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Remarks about Singular Solutions to the
Dirac Equation

In the paper the singular solutions of the Dirac
equation are investigated. They are constructed, in the
Lorentz-covariant way, of functions, proportional. to
the static multipole functions of scalar and (or) elect-
romagnetic fields, and of regular solutions of the Dirac
equation. The regularization procedure excluding diver-
gences of total energy, momentum and angular momentum of
the considered spinor field is presented.

The investigation has been performed at the Labora-
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l. Preliminaries and Results

There are analysed bispinors that are solutions to
the free particle Dirac equation everywhere but a single
point and
a) have (generally) a moving singularity point ,

b) are elgenfunctxons of operators H (the Dirac energy
operator), ] J, (the operator of the total angular
momentum and 1ts z -component ,respectively) and the
parity operator ~ in a reference system in which
the singularity point is at rest and placed at the origin
of the pseudoorthogonal system of coordinates.

The point which is excluded from the definition region

of the Dirac eq. is the singularity point of the solutions

in question.

It is shown (sec. 3,4) that these solutions may be
regarded as linear combinations of products of invariant
matrices, constructed out of special solutions to the
Maxwell and/or d’Alembert equations, with plane wave
solutions to the Dirac free particle equation.

Canonical energy momentum tensor (EMT) constructed
(sec. 5) of the bispinors mentioned above may be expres-
sed in terms of a massless scalar field and/or Maxwell
field EMT and via terms which appear due to the existence
of the spin of the Dirac field. Just the latter terms make
the contribution of the ’’orbital’’ angular momentum den-
sity to the total angular momentum density to be nonzero
in the rest (with respect to the singular point) reference
frame.

In sec. 6 there is suggested a regularisation procedure
which makes (in the case J=1/9 the integral value of the
energy and momentum and of the total angular momentum
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(spin) of the bispinor field discussed to be finite and have
the correct value. The regularisation procedure is based
on an assumption according to which the Dirac field
interacts in a nonpolynomial way with the scalar field
which defines (together with the Coulomb field) the solu-
tions studied in secs. 3,4. The regularisation procedure
admits geometrical interpretation.

Some of the results involve}i in this paper were
published in a preliminary form in 7/.

2. Notation Conventions
Metrics: (r;’w)= diag (+ L+ L,+ L, -0 p,v=1,...,4;i,j=,2,3.

Units: f=c= 1
Representation for y -matrices:

Aep=(h D) ylapat <00 S
01 ~% Pauli matrices
01
i 1,23 4 _ [ -
Y =iy yTyTy (l 0) (01)

. yVli= vy Y+ y ¥yl = 2gHY

v 1
S A LR A A AR A A B PR
Plane wave solutions to the Dirac equation

(P +mg) w) (k,x) =0

o2
et

P=yHP ’ P =-j =-id , =t =,
YHR, s Py mmioTmnid L oty (2.1

with positive energy (¢ =1) and negative energy (e =~1)
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1+ 1 1~
(e) 3 Y % Vs X\ i
ny (k,x)=+( o) 1 g +€ 5 }(l+rry5)(0‘7)e'€kx,
e - - > _1/ - >
y=(1=32y%  J-k(1+k2) ", kx=k xk=p<-|Flt,
2.2

'_(1/?,+0') _ Y > - -> ( )

Xa = 1/2__0 , W= 1+ yva . V ... cOnst

Proper Lorentz transformation matrix: (L ) <=L <.

Clebsch-Gordan coefficients/4/; C(L £ J;M~m,m)
Other conventions: {U*}=1{y?, y}

F ( ) = ’ F (¢) E)’Ha ¢ s
(0) #) =9 (1) [
| TRY
F(A) =y*A , F (A) =5y""0 A -9 A ),
(1) ) 2 povov R
F(X) =y F(X),i=0,1,2, X=¢,A, (2.3)
(i) 5 (i)
Dzﬂyvaﬂav .
Electromagnetic field tensor: f =90 A -J A ,
pv- opv v
fai =—E1 fij= iik Hk

3. Construction of Singular Solutions to the
Dirac Equation

Let g%(x) be a solution to the equation



og®(x) =%83(;—-;x4—5) 3.1)

which tends to zero at space infinity
ghx) >0 for [X|-o,|xt|<w, [£] <. (3.2)

The eq. (3.1) may be written in another form

PF (g% -id63(2 —vxt- &)= (3.3)
m 14 (0)
or
PF (g9--ity 683G -vx*-8=1 . (3.4)
(D Y (0)

Equation (3.1) or, equivalently (3.3) or (3.4), is the equa-
tion determining the scalar field of moving (with velocity
v ) point source.

We shall also investigate equations

oUF % (x) o (-t - B, (3.5)
GE () =183 (), 83 (»)} (3.6)

that one gets multiplying (3.1) by U* .
Taking into account easily verified relation

(0)

vFa, g (x) -0 (3.7

we may rewrite eq. (3.5) into the form

PF (Ug? =y#j (x=-vVx¥- &)= (3.8)
(2) ¢ (n

or, equivalently,

PF(Ug0)=—y5JEJ . 3.9)
(2) (N (D
The components of four-vector

Af = Ut g0%(x) (3.10)

are easily recognised to be functions proportional to the
Lienard-Wiechert potentials. Equation (3.9) together with’
its Hermitean conjugate are algebraic consequence of non-
homogeneous Bargmann- Wigner equations /1-2/  for
zero rest-mass vector field and are therefore equivalent
to non-homogeneous Maxwell equations (in this connection
see also/3), The same statement is true concerning
eq. (3.8) and its’ Hermitean conjugate.

Multiplying eq. (3.4) or (3.9) by the plane wave solution
to the free particle Dirac equation and taking into account
relations o

LR ()P, WO - : 3.1
[y",(g‘) (A 1P, wiD(x) =0 ; (3.12)

we get an interesting result that bispinors

Fgh)wl=y | (3.13)
(D (n .

F(A) W=y, (3.19)
2 (@

are singular solutions to the nonhomogeneous Dirac
eq.

vo=- we a=1,2. (3.15)
(a) (a=-1

The validity of egs. (3.11-12) is the consequence of the
relation (3.7) and of algebraic properties of y -matrices.
An assertion analogous to (3.15) with( Jl)a(J 1)on the

a-— a-

r.h.s and with ¥ . Fwon the 1.h.s. is not valid.
(a) (a)

Bispinors ¥ have one singular point and there exists
(a)

a reference system in which (3.13-14) coincide with bi-
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spinors, that one gets from usual quantum mechanical
stationary singular (with radial part equal to kﬂ np (kr) ,
np ... spherical Neumann function, k= lkl ) solutions to
the free particle Dirac equation by k - 0. Whenk £ 0
this coincidence does not hold. In order to keep in mind
this difference, the bispinors (3.13-14) will be referred to
as hybrid bispinors.

Equation (3.15) is not quantum mechanical equation and
accepting it as physically reasonable we have to point
out what are the advantages (if any) of its solutions.

Fields g0 and/or

f =90 A -9 A (3.16)

may be regarded as classical sel!-fields of some (maybe
hypothetical) particles. To each type of just mentioned
classical fields (or to their superposition) we may put
into accordance hybrid bispinors. This connection is not
one-to-one because as we shall see later, bispinor (3.13)
is equal to (3.14) up to a phase factor.
The questions which now arise are:
1) Do some hybrid bispinors correspond to other solutions
to the d’Alembert and/or Maxwell equations?
2) The canonical energy momentum tensor (EMT)
constructed out of hybrid solutions differs from cano-
nical EMT of a scalar andi . Maxwell field. Are there

some plausible arguments in favour of the first one? In

other words, is it reasonable to ascribe EMT of the hybrid
bispinor field to the self field of spinning particle?

~ The answer to the first of this questionsis affirmative
and will be presented in sec. 4. The second question is
more fundamental. The answer, which will be given in
secs. 5 and 6, states that EMT of hybrid bispinor field
leads to the angular momentum density which has the same
type of singularity as the energy and momentum density.
Therefore,the same regularization procedure which leads
to the correct value of space integral of the total angular
momentum density and its components gives the correct
value of the total energy (i.e., my in the rest system of the
particle; the constant m;, being the same asin (3:15)). This

is not the case if one starts with EMT of scalar and/or
Maxwell field of a point source.

Accepting special solutions to the classical field
equations as functions describing (with known degree of
accuracy) self-field of some particles and exploiting for
construction of conserved quantities functions (hybrid
bispinors in our case) which are solutions of another
equation, is of course logically inconsistent, in spite of
the fact that between both kinds of fields there is a close
connection.

The clue for solving the above mentioned inconsistency
gives probably the observation that the equation defining
the regularised hybrid bispinors may be looked upon as
the Dirac equation describing electron which interacts
with a scalar field. Accepting this point of view we may
not give some importance to the way how the unregula-
rised bispinor may be constructed. The singular solutions
after regularisation may be regarded as quantum -mecha-
nical wave functions.

4. Hybrid Bispinors Associated with
Static Multipole Fields

In order to simplify further discussion we shall suppose
in this section that all sources are placed at the origin
of the pseudo-Cartesian coordinate system. Instead of
non-homogeneous scalar field and Maxwell equations we
shall consider the homogeneous one and work with func-
tions that are their static, decreasing at space infinity
solutions everywhere but the single point placed at the
origin.

We look for 4x4 matrices W, which are a linear (with
real coefficients M;x), M(jx))combination of eight matri-
ces (2.3)

W= Z (M F (x)+M F (x)y i=051925

(i,X) (i, X)(l) (1X) i

4.D

X=¢,A; M =0,

(0,A) " Moa= M(z,¢) =M g)-



and for which hybrid bispinors Ww are solutions to the
free particle Dirac equation everywhere but a single
point (origin).

Every singular static solution of scalar field and
Maxwell eqs. may be expressed as a linear combination
of irreducible (under the group of 3-dimensional rotations)
tensors of rank L -static multipole fields/4/

Fm V %L’
- ~ -» 4 - ~ > _ -:
Bew YV ALw Him= ™A = B 4.2)
where
q 1 )
¢Lm=~ALm= I_L+1YLm(9’¢)’
-> 1 >
Ve =vEL+D(L+D rL+zYTL,L+l,m ,
> 1. .2 L+l 12
Aim= TF MHpp = +iv— rL+1TLLm ., (4.3)
and
> 1 nd
TL,E,mE =2_ Ce1L;m-n,n) Y, &, (4.4)

] 1

(the notation used is based on that in /4/ "y oOperator W
constructed out of multipole fields (4.2) with fixed L,m is
a component of irreducible tensor operator
W .
. Lm °
Now we are looking for sets of constants M for which

bispinors

Y
M K 11 (e )y
¥ = -3 2 Jn- =0,
5.3 0=2_1/2 C(J 5719 Jin U’O)WJ—%,M'—OWU (k=0,%)
. (4.3)
are eigenfunctions of operators
H = 3P +m B, (4-4)

with the eigenvalue E=em,

o

—_

7%, (4.5)
4

with the eigenvalues J(J+1)(J=%—,g—,...)., and M(M=J,J-1,...-)
respectively, and parity operator =, the eigenvalues of
which depend on quantum numbers J and w=*1 in
the following way /%/.

[43)

J+—
M _(-p 2 wM (4.6)

€, w,J €, w,d
~ We adopt phase conventions

VoMM SO W (4.7)

€,w,J —€ ,—w,J g

between charge-conjugated bispinors,

[» - -
v-cv', W=cwl, (4.8)
(T..... symbol for transposed matrix).
The first of equations (4.8) is valid if the matrix
c 4 F -1
= C(ytw? )T ¢ 4.9
J-";‘,M—U (y J-%,M_ay ( )
coincides with W, up to the phase factor
J- ?,—M+0
C -
LI ~-"w : (4.10)
J-—,M-0 J—-—z—,—M+(T
This is the case when
M(l¢)= M 1a)= M(“)'=Mw¢)= 0. o (4.1

Now it may be easily verified that (4.3) has the desired
property in two cases only:

CUH=0,M_,.- 0. M M .. i
_/, M(%) M(. n =0 (1 M(zM arbitrary
C2¢/E =0,M_.<0,M _ =2m M -
N 067 % Miaay 2o Mg My, =0
=3 v . bit
CZB/E =0, Mg =My a7 Maay=0 Myge. arbitrary



If E-0 in the case Cl ,then this possibility coin-
cides with C2p .

Using  conneetion (4.13) between spherical vector har-
monics.(4.4) and spherical spinors

‘B:IJEEC(L%J;M—U,U)YLM_OXU L (4a12)
we may write down the hybrid bispin(;rs in a more custo-
mary form. The above-mentioned connection reads

1
s cy'LlyM-o.0)aT,,
oY .2 _ J'LM
where

X, =KL, VUYL (413)

1oy, 1y A3
K(J+T,J+—2—~)— \/(2]_‘_1),‘

1 TN
K(J+—2—,J ——§)=\/(—2de) ,

1 1 4(J + 1)
K(J—?,J+._§-)=_\/(~ZT;T) ’

KU -, =) =V (=)

KO+3 0+ -ku-3.0-5) -o0. (4.14)

Equalities (4.13) may be verified by using properties of the
Wigner coefficients /4/, -
The customary form of singular solutions to the Dirac
equation is . ,
1 _ tyM g) [1+E =_ll(l——t’)(:l+a'))]
3e16 g Tyl 2 mg 4

M. N(e,®) o w [ € ’
€,w,J 1 (yM ~ l—e i(l+e)(l—2})l

o J+23 2 m 4 '
Jri-7 2 0 A (4.15)

12

—a

The constants of integration N(e ,®) are in our case ex-
pressed in terms of constants M, ix:

~ M Iy l+ew . o l-co
N(e ,0) =2J(—eM(l¢)+|M(2A))—§———|5M“M_—2——. (4.16)

The sets of solutions with (e=+1,6=+1) (coherent
choice of signs) correspond to the case C1 (and C28 )
sets (e =+1,5=71) correspond to C2a) .

All solutions with exception of those with

e=t1, w=t1, J=% (4.17)

are square integrable in a domain lying outside a sphere
with radius p>0 and with the centre placed at origin.

If we admit all but (4.17) solutions (4.15) we see that
there do not exist solutions constructed out of the mag-
netic monopole field. This is the consequence of assumed
reality of constants M(ix) » Mix

Solutions with J > 1/2 probably do not correspond to
any really existing objects (particles). The reason for
this conviction is that states with higher than 1/2 value
of quantum number J should be very likely states with
energy E(J) ’

E( > 3) >E(J=—21—) —mg - (4.18)

But if we do not suppose coherent with (4.18) dependence
on J of the constant mg in Dirac eq., the bispinor
(4.15) is not longer solution to the Dirac equation for
J>1/2 .Solutions with J = 1/2 are supposed to correspond
to electron when (e =+l, o=+ 1) and to positron when (e=-1,
S=—D.

5. Energy Momentum Tensor and Angular
Momentum Density of the Hybrid Bispinor Field

In this section we shall give explicit expressions for

components of the canonical EMT and angular momentum
density of the hybrid bispinor field (¢ =1, o=1,J=1/2) in
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terms of the Lienard-Wiechert fields E H of a uni-
formly moving electron, i.e. we suppose agf
The explicit dependence of ¥, on E,H is

ag

~ S o . S o “1) >
[\ M(zA)(—-aH‘+ iZE) w, (k,x) . (.1
Using (5.1) we may easily verify that

4 = 4
Ta= 5 Wy Py¥y+ hoci=
(5.2)

[m y{y(EZ—HZ)}'FY —,'16_5 xdv wtS w 1,

(ZA) r ijk Kk o 1 o

where h.c. stands for the Hermitean conjugated term and
xd =(l?1 Wox B
B

(L) ..... the matrix of proper Lorentz transformation,
connecting special reference frame chosen with the rest
frame. The second term in square brackets in (5.2) is the
odd function of coordinates x’J and is equal to zero in
the rest frame of the electron, the term in curly brackets
(multiplied by M(2A) ) is just

VY =MI (5.3)

By direct calculation it may be proved that the following
relations for various components of EMT

—~2

_ M
a4 - ] 4 . (Z2A) i
J =“2—{lp0y Piq’0+h.c.}= rs—(”kx <Sk>’
s,=1s <8, > = x*S 4
k=9 %k kK~ = Xg Ok Xo (5.4)
glogloyg (5.5)
4 i~ )

are valid in 3’ reference frame (the special choice of
coordinate system is expressed by dots over equality

i4

signs). (5.4) being the odd function of J, the total mo-
mentum of the field (5.1) is zero in 3’. But the orbital
momentum density

. iqd 1 ¢yt
LRI S'k_Zw LY +h.c.} (5.6)

is an even function

2M?
- ZA s
Azi:_,(s ){'25i3"‘l"3}’ 6.7
and gives a nonzero ( and even infinite if a suitable regu-
larization procedure is not accepted) contribution to the
space integral of the total angular momentum density.
The total angular momentum density

3i'z—;{‘ligji‘l’g+h.c.lé‘PZ‘PU<Si>, (5.8)
has the same type of singularity as (5.2) and (5.7) and in
both cases the same regularization procedure, if it exists,
should lead to the correct value of the total energy,
momentum and spin (the integral of the total angular
momentum density).

In a more general case, when we do not neglect a pos-
sible contribution of the scalar field ¢ - g° to the self-
field of electron (i.e., when we take M, (/) é =1/ )
we may easily prove that the 4-4 component of EMT in
the special reference frame is

T2 -mgtMig (v @)%« MG ET L. (5.9)
Eq. (5.4) with M(2A) replaced by M(,¢) +M?2A) and eq.
(5.5) are also valid.

6. Regularisation through a Nonpolynomial Interaction
of the Dirac Field with a Massless Scalar Field

Let us suppose that the Dirac field interacts with
a scalar field ¢ in a way similar to that analysed re-
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cently in connection with the infinity suppression problem
in quantum field theory /8/,

The Lagrangian density of the Dirac field is supposed
to be

S() =eP® L (W) p...const. 6.1)
(W) =4 {¥P+m) ¥ + hoe.d. (6.2)

%
The stars over the ¥’s in (6.2) indicate that ¥ should now
be a solution to the equation

%
(P-iLF (@) +my) V¥V =0, (6.3)
2 (1

which is the Euler-Lagrange equation derived from the
variational principle

57 [£d*x=0. (6.4)
y
The substitution
* - -EZ—CIJ
¥ —e v (6.5)

transforms (6.3) into the free particle Dirac equation. It
is easily proved that Lagrangian density (6.1) as well as
canonical EMT

i” (W) = eP® TH (W) (6.6)

K .
transforms into £(¥) and ifv(\l’) , respectively, by sub-
stituion (6.5), i.e.,

* ok
W - £,

, (6.7)
TH W =T

EMT (6.6) is a conserved quantity as a consequence
of validity of equation of motion (6.3). Now we shall prove
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that when special assumption concerning thus far arbitrary
scalar function ¢ is adopted, we have at our disposal
another conserving quantity

%

—p®
e = 7 g ). (6.8)
The assumption just mentioned reads |

o-¢=--1, p>0. (6.9)

The conservation law
%
b # '
a# 3V(‘I') =0 (6.10)

is valid because

o, THW=-1"8, 6 1,6 W wid,@ W W@
w p o g w

and relations
¢,# wytw =0
as well as
9, TE(P) =0
are fulfilled identically.

The point is that the total energy and the space intggral
of the total angular momentum density of the field ¥ is
finite and have the correct value if (6.8) is regarded to
be the correct energy momentum tensor density , the
singular (¢ =1, @ = +1, J=1/2) Dbispinors are taken for
¥’ and the constants N,p are appropriately chosen.
Moreover, the four quantities

P = [T (W)d s (6.12.)
" " 12,
are components of the total energy-momentum four-

vector, as may be easily proved using the transformation
properties of the EMT

1.0qp 1
2 (0 =121, 52 (01, (6.13)
and the fact that all but 4-4 components of the EMT
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9P are zeros or odd functions of variables x

o in the
rest frame X° and therefore
3
vp—ly 4P #fffp(x yd x ‘-v, [ (x)a X,
W =y, vt (6.14)
It follows that
b ] — —
‘ l“—p“f U# my o
if
_B m tN|2 3
jc]-“(‘l’)dx—fo —4 d x. (6.15)

r

The desired connection between two arbitrary constants
N,p is therefore

N-olt UESN (6.16)

where (i ¢) is an arbitrary phase factor.
As an interesting fact we point out that if
2
p=r = £ .
e m0

i.e., if we put the regularisation constant p ‘to be egual
to the classical radius r, of the electron,and if M =M(2A)
(i.e., if ¢(=n/4) the integrand of (6.15) becomes tlie sum
of two equal parts energy densities of the Coulomb and
quasi-Coulomb fields, multiplied by the regularisation
function éxp(—re /r). The term ’’quasi-Coulomb field’’ is
used for the static massless scalar field of a point
source with the charge f, |f|=]e]l.
_ Because V¥ is also the eigenfunction of operators
J 2 , J, we get ‘
W2y 43 <3 + 3
f‘lf;] ¥ odxzoq, rq! ). tv d3x = 130
as it should be. If we use the regularised EMT in (5.6)
and integrate over spatial variables, we get for the
components of the ’’orbital’’ angular momentum
*
fo (¥, )d%x = 8,5 - 4?0.

The bispinor ‘P has no singularity, is square integrable
function and solves eq. (6.3) in the whole Euclidean 3-
dimensional space (with no point excluded). Equation (6.3)
may be regarded as the Dirac equation of a free particle
in a Riemannian space with conformally flat metrics

2
* TP
guv= € v

(7 v metric tensor of Minkowski space).

The author is indebted to N.A.Chernikov for discus-
sions and valuable remarks, to A.B.Pestov for his interest
and reading of the manuscript and to Ya.A.Smorodinski for
critical discussions on the matter partly involved in this
paper.
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