

объединенны" ИНСТИТут адериых исследований
 дубиа

E2-136.847

A.E.Dorokhov, N.I.Kochelev*

EFFECTS OF QCD VACUUM
 AND STABILITY OF H DIHYPERON

Submitted to "Physics Letters B"

[^0]1. Within the quark bag model $/ 1-3 /$ the consideration of multiquark states /4-7/ was one of the most interesting applications. In these calculations the MIT version of bag model was used. As proposed in a static approximation $/ 1 /$, the energy of a multiquark system is determined $/ 2,8 /$ by

$$
\begin{align*}
& E(R)=\sum_{\text {tar }} \frac{n_{i} \omega_{i}}{R}+\frac{4 \pi}{3} B R^{3}-\frac{Z_{0}}{R}+\Delta E_{i g}, \tag{1}\\
& M^{2}(R)=E^{2}-\left\langle P^{2}\right\rangle,\left\langle P^{2}\right\rangle=\sum_{\text {fear }} n_{i}\left(\frac{\partial P_{i}}{R}\right)^{2}, \tag{2}
\end{align*}
$$

where R is the bag radius, η_{i} is the number of quarks of an i-th type with energy $W_{i} / R\left(W_{\mu, d^{=}} 2,043\right.$ in the ground smstate; $\left.m_{L}=M_{d}=0, M_{S}=280 M_{\theta} V\right)$, B is an external pressure ($B^{1 / 4}=$ $=145 \mathrm{MeV}),-Z_{0} / R \quad$ is a contribution of zeromode fluctuations $\left(Z_{0}=1,84\right), \Delta E_{g}$ represents a colour-magnetic int ere orion $\left(\mathcal{L}_{S}=2.2\right)$. The stability condition $d M^{3} / d R=O_{\text {fixes }}$ the bag radius.

In the KIT version of the model the hadron spectrum is specifled by the OCD interaction

$$
\begin{equation*}
\Delta E_{g}=-\frac{\alpha_{s}}{4 R} \sum_{i>j}^{N} m\left(m_{i} R, m_{j} R\right)\left(\vec{\sigma} \lambda^{\alpha}\right)_{i}\left(\vec{\sigma} \lambda^{a}\right)_{j} \tag{3}
\end{equation*}
$$

where N is the total number of quarks, $\vec{\sigma}_{i}\left(\lambda_{i}^{\alpha}\right)$ ere the spin (colour) operators of an 1-th quark; $M_{i j} \equiv M\left(M_{i} R, r^{\prime} ; R\right)$ determine the strength of a colour-spin interaction. In a massless ($M_{i}=0$) case the average of (3) over a hadron state 9^{n} is expressed through the Casimir operators of spin $S U_{2}^{J}: \frac{4}{3} \mathcal{J}(\mathcal{J}+1)$; colour $S U_{3}^{c}: C_{3}=0$; spin-colour $S U_{6}^{c]^{2}}$ - defined by quantum numbers of the considered state

$$
\begin{equation*}
\Delta E_{g}=M_{00}\left[8 N-\frac{1}{2} C_{6}+\frac{4}{3} J(7+1)\right] \frac{\alpha_{s}}{41} \tag{4}
\end{equation*}
$$

where \mathcal{J} is the total moment. Based on this formula $1:$ is possible to formulate the rules $/ 4 /$ analogous to the Hind rules ? ${ }^{\text {rom atomic }}$ physics.

For the case of dibaryons rules are the following '5/: The lightest states are those in which quarks are in the mo $3 t$ symmetrycal (antisymetrioal) with respect to colour - spin (flavour) representations.

Such general considerations and caloulations based on the MIT model lead to the conolusion $/ 5 /$ that a flavour-singlet six-quark dihyperon H with strangeness -2 and $J^{P}=0^{+}$may be stable with respect to a strong decay.

Recently, the problem of stability of the dihyperon H has again been discussed after nonusual signals from the Cygnus X_{-3} have been registered $/ 9 \%$. As a possible explanation of this effeot it was proposed $/ 10 /$ that $C y g n u s X^{\prime} 3$ is a star containing the strange matter and it emits H dibaryons with a iifetime $\mathcal{G}_{H} \geqslant 10$ jears. The value of H mass is an essential point in the determination of its lifetime and confirmation of this hypothesis $/ 11 /$. While today experimental situation on the emission from Cygnus $X-3$ stays indefinite $/ 12 /$, the search for multiquark states in cosmic rays and on finite , the search for multiquark states in cosmic rays and on
acoelerators intensively continues $/ 13 /$. That is why correct calculations of multiquark masses, their lifetimes and deoay modes are so important. In this respect the H dihyperon is most intriguing object of the investigations.

The mass of H was estimated within different variants of the bag model $/ 5,6,14 /$, the lattice approach, the OCD sum rule method and Skyrme model /15/. The aim of the present work is to calculate the mass of H in the quark bag model taking into aocount the structure of QCD vacuum $/ 16 /$. In $/ 16 /$ such a model mas proved to be consistent with the method of $Q C D$ sum rules and canable of desorthing the spectroscopy of the ground states of hadrons.
2. Let us formulate basic assumptions of the model /16/. It is known $/ 2 /$ that in the MIT model, it is assumed concerning the vacuum structure that in the presence of valenoe quarks nonperturbative vacuum fully goes out of the bag. However, this hypothesis is not compatible with the pioture produced by the $Q C D$ sum rules $/ 17 \%$, and it is not self-consistent. Really, the bag constant B characteriaing the degree of destroying of vacuum ($\mathrm{B}_{\mathrm{MIT}} \sim\left(130_{-150} \mathrm{MeV}^{2}\right)^{4 / 18}$ / is much smaller than the "depth" of nonperturbative vacuum known from the $Q C D$ sum rules: $\left.\mathcal{E}_{0}=-\frac{9}{32}<0\left|\frac{\alpha s}{\pi T} G^{2}\right| O\right\rangle \simeq-\left(240 \mathrm{MeV}^{4}\right.$. This means that the vacuum fields praotically do not change inside the bag-hadron. Therefore, the neglect of the effects of QCD vacum in the bag beoomes physically groundless.

In works /16/ basio principles were formulated allowing one to consider the $O C D$ vacuum in the bag.

As a starting point, we take the QCD theory and available information on the behaviour of its solution. First, we think that in a zero approximation the structure of the solution is such that the low- and
high-frequency components of the solution are independent of each other.

Second, we suppose that the (valence) components of the fields with charaoteristic frequencies $\omega \sim \omega_{q}$ are desoribed by solutions of the static bag-model equations ($\left.q\left(x^{\prime}\right)=q^{6 a g}(x) ; A_{T}(x)=\mathcal{A}_{T}^{\text {baq }}(x)\right)$.

Third, low-irequenos (condensate) field components ($\omega \ll \omega_{q}$) are assumed to be solutions of the $Q C D$ equations characterised by a
set of numbers:different vacuum condensate quantities $\left.\langle\bar{Q} Q\rangle,\left\langle G^{2}\right\rangle, \ldots\right)$ set of numbers.dumptions the Hamilonien of the interaction of valence components $\left(q(x), A_{T}(x)\right)$ with condensate ones $\left(Q(x), A_{v a c}^{(x)}\right)$ is restored uniquely through the field transformation:

$$
\begin{equation*}
\psi(x)=q(x)+Q(x) ; A(x)=A_{T}(x)+A_{\text {vac }}(x) \tag{5}
\end{equation*}
$$

In addition, there are OCD vacuum fluctuations $\pi i t h, \omega_{\text {rac }} \gg \omega_{q}$ which may be ap
by instantons by instantons.

$$
\text { 3. In the model } \mathrm{hb/} \text { the energy of a hadron is defined as }
$$

$$
\begin{equation*}
M^{2}=E^{2}-\left\langle P^{2}\right\rangle, \quad \frac{d M^{2}}{d R}=0 \tag{6}
\end{equation*}
$$

where $\left\langle P^{2}\right\rangle_{8}=\sum_{\text {flav }} n_{i}\left(\mathscr{R}_{i} / R\right)^{2}$ is due to the c.m. motion oi quaris:

$$
\begin{equation*}
E(R)=E_{k i n}+\Delta E_{g}+\Delta E_{v a c}+\Delta E_{\text {inst }} \tag{7}
\end{equation*}
$$

is the bag energy. In (7) the kinetic energy of quarks $E_{\text {kin }}$ and the one-gluon interaotion energy $\Delta 1,28,20 / g$ are calculated as usualy in the bag perturbation theory $11,18,20 /{ }^{\delta}$:

$$
\begin{gather*}
E_{k i n}=\sum_{f l a v} n_{i} \omega_{i} / R \tag{8}\\
\Delta E_{g}=\frac{0,117 \alpha_{s}}{R}\left[M_{00}+\left(1-0,13 m_{s} R\right) M_{o s}+\left(1-0,25 m_{s} R\right) M_{s s}\right] \tag{9}
\end{gather*}
$$

Where $M_{i j}$ denotes matrix elements of the operator (2) with respect to spin-colourspin states of hadrons.

As was shown in $/ 16 /$ a leading oontribution to the hadron energy caused by the valence- and condensate-fields interaotion is

$$
\begin{align*}
& \text { generated by the Hamiltonian } \\
& \qquad H_{v a c}=\frac{\omega}{2}\left(\bar{Q} y^{0} q+\bar{q} y^{\circ} Q\right) \tag{10}
\end{align*}
$$

Then by using the stationary perturbation theory

$$
\begin{align*}
& \Delta E_{\mathrm{vac}}=\langle\Phi| H_{\mathrm{I}}|\Psi\rangle /\langle\Phi \mid \Psi\rangle \quad,|\Psi\rangle=U(-\infty, 0)|\Phi\rangle \tag{11}\\
& U(-\infty, 0)=\sum_{n=0}^{\infty} \frac{(-i)^{n}}{n!} \int_{-\infty}^{0} d t_{1} \ldots \int_{-\infty}^{t_{n-1}} d t_{n} T\left[H_{v}\left(t_{1}\right) \ldots H_{v}\left(t_{n}\right)\right]
\end{align*}
$$

where $|\Phi|$ is a nonperturbed hadron wave function of the bag model,

$$
\begin{align*}
& \text { we have } \\
& \Delta E_{v a c}=-n_{0} \frac{\pi}{24} \frac{\langle 0| \bar{u} u|0\rangle}{x_{0}-1} R^{2}-n_{s} \frac{\pi}{12} \frac{\langle 0| \bar{S}|0\rangle}{x_{s}^{2}} R^{2} \frac{(y+a)^{2} y}{2 y(y-1)+a}+ \\
& +\frac{\pi^{2}\langle 0| \bar{u} u(0\rangle^{2} R^{5}}{1152 x_{0}\left(x_{0}-1\right)^{2}}\left\{\tilde{M}_{00}+\frac{\left(x_{0}+y\right)(y+a)^{2}\left(x_{0}-1\right)}{x_{s}^{2}[2 y(y-1)+a]} \frac{\langle 0 / \bar{S} S(0\rangle}{\langle 0 / \bar{u} u(0)} \widetilde{M}_{s 0}^{(12)}\right. \\
& \left.+\frac{4 y(y+a)^{4} x_{0}\left(x_{0}-1\right)^{2}}{[2 y(y-1)+a]^{2} x_{S}^{4}}\left(\frac{\langle 0 / \bar{S} S / 0\rangle}{\langle O / \bar{U} U \mid 0\rangle}\right)^{2} \tilde{M}_{S S}\right\}+\ldots,
\end{align*}
$$

where $\langle O| \bar{Q}_{i} Q|0\rangle$ are quark condensates, $y=\omega_{s} R . \quad a=m_{c} R$.
Expressions (12) are absolutely different from $B R$ arising "ed hoc" in the MIT version. In contrast, in the model considered stability of the bag is achieved in a self-consistent manner due to the interaction of quarks with a physical vacuum. Moreover, the potential (12) is drastically dependent on the number of quarks With a given flavour, their masses and quantum numbers of considered hadron states (the latter is taken into account by the coefficients \widetilde{M} /16/).

So, the long-mave vacuum fluctuations define the effective quark mass (12). At the same time the interaction of quarks with a shortwave part of vacuum fluctuations allows us, to a great extent, to explain the mass splitting between the terms of $\mathrm{SU}_{\mathrm{f}}(3)$ hadron multiplots $/ 16 /$. Within the model of $O C D$ vacuum as an ingtanton liquid $/ 21 /$ we get the two-particle contribution to the energy ${ }^{16 /}$

$$
\begin{equation*}
\Delta E_{\text {inst }}^{(2)}=-n_{0} \sum_{a>8} \eta_{a b} I_{a b}\left\{1+\frac{3}{32} \lambda_{a} \lambda_{b}\left(1+3 \vec{\sigma}_{a} \vec{\sigma}_{b}\right)\right\}, \text { (13) } \tag{13}
\end{equation*}
$$ states

$$
\rho_{C} \text { is the characteristic size of an instanton in the } Q C D \text { vacuum, }
$$

$$
I_{a_{1} \ldots a_{h}}=\int_{\text {it }} d \vec{r} \prod_{i=1}^{n} \vec{q}_{R}^{a_{i}} q_{i}^{a_{i}}
$$

It should be emphasized that the interaction through instantons $\int_{19.22-24 .}^{16}$, 16 / place in a system $\mid>$ of quarks in a zero mode 719.22-24. 16/

$$
\begin{equation*}
\sum_{i=1}^{N}\left(\vec{\sigma}_{s}^{i}+\vec{q}_{c}^{i}\right)| \rangle=0 \tag{15}
\end{equation*}
$$

Diquarks: $_{i=1}^{2}\left(\overline{3}^{F}, J=0, \overline{3}^{c}\right), q^{2}\left(\overline{3}, F=1,6^{c}\right)$, triquarks: $q^{3}\left(8^{F}, J=\frac{1}{2}, 8^{c}\right), q^{3}\left(J=\frac{3}{2}, 10^{c}\right)$, etc. are such systems.
(8 , also note that the instanton interaction (13,14) is consdered only in the first order of perturbation theory analogously to that as it was done in the case of an external pion field $/ 25 /$.

4. The model parameters

As is seen from (1), the MIT model uses four parameters $\left(B, \alpha_{s}, Z_{0}, M_{s}\right)$. But, the parameter Z_{0} is not well grounded, the value of M_{s} is too large, and B poorly agrees with the parameters extracted from the QCD sum rules and current algebra. The value $\alpha_{S}=2.2$ does not agree with a perturbative expansion in this parameter, which was confirmed in one-loop calculations ${ }^{/ 26 / \text {. In }}$ multiquark systems, perturbative calculations with large \mathcal{C}_{S} get still more uncertain /6/.

Within the description $/ 16 /$ of energies of the ground states of

$$
\begin{aligned}
& \Delta E_{i n s t}^{(3)}=+n_{0} \eta_{u d s} I_{u d s}\left\{1+\frac{3}{32} \lambda_{a} \lambda_{B}\left(1+3 \vec{\sigma}_{\alpha} \overrightarrow{\sigma_{B}}\right)+\right. \\
& +\frac{9}{320} d^{\alpha \beta \gamma} \lambda_{\mu}^{\alpha} \lambda_{\alpha}^{\beta} \lambda_{s}^{\gamma}\left[1-3\left(\vec{\sigma}_{\alpha} \vec{\sigma}_{b}+\text { permutat-s) }\right](14)\right. \\
& \left.+\frac{9}{64} f^{\alpha \beta \gamma} \varepsilon_{i j k}\left(\sigma^{i} \lambda^{\alpha}\right)_{u}\left(\sigma^{j} \lambda^{\beta}\right)_{\alpha}\left(\sigma^{k} \lambda^{\gamma}\right)_{s}\right\} \text {. } \\
& \text { Here } n_{0}=\left\langle 0 / g^{2} G^{a \mu \nu} G_{\mu \nu}^{\alpha} \mid O\right\rangle /\left(64 \pi^{2}\right) \text { is a density of } \\
& \begin{array}{l}
\text { Here } n_{0}=<0 / g \text { instantons in the model } / 21 /\left(n_{0}=\left(\pi \rho_{c}\langle\bar{Q} Q\rangle\right)^{2} / 3\right) \text {, }
\end{array} \\
& \begin{array}{l}
\eta_{i_{1} \ldots i_{n}}=\left(\frac{4}{3} \pi^{2} \rho_{c}^{3}\right)^{n-1}\left(m^{*}\right)^{n} /\left(m_{i_{1}} \rho_{c} \ldots m_{i_{n}} \rho_{c}\right), \\
m_{i}^{*}=m_{i}+m^{*}, m^{*}=\frac{2 \pi^{2}}{3}\langle 0 / \bar{U} थ u \mid 0\rangle \rho_{c}^{2},
\end{array}
\end{aligned}
$$

hadrons it has been proved that it suffices to choose the following values of the parameters

$$
\begin{equation*}
\alpha_{s}=0,7 ; m_{s}=220 \mathrm{mev}^{2} \tag{16}
\end{equation*}
$$

and $\rho_{c}=2 \mathrm{Ge}^{-1},\left\langle O / \bar{Q}_{i} Q_{i} / O\right\rangle=-(250 \mathrm{MeV})^{3} \quad(1=u, d, s), ~$
adopted from the model of vacuum adopted from the model of vacuum /21/ and $Q C D$ sum rules $/ 17 /$, respectively.
5. To oaloulate the matrix elements of t^{2} wo- and three-particle operators included into $\Delta E_{g}, \Delta E_{v a c}, \Delta E_{\text {inst }}^{(2)}, \Delta E_{\text {inst }}^{(3)}$ it is necessary to know the cluster expansion (dissooiation) of the six-quark wave function of $H: q^{6} \rightarrow q^{3} \times q^{3} ; q^{6}-q^{4} \times q^{2}$. The expansion method and wave functions are given in Appendix.

By using the wave functions ($A 3$) we have for the matrix elements $\Delta E_{g, \Delta} E_{\text {inst }}^{(2)}$

$$
\begin{align*}
& \Delta E_{g}^{H}=\left(-5 M_{o o}-22 M_{o s}+3 \mu_{s s}\right) / R, \tag{17}\\
& \Delta E_{g}^{H^{*}}=\frac{1}{3}\left(\frac{11}{6} M_{00}-41 M_{o s}+\frac{67}{6} M_{s s}\right) / R \text {, } \\
& \Delta E_{\text {inst }}^{(2)}=-\frac{27}{4} \mathrm{Mo}\left(T_{u d} \eta_{u d}+2 T_{u s} \eta_{u s}\right) / R^{3} \text {, (18) }
\end{align*}
$$

In acoordance with the selection rule (15) the threemparticle interaction 1 s nonzero only for the component $q^{3}(I=0, S=-1$, $\mathrm{I}=1 / 2,70^{\text {c3 }}$). So, with the wave function (A^{3}), we have:

$$
\begin{equation*}
\Delta E_{\text {inst }}^{(3) H}=+\frac{135}{8} n_{0} \eta_{u d s} I_{u d s} / R^{6} \tag{19}
\end{equation*}
$$ It should be added that the approximation of coefficients

is given in ${ }^{20 /}$; coefficients $I_{i j}{ }^{\text {in }} / 16 /\left(I_{s} n_{s}=0.65 I_{0} \eta_{0}\right), I_{u d s}=0.0244$.
6. By using the above-mentioned relations we obtain the estimation of dibyperon masses

$$
\begin{array}{ll}
M_{H}=2.09 \mathrm{GeV} & R_{H}=5,2 \mathrm{GeV}^{-1} \tag{20}\\
M_{\mu^{*}}=2.34 \mathrm{GeV} & R_{H^{*}}=5,3 \mathrm{GeV}^{-1},
\end{array}
$$

So, our results show that the mass of H is less than $2 M_{\wedge}$ but above the thershold of $N \Lambda$

- Dibyperon H^{*} is absolutely

In acoordanoe with the estimation of the lifetime of H in $\Delta \mathrm{T}=1$ weak decays established in work $/ 27 /$, the state with the mass $M_{H}=2.09 \mathrm{GeV}$ is longlived: $\mathcal{T}_{H} \sim 10^{-8} \mathrm{sec}$.

Note that in the approach developed a basic oause of the stability of E_{d} dihyperon is the interaction of valence quarks with shortwave fluctuations and physioally is due to the same mechanism by which the mass splitting arises in hadron multiplets $(\mathbb{G}-\rho, N-\Delta$, and so on splittings).
e also proved the spectroscopic Hund rule for quark systems - the same time its origin is absolutely different. The nonperturbative instanton interaotion between a pair of quarks produoes strong attraction in a symmetric in colour spin representation and is totally absent in antisymmetric states. 'The instanton interaction takes into aooount the strong interaction at intermediate distanoes ρ_{c} and gives use to the formation of quasibound states, diquarks $/ 23,28 /$. So, the Hund rule is physically due to the existenoe of diquarks.

Moreover, in multiquark systems there are multipartiole ($n>2$) instanton-induced forces (in colourless baryons such interactions are absent because of the selection rule (15)). at the same time we show that the contribution O_{f} three-particle foroes to the energy of F state 1 s negligible. $\wedge \mathrm{F}_{\text {insi }}^{(3)} \sim+5 \mathrm{meV}$.

Note also that very recently in the experiment carried by the B. A. Shahbasian group the data that confirm the existence of H dihyperon have been obtained $/ 29 /$.

In oonolusion, the authors are thankful to P.N. Bogolubov for constant attention and interest in the work and to S. B.Gerasimor M.K.Volkov, A. V. Radyushkin, A.I.Titov, S.M.Dorkin, V.T.Kim and B. A. Shahbasian for discussions. $0_{n e}$ of us ($N . K_{\text {. }}$) also thanks I.Ya.Chasnikov for support.

Append1x. The wave function of dihyperons
To construct the wave functions of H and H^{*} dinyperons, we make use of the dissociation method developed in $/ 30$. The idea of this method was borrowed from work $/ 6 /$. That method allows us to oonstruot the wave functions of multiquark systems $q^{m} \bar{q}^{n}$ with respeot to arbitrary dissociation $\left(q^{m_{1}} \bar{q}^{n_{1}}\right) \times\left(q^{m_{2}} \bar{q}^{n_{2}}\right)^{n}\left(m_{1}+m_{2}=m, n_{1}+n_{2}=n\right)$. To olassify the basis states of multiquariss $\left(q^{m}\right)^{\prime}$, the group U_{18} is ohosen as the group in whith the direct production of isospin $S U_{2}^{I}$, strangeness U_{1}^{S}, spin $S U_{2}^{J}$ and colour SU_{3}^{c} groups is embedded. (Singling out the flavour group SU_{3}^{+}is not effective
because of a strong mixing of the SU_{3}^{f} quantum numbers arising in the multiquark sector.) Thus, the quark wave function relative to their quantum numbers transforms by a fundamental representation $\{1\}$ of the group U_{18}. In this case the scheme of the group reductron of the n-quark-system representation $\left\{I^{n}\right\}$ is the following

$$
\begin{gather*}
U_{18}^{\times n} \rightarrow U_{18} \rightarrow S U_{12}^{I J C} \times U_{6}^{S J C} \rightarrow \\
\rightarrow \tag{Al}\\
\left(S U_{2}^{T} \times S U_{6}^{J C}\right) \times\left(U_{1}^{S} \times S U_{6}^{J C}\right) \\
S U_{2}^{T} \times\left(S U_{2}^{J} \times S U_{3}^{c}\right) \times U_{1}^{S} \times\left(S U_{2}^{J} \times S U_{3}^{c}\right) \\
S U_{2}^{I} \times U_{1}^{s} \times{ }^{\top} S U_{2}^{J} \times S U_{3}^{c}
\end{gather*}
$$

Using Racah's factorisation lemma (1949) and the factorisetion property of transformation coefficients for direct product groups, the transformation of a 6 -quark wave function to the dissociation basis may be written in the form

$$
\begin{align*}
& \left|\left(1^{3}, 1^{3}\right) 1^{6}\left(1^{n_{0}}\left(I, \lambda_{0}^{x}, J_{0} \mu_{0}^{c}\right), 1^{n_{5}}\left(S, \lambda_{s}^{x^{c}}, J_{5} \Omega_{5}^{c}\right)\right) J 0^{c}\right\rangle= \\
& \left.=\sum_{(,}^{\prime},{ }^{\prime}\right)\left[1^{3}\left(1^{n_{0}^{\prime}}\left(I^{\prime}, \lambda_{0}^{\prime}, J_{0}^{\prime} \mu_{0}^{\prime}\right), 1^{n_{s}^{\prime}}\left(S^{\prime}, \lambda_{s}^{\prime}, J_{s}^{\prime} \mu_{s}^{\prime}\right)\right) J^{\prime} \mathcal{N}^{\prime \prime} ;\right. \tag{2}\\
& \left.\left.1^{3}\left(1^{n_{0}^{\prime \prime}}\left(I^{\prime \prime}, \lambda_{0}^{\prime \prime}, J_{0}^{\prime \prime} \mu_{0}^{\prime \prime}\right), 1^{n_{s}^{\prime}}\left(S^{\prime \prime}, \lambda_{s}^{\prime}, J_{s}^{\prime \prime} \mu_{s}^{\prime \prime}\right)\right) J^{\prime \prime} \mu^{\prime \prime}\right] I S J O^{\circ}\right\rangle \\
& \left\langle\left(1^{3}\left(1^{n_{0}^{\prime}} 1^{n_{5}^{\prime}}\right) ; 1^{3}\left(1^{n_{0}^{\prime \prime}} 1^{n_{5}^{\prime \prime}}\right)\right) \mid\left(1^{3}, 1^{3}\right) 1^{6}\left(1^{n_{0}}, 1^{n_{5}}\right)\right\rangle \\
& \left\langle\left(1^{n_{0}^{\prime}}\left(I^{\prime} \lambda_{0}^{\prime}\right) ; 1^{n_{0}^{\prime \prime}}\left(I^{\prime \prime} \lambda_{0}^{\prime \prime}\right)\right) \mid\left(1^{n_{0}^{\prime}}, 1^{n_{0}^{\prime \prime}}\right) 1^{n_{0}}\left(I \lambda_{0}\right)\right\rangle \\
& \left\langle\left(1^{n_{s}^{\prime}}\left(s^{\prime} \lambda_{s}^{\prime}\right) ; 1^{n_{s}^{\prime \prime}}\left(S^{*} \lambda_{s}^{\prime}\right)\right) \mid\left(1^{n_{s}^{\prime}}, 1^{n_{s}^{\prime}}\right) 1^{n_{s}}\left(S \lambda_{s}\right)\right\rangle \\
& \left\langle\left(\lambda_{0}^{\prime} J_{0}^{\prime} \mu_{0}^{\prime} ; \lambda_{0}^{\prime \prime} J_{0}^{\prime \prime} \mu_{0}^{\prime \prime}\right) \mid\left(\lambda_{0}^{\prime} \lambda_{0}^{\prime \prime}\right) \lambda_{0}\left(J_{0} \mu_{0}\right)\right\rangle \\
& \left\langle\left(\lambda_{s}^{\prime} J_{s}^{\prime} \mu_{s}^{\prime} ; \lambda_{s}^{\prime \prime} J_{s}^{\prime \prime} \mu_{s}^{\prime \prime}\right) \mid\left(\lambda_{s}^{\prime} \lambda_{s}^{\prime \prime}\right) \lambda_{s}\left(I_{s} \mu_{s}\right)\right\rangle \\
& \left\langle\left(J_{0}^{\prime} J_{S}^{\prime}\right) J^{\prime},\left(J_{0}^{\prime \prime} J_{s}^{\prime \prime}\right) J^{\prime \prime} \mid\left(J_{0}^{\prime} J_{0}^{\prime \prime}\right) J_{0},\left(J_{S}^{\prime} J_{S}^{\prime \prime}\right) J_{S}(J)\right\rangle \\
& \left\langle\left(\mu_{0}^{\prime} \mu_{s}^{\prime}\right) \mu^{\prime},\left(\mu_{0}^{\prime \prime} \mu_{s}^{\prime \prime}\right) \mu^{\prime \prime} \mid\left(\mu_{0}^{\prime} \mu_{0}^{\prime \prime}\right) \mu_{0},\left(\mu_{s}^{\prime} \mu_{s}^{\prime \prime}\right) \mu_{s}\left(0^{c}\right)\right\rangle \text {. }
\end{align*}
$$

Here $n_{0}\left(n_{S}\right)$ is the number of (U, d) (and S) quarks, I, S and \mathcal{I} are the isospin, strangeness and total spin, respectively, the representation of $S \bigcup_{6}^{3 c}\left(S \bigcup_{3}^{c}\right)$.

The complete expression of the expansion of the H dihyperion wave function (the H^{*} wave function was given in ref. $/ 30 /$) is:

$$
\begin{aligned}
& |H\rangle=0,867\left|e_{1}\right\rangle-0,499\left|e_{2}\right\rangle, \\
& \left|e_{1}\right\rangle=\sqrt{\frac{2}{15}} \frac{1}{\sqrt{2}}\left\{Q_{0}\left(1 / 2,21,4^{4} 21\right) Q_{-2}\left(1^{2}, 1^{2} ; ;^{4} 21\right)-\longrightarrow\right\}- \\
& -\sqrt{\frac{2}{15}} \frac{1}{\sqrt{2}}\left\{Q_{0}\left(1 / 2,21^{2}, 21\right) Q_{-2}\left(1^{2}, 3,2,221\right) \longrightarrow\right\}+ \\
& +\sqrt{\frac{2}{15}} \frac{1}{\sqrt{2}}\left\{Q_{0}^{N}\left(1 / 2,21,{ }^{2} 0\right) Q_{-2}^{\equiv}\left(1^{2}, 1^{3}, 1^{2} 0\right) \cdots\right\}- \\
& -\sqrt{\frac{1}{10}} \frac{1}{\sqrt{2}}\left\{Q_{-1}\left(1,1^{2}, 2,2,21\right) Q_{-1}\left(1,1^{2}, 1^{2}, 2,21\right)+\cdots\right\}+ \\
& +\sqrt{\frac{2}{45}}\left\{Q_{-1}^{\Sigma}\left(1,1^{2}, 1^{2}, 20\right)\right\}^{2}-\sqrt{\frac{1}{45}}\left\{Q_{-1}^{\Sigma *}\left(1,1^{2}, 1^{2}, 40\right)\right\}^{2}+
\end{aligned}
$$

$$
\begin{align*}
& -\sqrt{\frac{3}{10}} \frac{1}{\sqrt{2}}\left\{Q_{-1}\left(0,2,1^{1},{ }^{2}, 21\right) Q_{-1}\left(0,2,^{3} 2 ;{ }^{2} 21\right)+\cdots\right\} \text {, } \\
& \left|e_{2}\right\rangle=\sqrt{\frac{2}{5}} \frac{1}{\sqrt{2}}\left\{Q_{0}\left(1 / 2,21,,^{2} 21\right) Q_{-2}\left(1^{2}, 1_{2} ; ;^{2} 21\right)-\ldots\right\}+ \\
& +\sqrt{\frac{3}{20}}\left\{Q_{-1}\left(1,1^{2}, 2,2,21\right)\right\}^{2}-\sqrt{\frac{1}{30}}\left\{Q_{-1}^{\Sigma}\left(1,1^{2}, 1^{2} ; 20\right)\right\}^{2}- \\
& -\sqrt{\frac{1}{15}}\left\{Q_{-1}^{\Sigma^{*}}\left(1,1^{2}, 1^{2}, 40\right)\right\}^{2}-\sqrt{\frac{1}{60}}\left\{Q_{-1}\left(1,1^{2}, 1^{2}, 2,21\right)\right\}^{2}- \\
& -\sqrt{\frac{1}{30}}\left\{Q_{-1}\left(1,1^{2}, 1^{2}, 4,21\right)\right\}^{2}+\sqrt{\frac{1}{10}}\left\{Q_{-1}^{1}\left(0,2,1^{1}, 20\right)\right\}^{2}+ \\
& +\sqrt{\frac{1}{20}}\left\{Q_{-1}\left(0,2,1^{2,2}, 21\right)\right\}^{2}+\sqrt{\frac{1}{20}}\left\{Q_{-1}(0,2,2,2 ; 21)\right\}^{2}+ \\
& +\sqrt{\frac{1}{10}}\left\{Q_{-1}\left(0,2,{ }^{3} 2 ; 4,21\right)\right\}^{2} \text {, } \tag{AB.}
\end{align*}
$$

where

$$
\begin{aligned}
& Q_{0}(1 / 2,21,21)=Q^{3}\left(n_{0}=3, T_{0}=\frac{1}{2}, \lambda_{0}=21, J_{0}=1 / 2, \mu_{0}=21\right) \text {, } \\
& Q_{-1}\left(0,2,{ }^{3} 2,{ }^{2} 21\right)=Q^{3}\left(n_{0}=2 ; T_{0}=0, \lambda_{0}=2, J_{0}=1, \mu_{0}=2 ; \%_{0}, k_{2}, 21\right) \text {, } \\
& Q_{-2}\left(1^{2}, 1,2,4,1\right)=Q^{3}\left(n_{0}=1, \lambda_{s}=1^{2}, J_{s}=1, M_{s}=1^{2} ; \lambda=\frac{3}{2}, p=21\right) \text {. }
\end{aligned}
$$

Expression (A3) and the analogous one for H^{*} from/30/ are used to oalculate matrix elements of the three-particle operator contained in $\Delta E_{\text {inst }}^{\text {(}}$ The scalar isospin components with the strangeness $-1: Q_{-1}\left(0,2,11^{2}, 21\right)$ and $Q_{-1}(0,2,32,221)$ only give a nonzero contribution. The se components are weighted with the probability 25% in the total wave function.

To compute averages of two-partiole operators, one may apply expressions of kind (A3) or to construct the dissociation $q^{6} \rightarrow q^{4} \times q^{2}$ the equations for the Casimir operators of the $S U_{2}^{J}, S U_{3}^{F}$ and $S U_{3}^{c}$ groups. As a result, we have for the basis $S U_{3}^{F} \times S U_{2}^{J} \times S U_{3}^{e}$

$$
\begin{align*}
& \left|H\left(0^{F}, 0^{J}, O^{c}\right)\right\rangle=\sqrt{\frac{1}{10}} q^{4}(2,0,2) q^{2}(2,0,2)+ \tag{A4}\\
& +\sqrt{\frac{3}{10}}\left[n^{4}\left(1^{2}, 0,1^{2}\right) n^{2}\left(1^{2}, 0,1^{2}\right)+n^{4}\left(1^{2}, 1,2\right) n^{2}\left(1^{2}, 1,2\right)+n^{4}\left(0,1,1^{2}\right) n^{2} n, 11^{2}\right) i, \\
& \left|H^{*}\left(21^{5}, 1^{1}, 0^{c}\right)\right\rangle=\sqrt{\frac{7}{60}} q^{*} \times q^{2}(2,0,2)+\sqrt{\frac{13}{60}} q^{4} \times q^{2}\left(1,0,1^{2}\right)+(15) \\
& +\sqrt{\frac{17}{60}} q^{4} \times q^{2}\left(1^{2}, 1,2\right)+\sqrt{\frac{23}{60}} q^{4} \times q^{2}\left(2,1,1^{2}\right) \text {. } \\
& \text { If the dissociations (A3-A5) are expressed as }
\end{align*}
$$

$$
\begin{equation*}
Q^{6}=\sum_{i} w_{i}\left(Q^{3}\right)_{i}^{\prime} \times\left(Q^{3}\right)_{i}=\sum_{j} u_{j}\left(Q^{4}\right)_{j} \times\left(Q^{2}\right)_{j} \tag{A6}
\end{equation*}
$$

then the matrix elements of the three- $\left(R_{3}\right)$ and two- $\left(R_{2}\right)$ particle operators are oalculated with the help

$$
\begin{aligned}
& \left\langle Q^{6}\right| R_{3}\left|Q^{6}\right\rangle=20 \sum W_{i}^{2}\left\langle Q_{i}^{3}\right| R_{3}\left|Q_{i}^{3}\right\rangle \\
& \left\langle Q^{6}\right| R_{2}\left|Q^{6}\right\rangle=15 \sum{U_{j}^{2}}^{2}\left\langle Q_{j}^{2}\right| R_{2}\left|Q_{j}^{2}\right\rangle
\end{aligned}
$$

where the combinatorial factors take into aooount the multiple oharacter of interaction in an n-particle antisymmetric states.

References

1. P. N. Bogolubov, Ann. Inst. Henri Poincare, 8, 163 (1968).
2. A, Chodos et al., Phys. Rev., D9, 3471 (1974).
3. A.W.Thomas, Adv. Mucl. Phys., 13, 1 (1983).
4. R.L.Jaffe, Phys. Kev., D15, 267,281 (1977).
5. R.L.Jaffe, Phys.Rev.Lett., 38, 195 (1977).
6. V.A.Matreev, P.Sorba, Lett. Nuovo Cim., 20, 435 (1977); Il Nuovo Cim., 45A, 257 (1978).
7. S.M.Dorikin, B.I.Resnik, A. I. THtov, JINR communications, P4-81-791, Dubna, 1981.
8. J. F. Donoghue, K. Johnson, Phys.Rev., D 21,1975 (198U).
9. M.L.Marshak et al., Phys.Rev. Lett., 54, 2079 (1985).
10.G. Baym et al., Phys. Iett., B160, 181 (1985);
E. Farh1, R.L.Jaffe, Phys.Rev., D30, 2379 (1985)
10. I. B. Khriplovich, E. V. Shuryak, INF preprint 85-117, Novosibirsk, 1985.
J. F. Donoghue, E.Golorich, B. R. Holstein, PhJs.Lett., $174 \mathrm{~B}_{3} 441$ (1986).
11. C. H. Berger et al., Phys. Iett., Bl74, 118 (1986).
12. Proceedings of the VIII International Seminar on High Energy Physios Problems, DI,2-86-668, Dubna, 1986.
14.K.F.Liu. C.W.Wnng: Phya.Lptt: 717 ? , (1092):
P.J.Mulders, A.W.Thomas, Journal of Phys. G: Nucl. Phys., g, 1159 (1983);
L.A.Kondratyuk, M. Krivoruchenko, M. G.Schepkin, Pizma v JETP; 43, 10 (1986).
13. P. B. Mackenzie, H. B. Thaker, Phys. Rev.Lett., 55, 2539 (1985), A. P. Balachandran et al., Phys.Rev.Lett., 52, 887 (1984),
S. A. Larin et al., Yadern. Fyz., 44, 1066 (1986).
14. A. B. Dorokhov, N. I. Kochelev, JINR preprints, E2-86-224, E2-86-355, E2-86-790, Dubna, 1986.
17.K.G.Chetyrkin, N. V. Krasnikov, A.N.Tavkhelidze, Phys.Lett., 76B, 83 (1978);
K.G.Chetyrkin, N. V. Krasnikov, Nucl. Phys., Bli9, 174 (1977); M.A. Shifman, A.I. Vainstein, V.I. Zakharov, Nucl. Phys., B147, 385, 448 (1979).
15. T. De Grand et al., Phys.Rev., Dl2, 2060 (1975).
16. G.t' Hooft, Phys. Rev., D14, 3432 (1976).
17. F.Myhrer, G. E. Brown, Z. Xu, Nucl. Phys., A362, 317 (1981).
18. E. V. Shuryak , Phys.Rep., 115, 151 (1984),
D. I. Dyakonov, V.Yu. Petrov, Hucl. Phys., B245, 259 (1984).
19. M.A.Shifman, A.I.Vainstein, V.I.Zakharov, Nucl.Phys., El63 46 (1980),
V.F.Tokarev, Teor.Mat.Fiz., 58, 354 (1984).
20. R.G. Betman, L. V. Laperashvili, Yadern. Fiz., 41, 463 (1985).
21. D.Horn, S.Yankielewioz, Phys. Lett., 76B, 343 (1978), N. I. Kochelev, Yadern. Fyz., 41, 456 (1985).
22. C.E. De_{e} Tar, Phys. Rev., D24, 762 (1981).
23. S.N. Goldhaber, R.L.Jaffe, Nucl. Phys., B277, 674 (1986).
24. J. F. Donoghue, E.Golowioh, B. R. Holstein, Phys. Rev. D, 34, 3434(1986).
25. S.Fredrikson, M.Jandel, T. Larsson, Phys.Rev.Lett., 51, 2179 (1983). T. Kawabe, Z. Phys. C - Particle and fields, 16, 367 (1983).
26. B. A. Shahbezian, A. O. Kechechyan, JINR Rapid Communications, No 3-84,42, Dubna, 1984.
B. A. Shahbazian, A. O.Kechechyan, A.M. Tarasov, JINR preprint, P1-86-626, Dubna, 1986.
27. R.P.Bickerstaff, B.G.Wybourne, J. Phys.G: Nucl. Phys., 7, 275 (1981) and references therein.

Эффекты вакуума КХД и стабильность H дигиперона
Сформулирована модель мешков, в которой учитывается взаимодействие валентньх кварков с вакуумом КХД. Построены волновые функции дигиперонных состояний $\mathrm{H}=\mathrm{q}^{\mathrm{B}}\left(\mathrm{I}=0, \mathrm{~S}=-2\right.$, J $=0$, $\left.\mathrm{I}^{\mathrm{C}}\right)$ и $\mathrm{H}^{*}=\mathrm{q}^{8}\left(\mathrm{I}=0, \mathrm{~S}=-2, \mathrm{~J}=1, \mathrm{l}^{\mathrm{C}}\right)$ в базисах $\mathrm{q}^{3} \times \mathrm{q}^{3}$ и $\mathrm{q}^{4} \times \mathrm{q}^{2}$ по отношению к групповой редукции $\mathrm{U}_{18} \rightarrow \ldots \rightarrow \mathrm{SU}_{2}^{\mathrm{I}} \times \mathrm{U}_{1}^{\mathrm{S}} \times \mathrm{SU}_{2}^{\mathrm{J}} \times \mathrm{SU}_{3}^{\mathrm{C}}$. Получена оценка масс дигиперонов: $\mathrm{M}_{\mathrm{H}}=2,09$ ГэВ, $\mathrm{M}_{\mathrm{H}^{*}}=2,34$ ГэВ, свидетельствующая в пользу того, что H , по-видимому, является стабильным по отношению к сильным распадам. Показано, что основным эффектом, определяющим спектр мультикварковых состояний является инстантонное взаимодействие, формирующее дикварки.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Dorokhov A.E., Kochelev N.I.

Effects of QCD Vacuum and Stability of H Dihyperon

Within the composite quark model taking into account the interaction of quarks in the bag with vacuum fields of QCD the masses of $H(I=0$, $\mathrm{S}=-2, \mathrm{~J}=0,1^{\mathrm{C}}$) and $\mathrm{H}^{*}\left(\mathrm{I}=0, \mathrm{~S}=-2, \mathrm{~J}=\mathrm{l}, \mathrm{l}^{\mathrm{C}}\right)$ dihyperons are estimated: $\mathrm{M}_{\mathrm{H}}=2.09 \mathrm{GeV}, \mathrm{M}_{\mathrm{H}^{*}}=2,34 \mathrm{GeV}$. It is shown that the leading effect giving a stable with respect to strong decays \underline{H} dihyperon is the instanton interaction forming diquarks: $q^{2}(J=0, C=\underline{3}), q^{2}(J=1, C=\underline{6})$. With the approach developed the contribution of QCD hyperfine interaction is suppressed, and instanton induced three-particle forces in multiquark hadrons $\left(\mathrm{q}^{3}(\mathrm{~J}=1 / 2 \mathrm{C}=8)\right.$ - channel) are negligible.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

[^0]: * High Energy Physics Institute, AN Kazakh.SSR

