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1. INTRODUCTION

In a recent note L we propose the method to construct
finite N=1 SUSY gauge field theories within dimensionel regu-
larization. The present paper contains a more detailed descrip-
tion and dévelopment of the method. Here also some formulas of
ref. afe specified and some useful consequences are obtained.

The advocated approach is a natural continuation and,ftrom
a practical point of view, & simplification of the approach to

construct finite field theories proposed in our earlier paper52’3

(sce alao4 Y. We use here the advantages of dimensional regu—
larization.

In refs.’ 4 , &n arbitrary N=1 SUSY gauge field theory
formulated in terms of N=1 superfields is considered. The &c-
tion contains both the gauge- snd Yukawa-type interactions with
the couplings 3 and )Q , respectively. To reduce the num-
ber of independent divergences, the background field gauge is
uged,. In this gauge the only uncorrelated divergences are %haw
se of the gauge and the chiral superfileld propagators. If these
propegators are finite, the anomalous dimensions vanish and so
do the f& ~-functions. That means that the theory is finite.
This can be achieved by:

i) a proper choice of the matter conient of the theory,
obeying the sum rule eq.(4s) (see below);

ii) a proper choice of renormalized Yukawa couplings ac-
cording to eigenvalue solutions of renormelization group equa-
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where the coefficients :ﬁ: are determined order by order of
perturbation theory.

Necessary and sufficient conditions for finiteness in all
orders of perturbation theory coincide with those obtained be-
low (see eq.(22)) and are determined already in the one-loop
order..

The advantage of the approach proposed in ref.1 is that,
first, it is direct, There is no necessity to perform renorma-
lization, to calculate the anomalous dimensions and to try to
nullify them with the help of eq.{1). Here the vanishing of
divergences imposes the relations between the bare couplings
directly. A second adventage is that egs,(8) (see below) cont-
rary to eqs.(1), are linear in 3 « All the nonlinearity is

ransformed into that of the parameter of dimensional regu-
larization & . At the same time the relations between renor-
malized couplings remain nonlinear, but the renormalization

is not necessary.

2, THE FORMALISM. ONE-LOOP FINITENESS

.

Consider a general renormalizable N=1 SUSY gauge theory

formulated in superfields’ :

S- Gutel (wous &, (¥, & -

. ‘ L e 2)
ir z * * (
TP g(i Q)\Xf"Xf; + ‘i 0 ii aLa‘c %Fa(%? %@
9 Ce 3!
+ geuge-fixing + ghost + h-C.]
A chiral superfield %1(3‘.’9> is in a reducible representa-

tfon R of the gauge group C; . The index & is & multi-in-

dex, it runs over an irreducible representation A  and members

of a given irreducible representation § , i.e., 4= 2A ,5}‘
s

3 CE
Here V:;—_ v (R‘:)‘\g and (Q\.'BG: (R:‘)b . Matrices of an
irreducible representation satisfy the following conditions

¢

[2‘-12)12' f%t}'lcpk , R?‘ R'L: CAE: )

L

RI'QL RJ:‘Q= Sl'_)';TA ’ J‘ljk—&ejL: CG-%‘fC .

Action (2) is invariant under (; if

doe R, + oy ReSe + by Beda = 0.

(3)

where ci“(‘is totally symmetric in a , & end, ¢

The chiral self interaction may contain all possible
singlet combinations of irreducible representations. Picking
out of ciagc a purely tensorial structure corresponding to a
concrete realization of interaction, we get a set of Yukawa

couplings Y,
l.v ¢
d;alc_ = Z 7; J‘Abc ol stu
c

To analyse the divergences, we use the symmetry properties
of action (2), which essentially reduces the renormalization
arbitrariness. The gauge invariance connects the gauge vertices
and enables us to choose the gauge, the so-called background
geuge, where the problem is reduced to the analysis of diver-
gences of a vector propagator6. The presence of nonrenormali-
zation theorems7 in SUSY theories indicating that the counter-
terms always have a form of the integral jd'é means the ab-
sence of divergences in chiral vertices. Thus the problem is
reduced to chiral propagators,

The theory (2) is finite in the one-loop approximation

if the following constraints are fulfilled: o 10

T, = 3C
;' A G (4a)
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. S, =%,C,, | (4b)
where :;f is defined by
— ebe e & T E 2
G('Alc.d’ = 25“% =ZSS 5@\% . (5)

Eq. (4a) ensures the finiteness of the gauge field propagator.
It specifies the matter content of the theory. Eqs.(4b) define
the Yukawe couplings and provide the finiteness of chiral pro-
pagators,

It is remarkable that the one-loop finiteness automatical-
ly leads to the absence of divergences at the two—loép levels'9
but the above conditions are not enough to achieve three- and
higher-loop finiteness1t

In fact, provided eq.(4a) is fulfilled, the only diver-—
gence that one should take care of is that of the chiral field
propagators., This is a consequence of supersymmetry that the
following theorem holds:

Theoren 12 : If N=1 SUSY gauge theory is finite
in [, loops (i.e.yall the Green functions are finite), the
gauge propagator is finite in ( L + 1) loops.

This statement was checked by a direct calculation in
three~loop approximation11 s loeeyfor L =2,

The same fact followa from the expiicit expression13
relating the gauge fb ~functicn with the anomalous dimensions

of chiral fields is some renormalization scheme

_ a2 (%T&‘sce)“%J&T& (6)
3= 9 .
i~ 23_CG_

(Hereazter we introduce the natural expansion parameters, HO

3 ‘stands for g/»ten and ‘7’ for Y /!én in a ugsual feshion).

Hence the fulfillment of eq.(4a) reduces the problem of
divergences in SUSY gauge theory to that of chiral propagators.
Below we show that they can be made finite in all orders of

perturbation theory by a proper choice of Yukawa couplings .

1
3, THE METHOD TO CONSTRUCT A FINITE THEORY
Consider in a multicoupling theory (2) the unrenormalized
expressions for the dimensionless propagators of chiral fields
in momentum representafion after integrating over grassmann

variables. The dimensionally regularized expressions are

D.: (Pz, gqut Bq cj > _ i N Z

hx4 (?L

. . (n
¢ .., c.‘,( )
ic_"n—(_%‘lé + f—~—~—c““"“_€‘” ¥ : v Crols. y)]
£ 3

where n is the order of perturbation theory, the dimension

of space-time is taken to be D = 4-2& , and the couplings
3_ and‘iyj}are alweys the bare couplings. We omit the super-

gcript "bare" below. Here L= 1,2,0e.y X, where X is the

number of independently renormalized chiral fields, and \f =

1,2,000, M, where M. is the number of Yukawa couplings.

The coefficients C::k , k»2 are not independent. Due to

the renormalizability of the theory ?hey are polynomials of

¢
order n and are governed by §.C:”1 .

i
our aim is to get the vanishing of all Cuk , k>0 ,
properly choosing the Yukawa couplings )"} . This cen be achiev-
ed by the following cholce

3(:(5) g, (8)



where the function jl: (¢) is expanded in a Taylor series iné&

7[ (z) j U(m (9

k20
and the coefficients :{:k are obtained by perturbation theory.
To prove that egqs.(8) actually solve the problem of fi-
niteness, we consider eqs.(7) order by order in perturbation
expansion. '

1 loop .
e (9 V)= (Z By + B @) (10)
J

Substituting now egqs.(8), (9) into eqgs.(10) we demand

o 4 < s ,2,.. N
DB f + RS, =D ’
4 .
T J o0 40 J= 4,2,..., M (1)
J
This is a system of linear equations with respect to the coef-
ficients a-'la . They heve a solution if the rank of the mat—

rix 54 ig equal to & ( M2 AN ). Ope should also have 3(
because )’ and g in egqs.(8) are nonnegative.
We note that the matrix B, is the matrix of anomalous

.
dimensions in the one-loop approximation

RO ZB‘J Yy + By g
and plays a crucial role in the approach to finiteness develop-
ed tn refs.24
Eqs.(11) are nothing but eqs.(5) and exibit the relation
between the gauge ‘and Yukawa couplings in & clasaical Legran-
glan when g = G,

2 loopa

» 4/6" : The coefficient C (3_ Y ) should vanish when '

Yf: -: 9 because otherwise we will obtain a nonlocal
°

-
divergence of the type %.2- &,,P" , which is forbidden due to
the renormalizatibility of the theory. This divergence cannot
be eliminated in the usual fashion because all one-loop coun-

R
terterms are absent. So C 22 (4,y) should have the form

L. ¢ J‘ (12)
C.(3.9)= K (4.9 C, (3.9) -
Below we will obtein an explicit expression for C:,,,, which
confirms our statement.

1/'2 : We have
r-st' :{:J‘“.g

As follows from eq.(13), even if C?_1 1y, 3)}:’:4 840 , one

‘Cz‘; (4.9) 151

can achieve finiteness properly choos:.ng the coefficients ‘_fu .

It is.possible if the matrix ?Ef_l has a rank equal to N.

’bﬂj
According to egs.(10),(12)
>C _ gt (14)
fwz-z g foe B‘J' y
') y"‘}oog J"‘éuﬁ

so the existence of a solution to eqsJ13) requires that rank
F, < N~. We will show below that it is really so. '

The algorithm will obviously work in a-ll orders of per-
turbé.tion theory. All the coefficients C:«k 28k s n va-
nish due to renormelizebility of the theory and absence of lo-
wer-order counterterms. To achieve the absence of a simple po- -
le C‘;M , we have at our disposal a set of parameters fo i

Actually in n-loops the coefficients of the simple pole is

¢ ch, s
(4,9 LERRRIREE ) B B : (15)
Cn-' %' ) 5’:‘:0? D yJ. ,j:*“? 1 a

Hence again we have a system of linear equations and to get the
Whn
Y,

- should have
R

vanishing of a simple pole, the matrix

"N



rank equal to N, But analogously to eq.(12) we have

Conl893 = 5 (4.9 CLC8Y) ae
s0
DCotn _ “z'e Bfl
'f‘oyJ- Y=foe 9 U EEEY (17)

and the problem is reduced to the proof that rank F,‘ = N.
To prove this statement, we note that C‘n,, (3,)) for

arbitrary 9 and Y- is equal to &) C‘n(,\, (4,y), where

J

¢
Cuh) is an order n term in the expansion of the renormaliza-

tion constant ZL‘ 1):

» ¢ R S k
Zo=A+2 AP ciny=) Cuy el
v=q 2 ' ke=v

-
The coefficients Cvfg,y) obey the so-called pole equationsu."
The -foll'bwing equation is valid (remind that /S;) = 0 due to eq.
(48))

. ¢ 0> N ¢ ) ¢
n = 2 Corrtnas Tl Coopn (18)
Ch(h) P_?'. qz_ k-1{n-4) t Bafn-4) .
Eq.(18) enables us to 8et an explicit expression for ¥, (16).
It also follows that
l. . | —_—
Cnn Ui.ﬁ)‘;,,}“a_ 0

and

qci“ _ w { n-‘l ¢ n
= &) B, (£oo A L
%y), 3’4’»“% h! ’; 1(-& 1 J 8 , (19)

1)‘?9 suggest here the diagonal renormalization of fields. How-
ever, what follows is valid also in the case of mixing. What
is important is the diagonal form of the one loop approximea-
tion due o eq.(5). 4

T i

where

foo = dkag ($.. 5. Fue 50D o

and the matrix A4 is the matrix of one-loop (S ~functions

> : = 4 '

(L(_\,: (3,9)= Yy ( Z[ Ale )(e + Aio 3) . (21)
The rank of :Foo is equal to the number of nonzero coefficientas
.'}{3‘0 and rank -A1 = rank B, beceuse the rows of A4 are
obtained by linear combitations of that of 34 (M= AN ),

Hence the theory can be' made finite with the help of a
fine-tuning of Yukawa couplings according to egs,(8),(9). The
necessary and sufficient conditions for ﬁniteness are defined
by the one-loop approximation. The finiteness criteria are

the following: .
J
1) D Ty = SCG- : £e) ZankB.,‘zN; o) ‘j"oo>0. (22)
S .

The last condition can be weakered and include also zero values
J

of o0

as it tekes place in the approach based on renorma-

lized cowplings®®> , Establishing the relation between the two
approaches enables us, as it will be shown below, to get some
useful consequences for the construction of finite realistic mo-

dels of particle interactions.

4, FINITE RENORMALIZATION

As we have shown, the theory can be made finite without
any renormalization. However, a finite renormalization :is poa-
sible and actually it is present in the approach of ref.2_4 °
Consgider the relation of the method discussed here with that



of ref.> 4 2)

. In the latter case the renormalized couplings
are considered. They are connected with the bare ones by the

)
usual renormalization equations1 ) ‘
y Baze

M=y 208N Y e
85«1{. - gﬁz(gk' yﬂ,£> .

Imposing the constraints on Yukawa couplings of the form

(23)

'3 i I 2 ¢ 3 '
Yo = oG + 4008+ 4,659, #40 (24)

which is & generalization of eqs.(1) for dimension D = 4 - 2§& ,
the theory becomes finite’ , iee. the constants Z and Z
¢

become regular functions of &

— I8 h
Zo-aaZ 200 7= 1T H2.6>
W% Wy 4
Substituting eqs.(23),(24) into eq.(8) we get

v'z. = 492 . (25)

- .
This gives us the relation between Z, (L), Z, (£ and 3‘,,‘ %),
Renormalizabity imposes some constraints on Z:, and ZM and

enables us to find explicit relations between '_f':, (0) and —f; ()

up to lower-order terms. We have

Fo = (oo} Fou

]

fo 7 - G A4l - (fodd g, @0

6= el I,

+ lower order terms,

Z)Quite ®n {a.nalogous approach has been proposed also in ref .15
Here the theory is reduced to a single-coupling one with the

hédlp of the so-called reduction renormalization group equations;l.6

The finiteness criterion is also formulated in the one loop ap-
proximation,

10

where we have introduced the notation
t ¢ '3
o 8> = %o fu & . 27
EqS. (26) establish the correspondence between the expan-
sions for bare (eq.8) and renormalized (eq. (24)) couplings.
Such a correspondence enables us to get an important consequence.
Substituting for this purpose eq.(24) into eq.(25) and putting
€ = 0 (this is possible due to the regularity of &ll functions
at £€ = 0), we get

£, G0 7(40) = (ol 41 8o 4o gie Y2, 0ga) (28)

Hence if for some ¢ =k 7‘:, =0, then all ,,f = 0. From
the point of view of eq.(1) that means that )2 = 0 and .playa
no role in construction of finit? theory. However, as far as in
finiteness criteria of rei’.3 :f':a cen have any nonnegative
valued anéd the only requirement is rank B, = N' , the 'theory
cen be made finite with VY, = 0, as well, _

Thus, the absence of Yk on the one hand reduces the nun;ber
of parameters néeded to achiecve finiteness and lowers the renk
of B4 , but on the other hand the fact that —f,,: = 0 for any
s means that there exists the following linear connection bet-

ween the coefficient functions of chiral propagators or between

the anomalous dimensions of the fields
N =0 R0
CB| BJ ¥ y= 43 ‘ 4 Foo (29)

That means that the number of independently renormalized fi’elda
is also reduced.

Thus, the conclusion is that the finiteness criteria (22)

2,3

in'clude also the case '7(:0 = 0 as in refs. The éppeara.nce

of a zero value indicates the existence of linear dependence

between the chiral probagators. The reduced matrix 51 should

11



have rank E;, = N - 1, This particular note solves the prob-

lem of the fifth interaction mentionéd in refs.3’4 « Examples

of finite models are given in the next section.,

5. EXAMPLES OF FINITE THEORIES

¥We apply the proposed method for constructing some finite
SUSY. theories. Consider two models discussed in I‘ef.3 . Eqa.(26)
enable to get expansions (9) up to three-loops without any new
calculations. Note that as far as the one-loop f‘initeness leads
to the two-loop one all the paremeters j(,:o“' 49‘4 = 0., In this

case -we get from eq.{26)
4
[ 210 J
b [ oot ] 4
= 5 oo M1 02 0
o 2 ( J (30)
. g
that enables us to find out the values of .:}07_ starting from
o3
Fro® -
Sa. M=44d model
*  Dhis model containg the same set of fields as N= &4
SUSY Yang-Mills theory, nemely, one gauge superfield YV and
A
three chiral superfields % in the ajoint representation
of a gauge group. The difference from N =.4 theory ias that
instead of an -_‘- -type Yukawa interaction here is a d ~type

11
coupling. The superpotential is

L5 dy 2,3, %
© A=4
where o[.:"k is a totally symmetric group structure constant.

For the SU(n ) group (n > 3) we have go't the following 'resultsB:
) g6 n'(n-10
f.= 2 L, =0 711.:—_———3(3)
00 hfa_._“ 2 40 » o C” _‘{)

12

e
- e

—

v = =

et e

l

The matrix A, in this case is simply A =z3h _« Substitut-.

2H
ing these exp. into eq.(30) we find

6% n (n —10>
) = — — 3
or 7Loz 3(un*~ 36 >

o 2nt 32 (n=10> 2 (N
Y"g niy ( W%('-Z)E +>

This choice of the bare Yukawa coupling provides the finiteness

of N = 4g, model up to three loops.
5be Pinite sSuUsyY realdistic SU(5) mocdel

* Fiwite SUSY Grand Unified Theories based on the SU(5)
gauge group have been considered in a number of pagpersw"‘]9

The two-loop finiteness has been ensured, The superpotential
18

has the form (wé use the notation of ref. )
3
d.n ”d'
Y. apgip (s
Z— ‘§Ldlp'~ls ? 2; % A
=4 t=
‘ e (32)

~ s = ¥
+Y3%‘jd§fz‘*[, + \‘:/si 2“*{»2‘%‘6’2‘* .

Here the matter fields \i"- and _A‘-( L= 1,?,3) belong to
the representations § and 10 of SU(5), and higgs fields %‘- .
{El , %r.' ’ ¥q and Z belong to the representations 5,5,5_,5-
and 24, respectively. Indices o, (5 geee = 1,2,0004 5 are
the SU(5) ones. The matrix Z is traceless, and . is anti-
symmetric.

The necessify' of fine-tuning of Yukawa couplings have been‘

3,4

considered in refs. . Note that superpotential (32) con-
tains four Yukawa couplings. At the same time there are at
first sigh"t five independently renormalized fields, nEnely
}!"- 5 §6 s fq , _A{ and Z » The fields _%1 and §q are
renormalized like "J-'q.' and §‘l » respectively. However, the

18,3,4

one-loop equations (11) have a solution sleay the fifth

i3 -



3,4 of the tensor structure of Yukawa-type interaction 4 . In our
ing is not needed, it is zero. This fact was verified”? - !
coupling ’ approach this leads to the following modifisation of eq.(8) for
up to three loops. According to the statements of the previous
Yukawa couplings
section that means that there is a linear connection between

’ N e
the anomalous dimensions of the fields of type (29). In our . vole ode alec 2 &
- d7 = q do +gd, +2d, +- (33)
case we have ‘
The finiteness criteria then becomes the convertibility of
¥, + Fu=
2 0y ¢ Ua -

I
‘A: ¢ instead of condition ii) of eq.(22).

e tH agat is finite whence it is true for
Hence the propagator of A ® Note that the cancellation of divergences in our case

th ber of independently renormalized . )
HP end $ , and the number o P y is not connected with any known symmetry contrary to the known

i i d to four.
fields is reduced to fou 3 examples of N =4 or N = 2 extended supersymmetry., A pos-

i B and - in this case are :
The matrices 5, , 500 A1 gible symmetry (if any) responsible for this cancellation

4 0 0 O %%H 0 10 3 0 O should be searched in a classical Legrangian at & = 0. The
0 3 0O /s {14 9 0 O
B,= o 02 o , '§OD= Y A4‘ o o %; 21 |. appearance of §g -dependence in eqs.(8), (33) may well be a
0 0 ? 21 O ‘5%4 ’ 00 3 55 ! reflection of the supersymmetry breaking by dimensional regu-
3 5 larization 'in higher loops 20 .

,
Given the coefficients 'szo

¢
:)‘w 48 111 216, 867
= —_, - — — — 3
£5 ? 5 25 5 ’ 245i~z( D

we can find f;?_ with the help of eq.(30). i

The author is grateful to A.A. Vladimirov, S.G. Gorishny

and 0.V, Tarasov for useful discussions,
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{xanubposounux Teopuit B ‘popManmame N = | cynepnoneij 8 pamKrax paanepuou pery-

{neit MaTepun, a Takke OKABCKMX KOHCTaHT .CBA3M B BUAE Y; = f§ (e)g, rna g ecTb
|«anbpoBOUHAA KOHCTAWTA TBASKM, a QYHKUMA T (e) perynnpua B HyﬂQ n BQHMGﬂHETCR

AHUAX YPaABHEHUR PEHOPMIPynnbi.

-

Kasakos fl.H4, E2-86-816

KoneuHwe N = | cynepcuMMeTpuuHbe KanMBPOBOUHLE

Teopun ]
DaeTca doppobHoe onucaHne METORA MOCTPOEHMA' ROHEUHHX cynepcgnmerpuunux ‘ g

napu3ayuu. KoMeuHocTb BCex ¢QyHKumli MpuHa OCHOBaHa HA Hanuuuu CynepcMMMeTPUH
1M KanuBpOBOUHON UHBAPUAHTHOCTH W AOCTUrAETCA HaANemawymM suGOpoM coqraaa no-~

No Teopuu BO3MyweHuit. Heobxoaumue u nocrarouﬂue ycnosus KGﬂEﬂHQQTm Teapuy on--.
pegenApTCR ywe B oaHoneTneBoM npubaumexnm, YcTanwasnupaeTch cbasg ¢ npeanarae~§
MbIM pDaHee MOAXOAOM K NDCTPOEHUI KDHEUHBIX TEOPUH, OCHOBAHHOM Ha ocQﬁux pewe> I

PaboTta snnonHena # JlaBopatopun TeqpeTuueckow Guankn OUAU,

Mpenpunt OGbentHeHHOro WHCTHTYTa AMEPHBIX HCCNENOBaHHIA. DlyGua 1986

Jconstruct finite N = 1 SUSY gauge field theories in the framework of Nwm 1,

1functions s based on supersymmetry and gauge invariance and s ach!e¥e¢,by

Jruct finlte theories based on elgenvalue solutions of renormalization-group

Kazakov D.|. E2-86-816 E‘
Finite N = 1 Susy Gauge Field Theories

In the present paper we give a detalled description of the method to 1
superfields within dimensional regularization. The finiteness of all Green

a proper choice of matter content of the theory and Yukawa couplings In the»
form Y; = f;(e}g, where g is the gauge coupling, and the function f; (e) is red
gular at € = 0 and is calculated in perturbation theory. Netessary and sufs
ficient conditions for finiteness are determined already in the one-loop ap-
proximation. The correspondence with an earller proposed -approach to const-

equations Is established.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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