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Remarks about Singular Solutions to the 
Dirac Equation 

In the paper the singular solutions of the Dirac 
equation are investigated. They are constructed, in the 
LOrentz-covariant way, of functions, proportional. to 
the static multipole functions of scalar and (or) elect­
romagnetic fields, and of regular solutions gf the Dirac 
equation. The regularization procedure excluding diver­
gences of total energy, momentum and angular momentum of 
the considered spinor field is presented. 

The investigation has been performed at the Labora­
tory ofo,Theoretical Physics, JINR. 

Preprbat of dae Joiat lastit•te for N•clear R ........ 
O.bna 1975 

l. Preliminaries and Results 

There are analysed bispinors that are solutions to 
the free particle Dirac equation everywhere but a single 
point and 
a) have (generally) a moving singularity point , 
b) are eigenfunctions of operators II n (the Dirac energy 

operator), ) 2
, Jz (the operator of the total angular 

momentum and its z -component,respectively) and the 
parity operator rr in a reference system in which 
the singularity point is at rest and placed at the origin 
of the pseudoorthogonal system of coordinates. 

The point which is excluded from the definition region 
of the Dirac eq. is the singularity point of the solutions 
in question. 

It is shown (sec. 3,4) that these solutions may be 
regarded as linear combinations of products of invariant 
matrices, constructed out of special solutions to the 
Maxwell andjor d' Alembert equations, with plane wave 
solutions to the Dirac free particle equation. 

Canonical energy momentum tensor (EMT) constructed 
(sec. 5) of the bispinors mentioned above may be expres­
sed in terms of a massless scalar field andjor Maxwell 
field EMT and via terms which appear due to the existence 
of the spin of the Dirac field. Just the latter terms make 
the contribution of the "orbital" angular momentum den­
sity to the total angular momentum density to be nonzero 
in the rest (with respect to the singular point) reference 
frame. 

In sec. 6 there is suggested a regularisation procedure 
which makes (in the case J = l/~ the integral value of the 
energy and momentum and of the total angular momentum 
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(spin) of the bispinor field discussed to be finite and have 
the correct value. The regularisation procedure is based 
on an assumption according to which the Dirac field 
interacts in a nonpolynomial way with the scalar field 
which defines (together with the Coulomb field) the solu­
tions studied in sees. 3,4. The regularisation procedure 
admits geometrical interpretation. 

Some of the results involve~ in this paper were 
published in a preliminary form in 71. 

2. Notation Conventions 

Me_trics: (Tlp.v)=diag(+l,+l,+l,-1); p.,v= 1, ... ,4; i,j= 1,~,3. 
Umts: i=c = l 
Representation for y -matrices: 

i i 
y = {3a a. . ....• 

I 
y4 = {3 = ( I 0) 

0 I 
= ( 0 ai 

-ai 0 Pauli matrices 

y
5 

= iyly2 y3 Y4 0 I ) 
( I 0 

lyll 'y v l = y 11 y v + y v yll = -2 71 Jl v 

[yll 'y v] = yll y v - y v y 11 yJlV = ij [ yll ' y V ) 

Plane wave solutions to the Dirac equation 

) (f) ( .... (P + m 0 wa k,x) =0 

P= yll P 
11 

p =- i _a_= - ia ' a = +.!.... 
11 a xll 11 - 2 ' 

1=(1 0) 
0 l 

~k = Ys ak. 

(2.1) 

with positive energy (f = 1) and negative energy ( f = -1) 

4 

(d .... l+y l+y5 l-y5 X · 
w a ( k ' x) = v' ( -z-) . I -2 - + f -2- l (l + 77 y 5 )( 0 a) e H k x ' 

.... ~ .... .... .... -~ ........ 
y = ( l - v 2 )- 2 v = k ( l + k 2 ) , k x= k x Jl = p x - IF It , 

' Jl 

(Vl?. +a y ........ 
X = V2 ) ' 1T = -- v a ' 

a -a l+y 

(2.2) 
.... 

v ••• const 

Proper Lorentz transformation matrix: ( L Jl ) v x 11 = L11v x'v . 

Clebsch-Gordan coefficients /4/: C( L e J; M- m, m) 
Other conventions: IU 11 1 =I y~, y I 

F ( ¢) = ¢ ' 
(0) 

F (A) =yp.A , 
(1) 11 

F c ¢ > = yll a ¢ , 
(1) 11 

1 11 v ) F (A) = - y (a A -a A 
(2) 2 11 v v 11 

F(X)=y F(X),i=0,1,2, X=¢,A, 
(i) 5(i) 

(2.3) 

0 = ~v a 11 a v • 

Electromagnetic field tensor: f = a A -a A , 
/lV /1 V V /1 

f 4i = - E i f i i = ( i i k H k • 

3. Construction of Singular Solutions to the 
Dirac Equation 

Let g0 (x) be a solution to the equation 
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0 1 3 .... .... 4 .... 
og (x)=-0 (x-vx -0 

y 

which tends to zero at space infinity 

g0 ( x) ... o for 1;;1 .... oo, \x4 1 <oo, I e1 < oo. 

The eq. (3.1) may be written in another form 

or 

) ( 0) l 3(--> .... 4 .... ) IF g =i-8 x-vx -g=J 
(1) y ( 0) 

)- 0 0 l 3--> .... 4 .... -
I F ( g ) = -I - y 0 ( X - v X - g) = J 

( 1) y 5 
(0) 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

Equation (3.1) or, equivalently (3.3) or (3.4), is the equa­
tion determining the scalar field of moving (with velocity 
~ ) point source. 

We shall also investigate equations 

flO) fl-> ... 4-+ 
DU g ( x =- j ( x - vx - g) , 

lifl<r>l=l~o 3 <r>. o3 <r>l 
that one gets multiplying (3.1) by Ufl 

Taking into account easily verified relation 

Uf1 af1 g(O)(x) = 0 

we may rewrite eq. (3.5) into the form 
.... 

0 f1 .... .... 4 
PF (Ug )=y j (x-vx -~)=J 

(2) f1 (1) 

or, equivalently, 

PF(UgO)=-yJ=J 
( 2) 

5 
(1) ( 1) 

The components of four-vector 

A11 = U !1 g 0(x) 

6 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

are easily recognised to be functions proportional to the 
Lienard-Wiechert potentials. Equation (3.9) together with 
its Hermitean conjugate are algebraic consequ'ence of non­
homogeneous Bargmann- Wigner equations 11 ' 2 I for 
zero rest-mass vector field and are therefore equivalent 
to non-homogeneous Maxwell equations (in this connection 
see also 13{ 'rhe same statement is true concerning 
eq. (3.8) and its'Hermitean conjugate. 

Multiplying eq.c (3.4) or (3.9) by the plane wave solution 
to the free particle Dirac equation and taking into account 
relations 

- o n 
[yf1,F(g )]Pflw (x) =0, 

(1) 
(3.ll) 

[yfl, F (A) I P w<fl(x) = o 
( 2) f1 

(3.12) 

we get an interesting result that bispinors 

F ( g 0 ) w ( ( ), 111 ( ' 

( 1) ( 1) 
(3.13) 

F ( :\) w< £ ) = 'II c (3.14) 
( 2) ( 2) 

are singular solutions to the nonhomogeneous Dirac 
eq. 

( P + m 
0

) 'V £ = - J w< £) , a = l, 2 . (3.15) 
(a) ( a- 1) 

The validity of eqs. (3.ll-12) is the consequence of the 
relation (3. 7) and of algebraic properties gf y -matrices. 
An assertion analogous to (3.15) with J .... J on the 

(a-1) (a- 1) 

r .h.s and with 'V ... F" on the l.h.s. is not valid. 
(a) (a) 

Bispinors 'V have one singular point and there exists 
(a) 

a reference system in which (3.13-14) coincide with bi-
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spinors, that one gets from usual quantum mechanical 
stationary singular (with radial part eql!,al to kf ne ( kr) ' 
n f .•. spherical Neumann function, k = \k I ) solutions to 
the free particle Dirac equation by k .... o. When k -1 0 
this coincidence does not hold. In order to keep in mind 
this difference, the bispinors (3.13-14) will be referred to 
as hybrid bispinors. 

Equation (3.15) is not quantum mechanical equation and 
accepting it as physically reasonable we have to point 
out what are the advantages (if any) of its solutions. 

Fields go andjor 

r = a A 
p.v p. v 

a A 
v p. 

(3.16) 

may be regarded as classical selJ-fields of some (maybe 
hypothetical) particles. To each type of just mentioned 
classical fields (or to their superposition) we may put 
into accordance hybrid bispinors. This connection is not 
one-to-one because as we shall see later, bispinor (3.13) 
is equal to (3.14) up to a phase factor. 

The questions which now arise are: 
1) Do some hybrid bispinors correspond to other solutions 

to the d' Alembert andjor Maxwell equations? 
2) The canonical energy momentum tensor (EMT) 

constructed out of hybrid solutions differs from cano­
nical EMT of a scalar andt .Maxwell field. Are there 

some plausible arguments in favour of the first one? In 
other words, is it reasonable to ascribe EMT of the hybrid 
bispinor field to the self field of spinning particle? 

The answer to the first of this questions is affirmative 
arid will be presented in sec. 4. The second question is 
more fundamental. The answer, which will be given in 
sees. 5 and 6, states that EMT of hybrid bispinor field 
leads to the angular momentum density which has the same 
type of singularity as the energy and momentum density. 
Therefore, the same regularization procedure which leads 
to the correct value of space integral of the total angular 
momentum density and its components gives the correct 
value of the total energy (i.e., m0 in the rest system of the 
particle; the constant m0 being the same as in (3.15)). This 
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is not the case if one starts with EMT of scalar andjor 
Maxwell field of a point source. 

Accepting special solutions to the classical field 
equations as functions describing (with known degree of 
accuracy) self-field of some particles and exploiting for 
construction of conserved quantities functions (hybrid 
bispinors in our case) which are solutions of another 
equation, is of course logically inconsistent, in spite of 
the fact that between both kinds of fields there is a close 
connection. 

The clue for solving the above mentioned inconsistency 
gives probably the observation that the equation defining 
the regularised hybrid bispinors may be looked upon as 
the Dirac equation describing electron which interacts 
with a scalar field. Accepting this point of view we may 
not give some importance to the way how the unregula­
rised bispinor may be constructed. The singular solutions 
after regularisation may be regarded as quantum-mecha­
nical wave functions. 

4. Hybrid BisPinors Associated with 
Static Multipole Fields 

In order to simplify further discussion we shall suppose 
in this section that· all sources are placed at the origin 
of the pseudo-Cartesian coordinate system. Instead of 
non-homogeneous scalar field and Maxwell equations we 
shall consider the homogeneous one and work with func­
tions that are their static, decreasing at space infinity 
solutions everywhere but the single point placed at the 
origin. 

We look for 4x4 matrices W, which are a linear (with 
real coefficients M(i X)• M( i x)) combination of eight matri­
ces (2.3) 

- -
W= I (MCX)F. (X) +M(i,X) ,f (X), i =0, 1,2, 

(i,X) 1 • (i) (1) 

(4.1) 

X=¢, A; M(O,A) = M(O,A)= M(2,cp) = M(2,¢);, 0' 
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and for which hybrid bispinors Ww are solutions to the 
free particle Dirac equation everywhere but a single 
point (origin). 

Every singular static solution of scalar field and 
Maxwell eqs. may be expressed as a linear combination 
of irreducible (under the group of 3-dimensional rotations) 
tensors of rank L -static multipole fields /4/ 

.... .... 
F Lm"' V ¢Lm' 
.... .... 4 .... .... .... 
ELm"'- V ALni HL "'rotA L = E1 , m m ,m 

where 

.rl.. 4 • 
'PLm=-ALm= --- YLm(O,¢) 

r L + 1 

.... 
V ¢ = v ( 2L + l) ( L + I) 

Lm 

1 .... 
-T 

r L + Z L , L + 1 ,m ' 

.... I .... .... L + l 
A =-rAH =+iy--

Lm L Lm L 

.... __ I_ T 
r L + 1 LLm 

and 

.... 1 .... 
T 0 = ~ C(f lL;m-n,n) Yo ~ , 

L,L,m n=- 1 t m-n n 

(4.2) 

(4.3) 

(4.4) 

(the notation used is based on that in 141 ). Operator \\ 
constructed out of multipole fields (4.2) with fixed L, m is 
a com.ponent of irreducible tensor operator 

WLm • 
Now we are looking for sets of constants M for which 

bispinors 

'I'M-
E, w,J 

~ 
I 

o=-~ 
C(J-

2
1 ,

2
1 ,J;n-o,o)W JL w~ )(k=O,x) 

J-!2,M-o 

are eigenfunctions of operators 
(4.3) 

(4.4) ... "o = ~ p + m o 13' 
with the eigenvalue E = E m0 

to 

I 

. t 

' 

.... 2 
J ' J (4.5) 

z 

with the eigenvalues J(J+l){J=-}.f •... )., and M(M =J, J -1, ••. -J) 
respectively, and parity operator rr, the eigenvalues of 
which depend on quantum numbers J and w = ± 1 in 
the following way /~: 

w 
M J+2 M 

rr'l' _ =(-1) 'I' _ • (4.6) 
f, w,J f, w, J 

We adopt phase conventions 

~ M_ =(-l)M 'I'-M_ ' ~(f) =(-I( w (-f) 
E ,w,J -f , -(JJ,J o -a 

(4.7) 

between charge-conjugated bispinors, 

C -y C - T 
'I' = c 'I' ' w = c w ' (4.8) 

( T .•... symbol for transposed matrix). 
The first of equations (4.8) is valid if the matrix 

We C( 4w+ 4>T c-1 
1 = y 1 y 

J- Z , M -a J- Z ,M -a 
(4.9) 

coincides with W 1 up to the phase factor 
J- 2 ,-M+a 

~ 1 = ( - l)M - a W 1 
J-

2
,M-a J-2,-M+a 

(4.10) 

This is the case when 

-
M =M =M =M =0. 

(1cp) (1A) (2A) (Orp) 
(4.11) 

Now it may be easily verified that(4.3)has the desired 
property in two cases only: 

.... -
M M 0 M M ··· C1/ H = 0 , <D¢>= ( lA) "':' ' (1¢*' (2A) arbitrary 

.... - -
C2a/E = 0, M<D¢>= 0, M UA ( 2m 0 M (ZA), M< 1 , ¢> = 0, 

~ - - -
C2,9/ E = 0' M(O ¢l= M{l Ar M(ZA)=O 'M(1cW"" arbitrary 
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If E =0 in the case Cl ,}hen this possibility coin­
cides with C2 f3 . 

Using conneetjpn (4.13) between spherical vector har­
monics ( 4.4) and spherical spinors 

'l:JM "'~ C(L lj; M-a,a) YLM-a Xa 
LJ a 2 ··) 

(4.12) 

we may write down the hybrid bispino·rs in a more custo­
mary form. The above-mentioned connection reads 

7:! 
~ 

a=-~ 
C(J'-

2
l.J;M-a ,a );T, x =K(L,J')'l:JM , (4.13) 

J L M- a a LJ 

where 
KU+ 21 ,J+ 21 >- =-v< 21+3) 

21 + 1 ' 

1 1 4J 
KO+y,J- 2)=v<~. ,), 

K (J _l ' J + ..!._) = - . I ( 4 (J + 1) ) 
2 2 v ~· , ' 

( 1 1 21 ~ 1 KJ--z,J-2)=y(_. ,), 

;--, 

( 3 1 3 1 
K J + 2' J + 2) = K ( J - 2 'J - 2 ) = 0 . (4.14) 

Equalities (4.13) may be verified by using properties of the 
Wigner coefficients /4/. 

The customary form of singular solutions to the Dirac 
equation is 

(

. I q,M - rl+< iJ (l-<)(l+w) ]) - ~ J w t--+- -'---'-'---"-
J+l+-f +2,J 2 mo 4 

M : .. : r , . . . 
'I' - =N(<,w) 

<,w,J -I _ 'l:J M w l-< _.!1_ (1+t)(I-w)] 
J+l-.W.. J+-z, 2 mo 4 

r 2 

12 

--ilmot e 

(4.15) 

. 

The constants of integration N.i<, w) are in our case ex­
pressed in terms of constants Me i,x): 

N( -) ( . ) 1+<w . - 1-<w (4 < ,w =2J -fM<l¢)+IM( 2A) - 2- -HM(l.&l-2-. .16) 

The sets of solutions with ( < = ± 1, w = ± 1) (coherent 
choice of signs) correspond to the case C1 (and C2{3 ), 
sets(< =±1,w=+1) correspond to C2a) . 

All solutions with exception of those with 

I 
t = ± 1, w = ± 1, J = 2 (4.17) 

are square integrable in a domain lying outside a sphere 
with radius p > o and with the centre placed at origin. 

If we admit all but (4.17) solutions (4.15) we see that 
there do not exist solutions constructed out of the mag­
netic monopole field. This i§ the consequence of assumed 
reality of constants M(iX) , M(iX) • 

Solutions with J > 1/2 probably do not correspond to 
any really existing objects (particles). The reason for 
this conviction is that states with higher than 1/2 value 
of quantum number J should be very likely states with 
energy E( J) 

l 1 E(J>-) >E(J=-) =mo. (4.18) 
2 2 

But if we do not suppose coherent with (4.18) dependence 
on .J of the constant m 0 in Dirac eq., the bispinor 
(4.15) is not longer solution to the Dirac equation for 
J > l/2 . Solutions with J = l/2 are supposed to correspond 

to electron when (< =+1, w=+ l) and to positron when ( < =- l, 
w=-I). ""' 

5. Energy Momentum Tensor and Angular 
Momentum Density of the Hybrid BisPinor Field 

In this section we shall give explicit expressions for 
components of the canonical EMT and angular momentum 
density of the hybrid bispinor field ( < = l, w = l, J = 1/2) in 
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terms of the Lienard-Wiechert fields E , ii of a uni­
formly moving electron, i.e. we suppose Mu¢) 0 ......... 

The explicit dependence of 'l' a = ~.!_ on E, H is 
2 

- --> --> --> --> (+1) --> -
41

0 
= M (-aH+ ilE) wa (k,x). (5.1) 

(2A) 

Using (5.1) we may easily verify that 

4 l - 4 
3' 4 = 2 liP a Y P 4 'l' a + h . c. I = 

(5.2) 

-2 -->2 -->2 2 l . 
= M [ -m y l y ( E - H ) I+ y ---£ x 'J v w +I w ] , 

(2A) 0 r'6 ijk k a i a 

where h.c. stands for the Hermitean conjugated term and 
,j -(t-1 )i {3 

x -- {3x 

(L) ..... the matrix of proper Lorentz transformation, 
connecting special reference frame chosen with the rest 
frame. The second term in square brackets in (5.2) is the 
odd function of coordinates x 'J and is equal to zero in 
the rest frame of the electron, the term in curly brackets 
(multiplied by M72A) ) is just 

-2 l 'l'+ 'l' = M(2A) I. (5.3) 

By direct calculation it may be proved that the following 
relations for various components of EMT 

-2 
. 4 • 1 - 4 • M(2A) J 
3' =yl'~'aY P 1 '~'a+h.c.l= -

6
--lijkx <Sk>, 

r 

1 
sk = 21 k' 

cri ~: j'i 
J4 j 

<Sk > = x~Sk Xa' 

0 

(5.4) 

(5.5) 

are valid in I' reference frame (the special choice of 
coordinate system is expressed by dots over equality 
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signs). (5.4) being the odd function of J, the total mo­
mentum of the field (5.1) is zero in I'. But the orbital 
momentum density 

• j cr4 1 l + I e. = ( -- k X Jk = -2 'l' L- 'l' + h. c. 
1 1 J 1 

(5.6) 

is an even function 

2 M2 - 31 • (2A) I 2 ~ - ~ X n - -· -- r ui3 
L i - r 6 (5.7) 

and gives a nonzero (and even infinite if a suitable regu­
larization procedure is not accepted) contribution to the 
space integral of the total angular momentum density. 

The total angular momentum density 

d • 1 1 + 1 • no+ • ZJ. =- 'l' J.'l' +h.c. = -r 'I' <S.>, 
12 a1a aa 1 

(5.8) 

has the same type of singularity as (5.2) and (5. 7) and in 
both cases the same regularization procedure, ifitexists, 
should lead to the correct value of the total energy, 
momentum and spin (the integral of the total angular 
momentum density). 

In a more general case, when we do not neglect a pos­
sible contribution of the scalar field ¢ = gO to the self­
field of electron (i.e., when we take Moc;~>/ 0, ¢ ~ l/r ) 
we may easily prove that the 4-4 component of EMT in 
the special reference frame is 

4. -2 --> 2 -2 --::2 
3' 4 = -m 0 !M<t¢)( V ¢) + M< 2 A)E I. (5.9) 

'-2 --2 -2 
Eq. (5.4) with M< 2A) replaced by M< 1¢) + M <2A) and eq. 
(5.5) are also valid. 

6. Regularisation through a Non-polynomial Interaction 
of the Dirac Field with a Massless Scalar Field 

Let us suppose that the Dirac field interacts with 
a scalar field <l' in a way similar to that analysed re-
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cently in connection with the infinity suppression problem 
in quantum field theory /6/. 

The Lagrangian density of the Dirac field is supposed 
to be 

* * * f( 'I') = ep<t> f (W ) p ••• const. (6.1) 

* * * 
f('l') =}!W(P+m 0 )'1' + h.c.l. (6.2) 

* 
The stars over the 'I' 'sin (6.2) indicate that 'I' should now 
be a solution to the equation 

* ( P - i .E.:_ F ( <11) + m 0 ) 'I' = 0 , 
2 (1) 

(6.3) 

which is the Euler-Lagrange equation derived from the 
variational principle 

* o * J f d
4

x = 0 
'I' 

The substitution 
* _£._<1J 
'l'=e 2 'I' 

(6.4) 

(6.5) 

transforms (6.3) into the free particle Dirac equation. It 
is easily proved that Lagrangian density (6.1) as well as 
canonical EMT 

* * * j"fl ('I')= ep<ll j"P. ('I') 
v v 

(6.6) 

transforms into f( 'I') and 5"~ ('I') , respectively, by sub­
stituion (6.5), i.e., 

* * f('l') = f('l'), 
(6.7) 

* * 
lj" p. ('I') = lj" p.('l') .• 

v v 
EMT (6.6) is a conserved quantity as a consequence 

of validity of equation of motion (6.3). Now we shall prove 
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that when special assumption concerning thus far arbitrary 
scalar function <11 is adopted, we have at our disposal 
another conserving quantity 

* <11 '5" 11 (W)=e-p 5" 11 ('1'). (6.8) 
v v 

The assumption just mentioned reads 

l <11=¢=-, p>O. 
r 

The conservation law 

* a ,5" 11 ( w ) = o 
11 v 

is valid because 

(6.9) 

(6.10) 

p. po -11 -11 
¢, 5" ( W) =- TJ ¢, ¢, lp ¢, wy w +a (¢, wy w) l (6.ll) 

11 v P avp. v 11 

and relations 
¢, wyl1 w = o 

p. 
as well as 

a 11 ~5"~(IJI) =0 

are fulfilled identically. 
The point is that the total energy and the space intfgral 

of the total angular momentum density of the field 'I' is 
finite and have the correct value if (6.8) is regarded to 
be the correct energy momentum tensor density , the 
singular ( t = ± l, w = ± 1, J = l/2) bispinors are taken for 
'I' 's and the constants N, p are appropriately chosen. 
Moreover, the four quantities 

4 * 3 p = f'j" ('JI) d X (6.12.) 
p. 11 

are components of the total energy-momentum four­
vector, as may be easily proved using the transformation 
properties of the EMT 

a4 ( ) 4 a cr 'p - 1 
J

11 
x = LP L

11 
J a ( L x) , (6.13) 

and the fact that all but 4-4 components of the EMT 
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:f 'P are zeros or odd functions of variables x'
1 in the 

rgst frame 2' and therefore 

I' = _!_ L 4 L a J :f 'p, ( x') l x' = U J :f ,
4
4 . ( x') d 

3 
x', 

11 Y P 11 a 11 

!ll 11 1 "'~~ y,yl. (6.14) 

It follows that 

if 
pit= pit= ll/1 m 0' 

4 * 3 -E. m ! Nf~ 3 I j" 4 ( 'V ) d x ~ I c r -T- d x • 
r 

(6.15) 

The desired connection between two arbitrary constants 
N , p is therefore 

i.; -p­
N=c y(---), 

4rr 

where ( i ,;) is an arbitrary phase factor. 
As an interesting fact we point out that if 

e2 
p =r "'-' e m0 

(6.16) 

i.e., if we put the regularisation constant p to be equal 
to the classical radius re of the electron, and if Mct<hl=M(ZAl 
(i.e., if .;= rr/4) the integrand of (6.15) becomes tlie sum 
of two equal parts energy densities of the Coulomb and 
quasi-Coulomb fields, multiplied by the regularisation 
function exp(-re /r). The term "quasi-Coulomb field" is 
used for the static massless scalar field of a point 
source with~ charge f, I fl =I el. 

Because 'V is also the eigenfunction of operators -z J , Jz we get 
* * 3 * * . f qrt 12 \11 d3 X :0 r , J lp+ j. lfJ d 3X :0 fj a 

a a '~ a 1 a i3 

as it should be. If we use the regularised EMT in (5.6) 
and integrate over spatial variables, we get for the 
components of the "orbital" angular momentum 

* 3 • 4 
fet<'~'a)d x = 8i3. 3a. 

18 

* The bispinor '~'a has no singularity, is square integrable 
function and solves eq. (6.3) in the whole Euclidean 3-
dimensional space (with no point excluded). Equation (6.3) 
may be regarded as the Dirac equation of a free particle 
in a Riemannian space with conformally flat metrics 

2 
* -g-P¢ 
gllv= e T/ fl.V 

(.,., metric tensor of Minkowski space). 
fl.V 

The author is indebted to N.A.Chernikov for discus­
sions and valuable remarks, to A.B.Pestov for his interest 
and reading of the manuscript and to Ya.A.Smorodinski for 
critical discussions on the matter partly involved in this 
paper. 
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