start with series (27) and write out explicitly the

"dangerous" terms
o

= [ -1 s Sin s+1) )
Goex' () = 9 Actge) SZO 1'7‘—;‘—‘1 {R,e As Cos(S+13(q+n)~
—ijs S\n(b*i)(v1+vl')+0(_s%)j_ ¢2D)
Comparison with G (x,x'| {o}) shows thatif the sequence
{)5} were arbitrary ( but |Agi< 4 ) G (g, [{A 1)

might havé singularities on the light conolds of some points
x" x'. For example, if &r;« arg As=0 then the singularity
> oo

can be on L ((x") X" having the coordinates, -1 ! 5",

According to Sec.2 we have to impose such conditions on
behaviour of )5 for S-»e0 that exclude any stngularitics from
G(—LI'HA;“ but in principle admit singularities of the

form of Eq. (15) for Ju G (x.x'l{As§) . To this end we consider

the deriwative with respect to ¥ or n of the trigonometric
serles in Eq. (33), According to the known theorem, see,e.g.l15£

following from the Parseval equality, the sum of the derivative

is a square-integrabdle function of the variables N+q ' ®rx

if the series f (s+1)"'|l;l"converges and vice versa. This means

that at most si‘jo, C-(x,x'l{A,]) may have singularities

of the form

B3u Gl 1 {h5) ~ omst (i’ sy = ()% et

C being a constant, Thils condition coincides with
the one of Eq. (15) in view of Eq. (31) with Vv =1 and
definition of 5) by Eq. (30) .

Now we recall that representations of CCR defined by
sequences {)s_} satisfying the condition

2 (st DY AsiF < oo

form a class of unitary equivalence that contalns the one
defined by {O} and as we have seen only in this class
G(x,x'[{}}) satisfies the minimal requiremeats on Gg (x,x')

of Sec.2. In spite of the particular character of the considered
external fileld the result seems to be interesting for it provides
a possible way to essential constraints on the choice of

representation of CCR in the general casec.

21
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