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1. INTRODUCTION 

In a recent note we propose the method to construct 

finite N::::1 SUSY gauge field theories within dimensional regu­

larization. The present papel' contains a more detailed de8crip­

tion and development of the method. Here a180 some formulas of 
1ref. a;e specified and some useful consequences are obtained. 

The advocated approach ia a natural continuation and,from 

a practical point of víew, a simplification of the approach to 

2construct fini te field theories proposed Ln OU1' earlier papers , :;: 

(soe a130 4 ). We use here the advantages of dimensional re~a-

lari~ati,pn. 

In refs. 2 -- 4 an urbi tral'Y Nr.: 1 SUSY gauge field theory 

formulated in terrns of N=1 superfields ia considered. The ac­

tion contains both the gauge» and Yukawa-type Lrrt er-ac t Lons wi th 

thc couplings ~ and 7,' " r-esp ec t Lve Ly , To reduce the num­

boI' of independent divergences, the background field gauge is 

used •. In thia gauge the only unco1'1'elated divergences are tho­

90 of the gauge Bnd thc chi1'al superfield propagators. If these 

propaentors are finite, the anom-~lous dimenaiona vanish anà BO 

do the ~ -functions. That means that the theory La finita. 

'f!lia can be achieved by: 

i) a proper choice of t~e matter content of the theory, 

obeying the sum rule e q, (46.) (see below) j . 
ii) H proper choice of renormalized Yukawa couplings oc­ .­

cording to eigenvalue solutionn of renoymalization group equa­

tions 
"-/ 

. f' l( 2. !!.;t, (1)
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where the coefficients f~ are determined order by order of 

perturbation theory. 

Necessary and sufficient conditions for finiteness in all 

orders of perturbation theory coincide with those obtained be­

low (see eq.(22» and are determined already in the one-loop 

order•. 

The advantage of the approach proposed in ref. 1 ia that, 

first, it is direct. There ia no necessity to perform renorma­

Lí.zat í.orr, to calcul.ate the anomalous dimensione and to try to 

nullify them with the help of eq.(1). Here the vanishing of 

diverge~ces imposea the relations between the bare couplings 

directly. A aecond advantage is that eqs.(8) (aee below) cont­

rary to e qs , (1), are linear in 9 o AlI the nonlinearity is 

transformed into that of the parameter of dimensional regu­

larization E • At the sarna time the relations between renor­

malized couplings remain nonlinear, but the renormalization 

ia not necessary. 

20 THE FORMALISM. ONE-LOOP FINITENESS 

Consider a general renormalizable N=1 SUSY gauge theory 

formulated in auperfields5 

;; = ScL\x: [ ~ ,tecL
L e cpe, le.~ v): cPf 

ir (2)

~d:-ewolwol + ~({e ~. d..k f"p'p'­
- ~:z.CG-, 

+ gauge-fixing + ghoat + h. c. ] 
t1. 

A chiral superfield cP (:::c.~ g) ia in a reducible repreaenta­

t:ron R of the gauge group G . The index a is a multi-in­

dex, it runs over an irreducible representation)\ and members 

2 

of a given irreducible representation S ,i. e. , a. = 1A• :;.J 
Here V;.:=. Vi. (R~)~ and (RL)~ = (R~): . Matrices of an 

irreducible representation satisfy the following conditions 

Q. C. C "­
[ = k R·" R. c.. = AO (J)~ i. '. RJ' ] 11- lJ·k. R \. e l Co 

Q.' LR· R· = ~.. TA :t':Jk 1file. = C (T. };,'l
,J, ...l c. LJ A ...
 

~ction (2) is invariant under (; if
 

c J c , Co


do.l (R\.·) et * o{, ..lac (f{l' ') t 1"" (){, luic (I{1.' ') Q. = O"
 c 

t ando c .where clQ. 'e. ia totally symmetric in a.. 

The chiral self interaction rnay contain all poasible 

singlet combinations of irreducible representations. Picking 

out of clQ.g, a purely tensorial structure corresponàing to I-i 

concrete realization of interaction, we get a set of Yukawa 

.couplings Yi. 
1.' 1.' 

r1.(4.lc. = I. '1L. otA~C. oL st~ 
c: 

To analyse the divergences, we use the symmetry properties 

of action (2). which essentially reduces the renorrnalization 

arbitrariness. The gauge invariance connects the gauge vertices 

and enables us to choose the gauge, the so-called background 

gauge. where the problem ia reduced to the analysis of diver­
6 gences of a vector propagator • The preae~ce of nonrenormali­

zation theorems7 in SUSY theoriea indicating that the counter­

terms alwaya have a forrn of the integral ~dtt9 means the ab­

aence of divergences in chiral vertices. Thus the problem is 

reduced to chiral propagators. 

The theory (2) ia finite in the one-loop approxirnation 
8-10 

ir the following constrainta are fulfilled: 

L TA == 3 eG- (4a) 
Ao 

:1 
", 



E 
(4b)= b 

As: C A 

where 3 f is defined by 

- e te. e. 2. "L E 2. 

d..o.le. cL ~ 2 ;)~~ = 2b s SA ~ (5) 

Eq.(4a) ensures the finiteness of the gauge field propagator. 

It specifiea the matter content of the theory. Eqs.(4b) define 

the Yukawa couplings and provide tha finiteness of chiral pro­

pagators. 

It ia remarkable that the one-loop finiteneas automatícal­

ly leada to the absence of divergences at the two-lo~p leve18,9 

but the above condi tions are not enough to achieve three·- and 

higher-loop fini teness 11. 

In fact, provided eq.(4a) is f'ulfilled, the only diver­

gence that one should take care of ia that of the clliral field 

pz-ope.gat oz-s, This is a consequence of supersynunetry that t he 

following theorem holds: 

T h e o r e m 12: If N=1 SUSY gauge theory is finite 

in L loops (i.e.,all the Green functions are finite), the 

gaugepropagator is finite in ( L + 1) loops. 

Thia statement was checked by a direct calculation in 

three-loop approximation 11 , i. e., for L ::: 2. 

The sarne fact follow3 from the explicit expression1) 

relating the gauge fr> -function wi th the anomalous dimensiona 

of chiral fields is some renol'malization acheme 

, 2. ({T~ - 3 CG-) - ~ ~~T,. (6)f d = ~
 
i - 2 ~ .eGo­

(Hereafter we introduce the natural exp~~sion paremetera, ao 
~Q2./ ~ I.} I. 
~ -at anda for <J /.(6n and '~. for 'I,: /1';rr in a usual faahion). 

4· 

Rence the fulfillment of eq.(4a) reduces tha problem oC 

divergences in SUSY gauge theory to that of chiral propagators. 

Below we show that they can be made finite in alI ordera of 

perturbation theory by a proper choice of Yukawa couplings . 

1
). THE METHOD TO CONSTRUCT A FINITE THEORy

Consider in a multicoupling theory (2) the unrenormalized 

expressions for the dimensionless propagators of chiral fields 

in momentum representation after integrating over grassmann 

variables. The dimensionally regularized expressiDns are 

J). ~ 2. !C\H. \ 'j ~41.~ 1 )_ .s.,
t. PJ 8 .·t J JJí i + L 

~ 

(f.. )~t 
h-1 

C~\._" li 8) c~~ (iJ~)lC~h(~'Y) + + ... + -r C~'o (P)J, 

(7) 

l1 ~ "-1 tt 

ia the order of perturbation theory, the dimensionwhere n.. 
of space-time is taken to be J:> = 4-2 f.. , and the couplings 

~ and l~J-J are always the bare couplings. We omi t the super­

script "bare 11 below. Here L' = 1,2, •••• X . where J{' is the 

number of independently renormalized chiral fields, and J 

1,2, ••• , ~ • where ftL ia the number of Yukawa couplinga. 

The coefficienta C ~k , k ~.2 are not independente Due to 

the renormalizability of the theory they are polynomials of 

order n. and are governed by f C ~., J. 
L 

0Ur atm ia to get tha vaniahing of alI C • d c , k>1) 

. This can be achiev­properl~ chooaing the Yukawa couplinga Y."J
 
ed by the fol1owing choice
 

(8)y,. = :f;'(t) ~ 
J 

-. 5 



-j; O')where the function is expanded in a Taylor series in E. 

.f(lJ ('i) = I -:f!K (9)s k. 

k~O 

and the coefficients .j;1<. are obtained by perturbation theory. 

To prove that eqs.(8) actually sol~e the problem o~ fi ­

niteness, we consider eqs.(7) order by order in perturbation 

expansion. 
(' 

1 o o P,:' (_ l't' \ 

C'fi (9) Y ) == - ~ B1i ~J + B.,o ~) . (lO) 

..J
 

Substituting now eqs.(8). (9) into eqs.(10) we demand
 

• • J< 
L' J l' L= 1,2.1 ... .1 

') ~ . f + B ::: O (11)
~ 4J J 00 .. O • J:..( I Z ~ ••• ) ~ • 

J 

This ia a system o~ linear equations with respect to the coef­

ficients • They have a solution if the rank of the mat­-:f:0 
rix B., ia equal to }/ (M~N ). One should a180 have fo~·::'O~
 
because X, and in eqa.(8) are nonnegative.
9'J 

We note that the matrix B i ia the matrix of anomaloua
 

dimensione in the one-loop approximation
 

À" li) . l' I'
 

Ui (~ I.Y) =~ B~ i "jJ' t B 1 O ~
 
J
 

and plays a crucial role in the appz-oech to finiteneas develop­

ed in rQfs.2-4 •
 

Eqs.(11) are nothing but eqa.(5) and exibit tha relation
 

between the gauge'and Yukawa couplirigs in a 'classical Lagran­

( 

gian when f = o. 

2 1 o o P à
 

Yf & : The coefficient C'& ( 3- , Y) ahoul.d vanieh when
2

Y,.: -li 9 because otherwise we w111 obtain a nonlocal 
'J 00 

6 

divergence of the type c;:~p~ , which is forbidden due to,
 
the renormalizatibility of the theory. This divergence cannot 

be eliminated in the usual fashion because alI one-loop coun­

terterms are absent. SO C~~(~~~) should have the form 

(12 )C~3.(~~~J = F2.t~. (~)j) C~1 (~,~) 
I . " Below we will obtain an explici t expression for C h'" which 

confirms our statement.
 

y~ : We have
 

.: ( "/ /'C ,: ( \.) I +- 'ô Cz z. L ~../ . -f .a ( 13)2.., ~)1 I 01 d 
~ ~ ~oo ~ "õ ::IJ ' 1=.ju3 

As follows from eq.(13), even if C~··{a.~)J..,., a:l'O ,one
1 J - 700 q • 

can achieve finitenesa properly chooaing the coefficients 1~4 

It ia .pos aâ bLe if the matrix re> C1."1 has a rank equal to N. 
""b~l 

According to eqs.(10),(12) 

~ . e \ (14)roc. 2 Z - f;. te 8 •s: 1 

'Õ ~J IJ= f •• a J )"1••3 
so the existence of a solution to eqs~13) requirea that rank 

F'z. .: N~. We will show below that i t is really ao , . 

The algorithm will obviouaIy work in alI ordera of por­

turbation theory. 'AlI tho coefficients C~ k ,2* k ~ h va­

nish due to renormal~zability of the theory and absence of 10­

wer-order counterterms. To achieve the absence of a simple po- • 

le Cc.~., , we have at our disposal a set of parametera i; ~-f 
Actually in n-loops the coefficients of the simple pole is 

(. J . I 'OC I1 
"" I. ..1 (15 )C' (S,~ ) + . . .. .. --: . J o "-1 a~ 

!ti ~ '" ~ 80 t "õ YJ :1= ~oo t 
Hence again we have a syatem of linear equations and to get the 

vaní.shf.ng of a simple pole, the matrix 'ôC~",,' should have
'7)':1/ . 

7 
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rank equal to 11 • But analogously to e q, (12) we have 

l' • J ( 16) 

C"U\ (~.:{) ~ l .. ( ~ I~) CU (S .. .Y)
J
 

so
 

roCh\O\ I e \~'
F~' 

t 

e B1J · ~.f••3 (17 )
'õ ~. '.J:/o. a 

and the problem is reduced to the proof that rank ~h = N. 

To prove this statement, we note that C~" (,,:;) for 

arbitrary li and y. ia equal to f::-'J"'C~Ch)(~"~)' where 
• (/ J 

C~(M) ia an order n term in the expansion of the renormaliza­

tion constant Z. 1): 
to 

c~ (,.~)Zi, == 1. + L 
DO 

C~(1.y)=Z C;;It.) 1~I~J k~ 
V=1 ~v 

1('=\1' 

The coefficients C~ l, .. Y) obey the so-called pole equations 1~ 
• ~4}

The follõwing equatLon is valid (remind that (!3 = O due to e q, 

(4a» 
I . to r')- c· Y'cO , • 

n: C.... (M') == fY.J' 'O ~' C·..-i!h•• ) T , L' C,..i{H-O . (18) 

Eq.(18) enables us to get an explicit expression for f"" (16). 

lt also f9llows that ' 

. \ == OC~" l1.:1) :1'" :h.. a
 
and
 

, • 4 111-4J l' l\
'OC~Vll == L&1 (~oo Ai) .. S.. (19)C_)l1t_

.~..,:/.;)/ ::r~f.oa ~ h 1, J
 

1)~e suggest here the diagonal renormaliza~ion of tields. Bow­
ever, what followais valid 8.lso in the case of mixing. What 
is important is the diagonal form of the one loop approxima­
t10n due to eq.(S). 

where 

~' ( -! i j ,,~ M )
-f-00 G\.d- 00 .. 00)1-00,) ..... -)-00 

(20)= 
l and the matrix A1 is the matrix of one-loop f -functions 

,<\ f1(o() . - J' i)
J 

(21)l-S' (~.'y).:: YJ ' ( 2. A-4 e 'le + A-10 ~ 
J e 

The rank of ~o is equal to the number of nonzero coefficienta 

to and rank .Ai = rank B.. bacause the 1.'OWS of A '" are 

obtained by linear combi t'at í.ons of that of /31 (/I\. ':1;. N ). 

Bence the theory can be made finite with the help of a 

fine-tuning of Yukawa couplings according to eqs.(8),(9). The 

necessary and sufficient con~itions for finiteness are defined 

by the one-loop approximation. The finiteness criteria· are 

the following: 

i) L T~ = 3 C c;. _; ic:) "ltlJ1k Bi = 1'1 ; ,','c:) t:o> o. (22) 
Ji!:,' 

The laat condition can beweakened and include also zero values 

o~ f:) as it' takea place in the approach based on renorma­. DO 

23·lized co~plings' • Eatabliahing the relation between the two 

approaches enablea ua, aa it w1ll be shown below, to get some 

uaefUl consequences for the construction of finite realistic mo­

deIs of particle interactions• 

4. J.i'INITE RENORMALIZATION 

i 

!! 

As we have ahown, the theory can be made finite without 

'1 any renormalization. However, a finite renôrmalization is pos­

sible and actually it ia preaent· in the approach of ref. 2- 4 

Consiüer the relation of the method diacussed here with that 

i 98 
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I1 

of ref. 2-4 2). In the latter case the' renormalized couplings 

are considered. They are connected with the bare ones by the 

usual renormalization equations1) 

y/o. -r.e = y.Ro Z . ( ~,. J f.. ')YF.I 
~ ~ 

8~~ u. = g~ Z ( ~ ~ t', t ) 
(23) 

I 

Imposing the constraints on Yukawa couplings of the form 

y.2­
(,. 

(C' (l' 2. (c" J 
Je (t.) ~It + '1'1 ts» 91. + .,.,.r~~ ~,Il, + ~ ... (24) 

which is a generalization of eqs.(1) for dimension ~ = 4 - 2e 

the theory becomea finite3 , i.e. the constants ~., and ~ 

become regular functiona of ~ 

ZL::::-j,+2- ~~Z~ú.) Z = 1 -Z: ~ z.,«»I 

,,~ 4"~i 

Substituting eqa.(23),(24) into eq.(8) we get 

Y/"Zt.' == ~~~.g RZ . (25) 

This gives us the relation between Z~ '(t), 'ZYi (O and fh"/(). 

Renormalizabity imposes some constraints on ~~ and ~H and 
" .enablea U8 to find explicít relations between f .... (O) and' i ~('i.) 

up to lower-order terms. We have 

-.te' _ 
To(o - ( -foo A1 )~. +JO -1 

-1:1 = ( -to~ A1 )~: 1J~1 - (~()oA~j~'1J~, (26) 
I 

• " 1" J', f' = (-)~J,L(j-ooA~) jJ' +0 11I + lower order terms,110 n. 

-Z) ­Quite an ~nalogous approach haa 
Here the theory is reduced to a 
h~lp of the so-called reduction 
The tiniteness cri t erion is also 

proximation. 

been proposed also in ref • 15 
aingle-coupling one with the 

16
renormalization group equations. 
formulated in the one ioop ap­

:1 
11,! 

~
 
1, 
J 

\ 
J 
I 
! 

f'f 
,J 
.f 

where we have introduced the notation 

( c' '1 .: k..
 

r:t"\Il(f.,) = L ·fhlc..·~ .
 (27) 
~;.;.o 

~qs.(26) establish the correspondence between'the expan­

aions for bare (eq.5) and renormalized (eq.(24» couplings. 

Such a correspondence enables us to get an important consequence. 

Substituting for this purpose eq.(24) into eq.(25) and putting 

E = O (thia is possible due to the regularity of alI functions 

a t E. = O), we get 

,. " L c' ~

fo~ @Il. Z (~R.) = (-ioO~1L + 1"0 ~Il t-1a.o ~Jl.""'" )Z,,{9fl.) . (28) 

Ic
Hence if for some ,,' == k f 00 

k 
=0, then alI j"D = O. Prora 

the point of view of eq.(1) that means that Y 7 O and playsk 

no role ~ construction of finit~ theory. However, as fax as in 

finiteness criteria of ref. 3 :f~o can have any nonnegative 

valueS anô- the only requirement is rank 8 1 .... IV' • the 'theory 

can be made fini te wi th '/1( "" O, as wel!. 

Thus, the abaence of Y on the one hand reduces the numberk 

of paxameters needed to ac~ve finiteness and lowers the rank 

of B ~ , but on the other hand . the fact that -;"~o = O for any 

h means that there exista the following linear connection bet­

ween the coefficient functions of chiral propagators or between 

the anomalous dimensions of the fields . 
B -· '::/'. }'J I _ = O. cr +:0 = O, (29).6 • J U ~- rf~ 

That means that the number of independently renormalized fielda 

is also reduced. 

Thus, the conclusion is that the finiteness criteria (22) 

in~lude a Lao the case ,J
J oo

j = O as in ;efa. 2. 3 • The appearance 

of a zero value indicates the existence of linear dependence 
. ­

between the chiral propagators. The reduced matrix l>1 Bhould 

1110 



have rank E)1 = N - 1. This particular note solves the prob­

lem of the fifth interaction mentionéd in refs. 3, 4 ., Examples 

of finite nlodels are given in the next·section. 

5. EXAMPLES OF FINITE THEORIES 

We apply the proposed method for constructing some finite 
3

SUSY theories. Consider two models discussed in ref. • Eqa.(26) 

enable to get expansions (9) up to three-loops without any new 

calculations. Note that as far as the one-loop finiteneas leads 

to the two-loop one alI the parameters 1;~~1~~ = O. In this 

case ·we get irom eq.(26) 

f ' - ~ Lc' ( \2.J (' .J 
(30)2.-0 - 2 7°0 A1) / f O 2 

l' 

that enables us to find out the values of .j02 starting from 

-f ,' ) 2.0 

5e·. ,,= 4d m o de]. 

Thia model contains the same set of fielda as ,,= 4 

SUSY Yang-Mills theory, namely, one gauge superfield ~ and 

three chiral superfields 1?Â in the ajoint representation 

of a gauge group. The difference from ~=.4 theory is that 

instead of an t -type Yukawa interaction here is a d: -type 

coupling. The superpotential ia 11 
..J " J' k 

( 'Xf..'1 == "1". L OLj'k c}A<} A~ A 
v. A"1 

where ol'J'k is a totally symm.~tric group structure constant. 

For the SUerv ) group (n ~)J we have go't the following 'resulta): 

e6 h ~ (I/--IO)211 'L ( :=0 -.1 =­
)10 • 72.0 (111.-.1() J -1 (3)foo= .,:a;..lf 

12 

/1
I 

,I 

The matrix A1 in this case ia si.mply A
1
= 3n~1f • Substitut-. 

2n 
ing these exp. into eq.()O) we find 

2.. '2. )f == _ ~~(h -10_ ?(3) 
02. 3 (112._ J.()J 7 or 

(J1)2 h i ( 2.)32. (Y1 'l_ 10 )
Y= ti - 1. - '? (3) ~ + •.. 

(J 11 ~ 4 3 C~ ~ 4 ) 'l. l ' 

This choice of the bare Yukawa coupling provides the finiteness 

of JJ 4~ mode~ up to three ·loops. 
5b., F i n i t e SUSY r ~ a 1 -i s t ~ c SU(5) fi o deI 

Fhdte SúSY Grand Unified Theories based on the SU(5) 

17- 19 gauge group have been considered in a number of papers

The two-loop finiteness has been ensured. The superpotential 

has the form (wé use the notation of ref. 18 

3 '" d.~ .1 à-f!. ~ 
+ Y,. L tw;= '11 1- -}~'tl \P~'p. A~ g • 

''''i l =1, 
,..., ~ ol. 'I" L rJ., 2­

+ Y3 f';iol. e:f~ L ~ + .3 (> 

Here the ma.tter fielcis ':f. and A· ( k = , , 

l-é i ~~ Jf~Ab~ 
L l 

(J2) 

~ ") O" 
õL-cl. 

1,2,) belong to. 
the representations '5 and 10 of SU(5), and higgs fields of· 

~ _ l 

'i ' f"" f and I belong to the representations 5,5, s: S­
'I I. &f 

and 24, respectively. Indices o{, 0' ·.. = 1, 2 , • • ., 5 are 
, I
I 

the SU(5) onas , The matrix L is traceless, and Jl ia anti-

I syrmnetric.

I The necessity of fine-tuning of Yuk~wa couplings have been 

conaidered in r efs , ),4 • Note that auperpotential (J2) con­
·1 

ta1.ns four Yukawa couplings. At the sarne time there are at 

I first aight five indopendently renormalized fields, namely 

1}. , <}., a: ,A· and I . The fields j, and iu are~ .~. , ,,':t'lf l. 1." 

renormalized Ü.ke 11", and ~Ii ,resp'ectively. However, the 

~ne-loop equationa (11) have a solution1B, 3, 4 ,~e •• the fifth 

• 
13 

" 

l 



:I
 
3,4coupling is not neéded, it is zero. This fact was verified


up to three loops. According to the statements of the previous
 

section that means that there is a linear connection between
 

the anomalous dimensions of the fielda of type (29). In our
 

case	 we have 

! O~	 + O~ = O" 
Hence tne pro~agator of Jl is finite whence it is true for
 

~ and ~ ' and the number of independently renormalized
 

fields ia reduced to four.
 

The matrices 8., , 100 and Ai' in thia case are ) :
 

o 3	 o o 1f/5' 4 9 oro O)
J 

('I' oJ r 3o	 o
B"~	 o o 2~ o 1-00 = o1/z ~ A,,:' o o ~
 

o o 1 21 4~ o o 3
 ~~)-J	 I~ 
S 

3Given	 the coefficient~ .~~o 

t; 111 216 • -----.-	 ::: - - I -5- ) B67 i1(3)
25 245:1 ~D ~ ~ : 

we	 can find with the help of eq.()O).f ;1­

6.	 CONCLUSIONS 

The proposed method provides ua with a wide class of finite
 

X = 1 SUSY field theories. We limited ouraelves to the propa~
 

gators which are diagonal in alI indices. Thia requirement ia
 

,.	 obligatory in the oneioop approximation due to eq.(5). However, 

in higher ordera it can be weake~do_~h~posaibilityof nondiago­

nal transitions ia of interest for the description of quark J 
~lavour mixing in realiatic modela of Grand unification. While 

introducing mixing with the help of unitary matrix 18 the finite \ 
nesa in higher orders can be achieved through the modification 

• 
1 

14 

I 

of the tensor structure of Yukawa-typ~ interaction 4 • In our 

approach this leads to the following modifiaation of eq.(8) for 

Yukawa couplings 

01c. Q.'~. o.ec 7'l..c:= ~ elo + [. elo{ +- z, ot t: + . . .. J . (J)[ 

The	 finiteneas criteria then becomes the convertibility of 
J~k 
~o inatead of condition ii) of eq.(22). 

Note that the cancellation of divergences in our case 

ia not connected with any known symmetry contrary to'the known 

examples of Xc 4 or N = 2 extended supers~etry. A poa­

sible symmetry (if any) responsible for this cancellation 

should be searched in a classica~ Lagrangian at e = O. The 

appearance of e -dependence in eqs.(8), ())) may well be a 

reflection of the superaymmetry breaking by dimensional regu­

larization 'in higher loops 20 • 

The authur is grateful to A.A. Vladimirov, S.G. Gorishny 

and	 O.Vo Tarasov for useful discussions. 
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KaaaKoB .a.H.	 -E2-a'()~-8~:6 
KOHe4H~e 'N ~ 1 cynepcHMMeTpH4H~e KanH~poBo4H~e 
TeopH~ 

llaeTcfl fÍoAP06Hoe onHcaHH~ MeT.OAa nOCTpOeIoiH$I: KOHe4HblX eynepe~Mf'êT1JH4HblX
 
KanH6po~04~~X TeopHH B~opManH3Me N a 1 cynepnone~ B paMKax pa3~e,PHoM pery­

nflPH3a41-1H. ,KOHe4HOCTt> scex !tIYHK14~H rpHHa ocaoaaaa Ha Hamt4l1H cY-o~.ijel1MMeTpHH
 

'IH KanH6po:S04HOH HHaapHaHTHOCTI1 H" AOeTHraeTCR HaA.nelKalllHM Bbl60.POM ..'fJ,·. aa no­.. <:o,;t:r~"
,neH MaTepHH, a TaK*e ~KaBCKHX XOHCTaHT ,eBR3H B ~~Ae Vi a fi(e)g, ~A~ 9. eeTb 
• KanH6poB04HaR KOHCTaMTa ~BRSH, a ~YHK~HR fi(t) perynRpHa B ~y~~ H 8~~~G~ReTC» 

no reopaa B03""yU\eHHH. 1-leo6xoAHM~e H AOCTaT04Hble yeSl081-18 '\(Gtt~IOi"t9~.T1Il T-e~ on-'.' 
peAenRIO-TCR .y*e a 1JAHOne'fneBOH npH6nHlIleHI1H. YCTaHaBJlHBaeT·dí CtUl3í\' '1 npeÀm;lra~-·t. 
MblM pauee nOAxoAO"" K nOCTpoeHH~ KOHe4HblX reopHH, OCHOsaHHOM aa oc<ifiblX pewe:"· 
HHRX .ypaBHeHHH peHopMrpynnbl. 

Pa60Tã 8blnonHeHa ~ na60paTopHH Teop~TH4eCKOH ~H3AXH ~HRH. 

Ilpenpaar Q61.cAHHcHHOro lIHCTHTyTa .cnCpHI>lX HCClICP;OBaHHií• .I\y6Ha. 1986 

Kazakov 0.1. E2-:86-816 "~''''i 
FInite ~ = 1 Susy Gauge Fleld Theorles 

In the present paper we ~)ve a detalled desertp~lon ,of the method to 
cons truct flnlte N ",.1 SUSY gauge f Ie Id' theorles ln the -frameworkof -Nrr.w'l1; 
superflelds wHhin dimensional regularlzatJon. lhe f ln l t eness o-f a'l1 'Gr'een 
functions Js based on supersynvnetry and gauge Invar-l ance and l s aehlev.~~I"~!" 
a .proper cholee of matter content of the theory and. Yukawa eoupnng~ ~~"'t~e~,t\, 

.•f'orm Vi ... f{(e)g, where 9 ls the gauge coup l í nq , and the functfon fi(E) 1~ re
 
qu l ar a t E c n and is caJculated in perturbatlon theory. -Necessary and' suf>
 

.• flcient condltlons for flnlteness are determlned already in the one-loop ap~
 

proximatlon. The correspondence wlth ao earller p~oposed ~p-proaeh to const­

ruc t finlte theories ;based on e l qenva l ue solu t i ons of renormal izatlon-grpup
 
equatlon~ Is establfshed.
 

T-he 1nVe$t~gat~on has been performed at the laboratory o-f Theore't l ce l
 
Physics, JiNR.
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