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1. Introduction

This is the third part of the paper devoted to snalysis of a Lee-type
decay model. The previous parts 1,2/ are referred to hereafter as 1
and II, respectively. The model is described in I , where its Galilean
invariance has been proven. In 11, we have separuted the centre-of-
mass motion ; then we heve shown that the reduced resolvent of the
Hamiltonian has just one simple secound-sheet pole Zp: Jp-ié; for
small enough values of the coupling constsnt g .

Here we continue the snalysis, with the muin attention concentra-
ted on the reduced evolution oterator and the decay lew. It can be
checked essily that these two functions sre exponential if one repla-
ces the (analyticeally continued) reduced resclveni by the pole term
of its Laurent expansion. Qur aim is to estimaste how sccurate suchk an
arproximation could be. In order to get an explicit bound on the non-
exponential corrections, we must require the function v s8additionally
to have some mild regularity properties. They serve us to prove some
technical lemmas collected in Sectiorn 2, which ¢re used afterwards to
derive our main results, in particular, the estimazte expressed by
Theorem 3.2 . As a consequence of this result, we obtair in Section 4
bounds on the deviations of the decay law from exponentiality, and on
the difference between the actual decay rste und 2&; . They give no
restriction for very small and very lurge times, but between these
two extremes, they con be used in the wesk-coupling limit, being pro-
prortional to g4 and g , respectively. This fact in turn justifies
validity of Fermi golden rule for our model. In conclusion, we comment
cn another estimate of the pole-approximation error which could be ob-

/3/ for the Friedrichs

tained by adapting the method used by Demuth
model ; we compare the two cases.

The next part of the paper will deal with spectral concentration
and with the scattering theory for our model. As earlier, we refer to

formulae, theorems,etc. of the preceding parss by adding I or II to
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their number. However, a comment should be made. For the printed ver-
sion, due to appear in Czech.J.Phys.B, the material has been reorgani-
zed ; in the original preprint version the part II was just a short
addendum. We make references hure to the definitely shaped text ; hen-
ce (II1.2.9) means the formula (I.4.9) of the preprint version, Theorem
II1.3.6 corvesponds to I.5.6 in the preprint version,etc.

2. A few lemmas ,

Before formulating and proving the main result, we need some technical
preliminaries. Let us mention first the assumptions. As we have remar-
ked, we must add new requircments to those used in II . In order to
make the exposition self-copﬁained, we present t@e full list

Assumptions 2.1 : (a) Vv is rotetionally invariant, ¥(P) = 31(p) for
some 916 Lz(ﬁ+,p2dp) and all Be.m3 , ) .
(b) for brevity, let us introduce the functions \L vz(p)= Isi(p)lzp
and Vs : VB(A) = VZ(JEEE) . Then we assume that Vs
nued analytically to a region fl c ¢ whose intersection with. R

can be conti-

contains the point E , X .
(¢) ¥,(/2mE) $ 0 , , J
(d) there im -a positive C, such that l@,(p)lzs C, » v,(P)§¢ mC,; end
lvé(p)!<c1 for all pe€(0,00) ,
(e) the region Jf. in (b) is such that ) > (0,00) ,
(£) in addition to (d), we.have mjvy(p)]€C, for all pe& (0,00)

Notige that if (e) is valid, then the assumptions (d) and (f) are in
fact restrictions to the behaviour of 31 in a neighbourhood of the
points O and o0 only.

Our mein concern is the function T, defined by the relations

(IX1.3.4) and (II.3.5) which characterizes the reduced resolvent,

-

ru(z,Hg) = [E-—z-#ng(z) -1 , (2.1)
where o
% v, (p) v,(Q)
G(z) = 43v-f "2—-5 pdp = 4rmf-13_—:\- da (2.2)
0 ,- 0

and its analytic continuation rﬁ(.,ﬁ ) from the upper halfplane (]
£{z:Imz>0% to €'Y referring to the continuation Gy of G -
cf. (II.3.11) aend (1I1.3.15). For simplicity, we shall drop mostly H
writing ru(s) instead of ru(z,Hg) . Now we are going to derive

a series of four lemmas.

e

Lemma 2.2 : Assume (u) and (d), then the inequality

le(g*in)]< C, , (2.%8)
holds for all 5 € R and ?7 0 , where
2 4/3 1/2
2 1
¢, = 42%m cf/3[m2cf/3+ 9(7_29;%;2) Hvl|4/3] . (2.3Db)

Proof ¢ For any z€CN\R , we have

G(z) = G(z) , (2.48)

80 it is possible to restrict to the upper sign only. The relation
(2.2) gives the expression

2

oo(x+i72)v (x+¢)
G(f*i?l) = —4rn 4~——)(—+—;é——— dx

which mekes it possible to estimate the imaginary part immediately,

0
[Im G(g+i7)] € 4gmc AR S P I ' (2.5)
§+17 1 2. 2 1
-5 7

The real part is more difficult to manage. We choose a number a>0
and distinguish four cases : '
(1) f28 then we split the cxpression for Re G(f+i7) into three
parts,

Re G(§+17) = -Mm{J(-j,—a) +J(-a,a) *J(a,oo)} , (2.6a)
where
c xv, (x+¢)
J(v,e) = [ —g—g— dx . (2.6b)
b x +2 .
The first and the third term can be then estimated as
y ¥ i :
IJ(~§,-3) + J(a,eo)' < 3 { v3(x+§) dx = Tama

Since the function v is real-valued, we have v2(J2m(x+§)) =v2(J2m5)+

+ vé(J2m(g+ﬁ))( 2m(x+§) —J?mf) with & between O and x , so

a 2mx
J(-a,8)| € (2m(gap))| == dx < 2C,J7ma .
| &B)I\-£|V2 ot %-lxz’zz 2m(x+f)*\/§ﬂ§ ; 1

Together we get

IRe G(g+19)[< v + exmc,JZma- . , (2.7a)

3 .
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(ii) 0<¢<a : in this case we replace the curly bracket in (2.6a)
by J(-§,§)+J(§,a)fJ(a,M) . The first and the last integral can be
estimated as ahove,

[3(-3,8)]< 2c,/2mg < 2C,/2ma

and
Ivi?
4nma

[d(a,00)] €

m\g

é va(x1§)dx <

Finally, for the middle term we get

a a
0<Ig,a) g ¢ [ 5 [y ax < \/ﬁchjf X(‘f’?‘g) ax <
13

X+Q

The rhs can be easily calculated and shown to be bounded by
2C1J2ma (1+ e_2) from above ; it yields

[Re G(g+in)|< TIviP+ 6amc, (2+e72)/2ma . (2.7b)

(1ii) if -ag§<0 , we have to estimate J(-§,0)=J(-f,a)+J(a,m) .
Since
a
0€ de-g,a) < y7me, [ %(201\/21118 ,

we get

|Re G(g«ri?)|<%Ilv[l2+877mc1\/2ma ) (2.7¢)
(iv) finally, if §<-a, we use J(—f,oo)g J(a,o0)
this way

obtaining in

| Re G(g+ip)| < é!ivllz - (2.74)
Putting now the estimates (2.7) together, we see that (2.7b) holds
true for every fe R . Next one has to optimize its rhs with respect
to a ! it gives

|Re Ggean)|< 3[4ﬂm/5‘c1(2+e‘2uwu]2/3 , (2.8)

and combining this inequality with (2.5), we arrive at (2.3). @

Lemma 2.3 : Assume (a)-(d), then there are positive numbers X, and
70 such that to each g , O <lg|<¥ , @ function ugs L](ﬁ) exists,
which fulfils the inequality

| Im ru(gii'g,ﬂgﬂg ug(g) (2.9)

for all fe R and Q 6(0,70) .

Proof : Since

ru(z) = ru(E) (2.40)

holds for all =ze& €\R , we may again consider the urper sign only. If
75’(0,703 » where ?O has yet to be specified, the relation (2.1)
together with the preceding lemma give

9 - g2Incg+iy)]

lE-g—17~+g2G§§+i‘7)[2
20* €70

[E-‘f +g2Re G(§+12)]2

Now one employs the analyticully continued function Gy ; we are in~

| In ru(§+i7)J =
(2.10)
<

terested in zeros of the function f : f(g,z)=-E+ 2 -g2qﬂ(z) . Accor-
ding to Theorem II.3.6, there is 8 complex neighbourhood .Q2 =

= (E-28,E+28) x (-270,220) of the point E and a positive %, such
that for each g , 0<ig|< Jz y there is just one 1z _(g) fulfilling
f(g,zp(g))= O . Furthermore, the assumption (¢) together with Theorem
II.3.6 1imply existence of a positive %j such that Im z_(g) <0

for 0<ligl <}% We can always choose & gA% y @nd therefore
f(g,§+19)$ 0 for O<lgl< s » fe(B-24,E+20) md je[0,2y,) ,
because the only zero lies then in the lower part of the rectangleJ?z.
It further implies that

m, = min § |(g,g+ip)] ¢ |E-gl<d, 0€75755>0 .
holds if O < g |<.%3 ; combining this with (2.10), we get
2
+g°¢C
708
| Im ru(j‘fiq)[<—m2-—~'a (2.11a)

4
for gE(E—J',E-ch‘) and ’Ze‘(O,zo) . Finally, we set d, = min {J( ,
(5/202)1/2} . This number is positive,and ]j-E[-—g2C2 > 5-—&?02 > 0
holds for O<<Ig|<1% end § which lies outside the interval
(E-&,E+f) . Under these conditions,_the inequality (2.10) gives

et



11 (§+ )|<._Elg_2§.2__
mr (§ iq
u 2 2
(|§-E|-8&°Cy,)
and one can define the function u
in the respective intervals. The integrability

Lemma 2.4 :
NUCIERESELRERCE VR
ES

Under the assumptions (a)-(d),
for each fe€ R
»>0+

functions r (-0, 0) U @®*N
If, in addition, the assumption (e) holds, then
R \{0} .

( 0
e C i
u ar n

(+)

Proof ¢ In view of (2.4b), we consider T o
= —f(g,g+i'rz)_1 ; the preceding proof shows that
from below by a positive constant in R X(O,QO)

of

)

u
g

{2.11b)

by the rhs of (2.11a) and (2..11b)

is then obvious.
-]

there exists a finite
and 0<lgl< 2 .

f The

+and bounded in R .

ru_ are C® in
nly. We have ru(§+17’Hg)=
|f(g,.)| is bounded
. Hence +)(f)l is

bounded by a constant independcnt of g , if only the limit exists.
It is clear that the limit exists and defines a C®-function if the

same is true for
on follows from

v(d)
(f+17—J\)n
and 4m {VB(A) du

v5(a)
ik

= Ivii®< &

lim G(g+1y) . Therefore if fe ANR’
7*0* Lemma II.3.4 . If § <0 , we have

, the asserti-

50 existence of the limit and its

differentiability is implied by the dominated-convergence theorem.

Let us turn now to checking existence of 1lim G(j+i7)

remaining f . If f =0 , we have 7’0+
a) P v (a)
[6¢19)| < 4am f—3——d.x < 4n [ —2—aa €
Al 9
m ) )
< &m [ |w’r\.I (p)f2ap + BJIm_1f|v1(p 2p2p g
-9 .

21::"(472:11301 +lvi®) <

for the

and the limit exists due to the dominated-convergence theorem. If

there are some positive

valid, it is sufficient to verify that the. function v3
- cf. proofs of Lemmas I1I.3.3

derivative in a neighbourhood of

§ left, i.e., the assumption (e) is not

has a bounded

and II.3.4 . It follows from the assumption (d), which yields

lvgtart = |v,‘;(f2nﬁ>\/%|<c1f§ .

Lemma 2.5 : Assume (a)-(f), then the continued function Gy fulfils
b b
. 2,3
|6 ()< v, +J§* 7 (2.12a)
b
lm 67(5)] ¢ —;} (2.12b)
for all § > 0, where .
b1 = Sﬁ‘mc1 ,
b, = 2@(W+2)mCIJ§E ,
) 2 (2.12¢)
b3— 127 m C1 ’
b4 = 2»2m01J2m
Proof : According to Lemma IX.3.4 and the assumption (e), the func-
tion Gy 1is defined on some complex neighbourhood of the halfline
(0O,00) . The relation (2.2) gives
i v, (a)
G'(2) = -4am f—i 5 da
(z- A)
for z&€CN\R , and therefore
() = ~4pm lim ___;L_iﬁll_ vo(g+a) da 2.1°
2t ?90+_f G +’1 3§ (2.132)

In order to estimate the rhs, we express v3(5+A) by Taylor expansion.
Since v is twice differentisble and real-valued by assumption, we

have

vy(g+a) = vj(j) + v, (f2mg) (Vem(F+a) - [omg) +

A

+ %vz"(;/?_‘m((xqﬁ)) ( /2m(g*a) - ,/sz)z

) between O
pression becomes

for some snd A . After a rearrangément, the last 'ex-

V(E48) = v (g) + v, (/2mp) —2 &
5§ 5% 2 § JEEE . "
. (2.13b)
(J2 w 2.2 N .
+ [vé’( lzm(f‘“})) _ V2 mf)] 2m~ A : . 3
- v/2m§ (J2m(§+A ¢+J2mf)2

substituting it to (2.13a), we obtain expressions for the real and ima-
ginary parts of qi(f) .Estimating them, we make use of the fellowing
relations which can be proved easiTy




4242 ]
lim L’lz—-zd.k"—

2 - ’
?-*O+f(«\+7) §
fqz_iz ’
1in  f 7 3.2 4= -7
720+ ¢ (a7+197)
f?‘ 2_,2
* 1lim 2 22\Ad¢=0 ’
290+ 'f (A +9 )
g,\zif 2
lim > 22v\d~h=2g s
120+ A%+97)
~° } A
lin [ 2“22‘1“\:11’“ '—3—3—2"“=0 '
920+ (274 9%) 70+ Zg (A7+97)
22 a
un [ F o5 aa=3
q-)0+_f(d\ﬂz)

§ 2 1AP
1lim f 2'Al2 > da = v
120 —g ()

In this way, we get

2 c bv(J2mg)
' dam Gy 2lv@ 2[__1 230 (2.14a)
| Re G_n_(g)i < _—:f——- + 4am ¢ + 8ym — + s
and
f1m ag(g) 42%n’ fv,(f2mgy | 5 (2.14D)
S N JE;E 2

combining these inequalities with the assumption (d) and [G&ﬂg)ls
siﬂe Qi(§)|+ FIm G(g)| , we errive at (2.12%. B
Remark 2.6 : There are alternutive ways how to estimate the rhs of
¢2.14aY from the assumption (d). Instead of CZ;lZc%, we may choose,
e.g., by=8mC, , b, = 2ptx+6)mCIJ§E and b3= srm°C, . waeteriAas
far as we are not interested in actual values of the constants invol-
ved in the estimates, this ambiguity is irrelevant.

3, The pole gpproximation

Now we are ready to formulste and prove the main results. In accordan-
ce with (1I.2.5), the undecayed state is represented by the vector

1
yb‘-‘(o)-. We have

_futsy) _ €3.1)
EU()Y, = ( 0 ) = ut)y,

where obviously u 1is a continuous furction such that |u(t)[{ <1 . We
are interested in the quantity u¢t) , which represents the non-decay
probability amplitude at &n instant t . One can check easily the re-

lation

“ift e o emidt-7lt]

7271[_1‘4‘(..\-;‘-17 -_\—;Vlz)e $ ag

and furthermore, e-i*t'Y'tl—o g1t pointwise with the 1lhs bounded

independently of % . The functional-calculus rules (cf., e.g., Ref.
1.27, Theorem VIII.5) then imply

-iH _t 1 ) i a
= : . s ~-ift '
V(t) = e € - g-1lim ““T‘/ R(g+in,H ) -R(s-iy,H )|e ti%q .(3.28)
?*0+ 2zi R [ §+17 g K] 2’ g ] §
From this relation, one can calculate EuU(t)}b interchanging the
projection Eu with the integral (cf. Ref.5, Theorem I11.2.19) ; it
gives

alt) = ;ig ﬁ S [ru(§+i7,ng)-ru(g-iy,ng)_]e‘iftdg . (3.2b)
230+ R

Theorem 3.1 : Assume (a)=(d), then there is a positive &1 such that
for 0<ligl« &y the function @ defined by

wln) = 1 In ré*)(A,H ) = & éf( ) p 7 5 s (3.3a)
T g T (Bea+4neIa))+ g F0°
where »
v, (p)p
I(a) 2 Ia,v) = ]’f —“'l—‘—z— p dp (3.30b)
e
and 2m
p ) = 4p%ld, VDAY B (3.3c)
belongs to LI(R) and fulfils
ae) = J e M0 a - (3.4)-

R
for all teR .

(+)

Proof : The existence of TS (A) 1is established by Lemma 2.4 . Pro-
ving this lemma, we have shown that the 1limit G(A+10) exists under
the present assumptions for all AeR , and

Q) = [E-argfe@ein)] !

Furthermore, an inspection of the proof of Lemma II1.3.4 shows that

9
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G(A+10) = 43I (0) - iJCA) for A>0 , so a simple calculation leads to
(3.3a). On the other hand, ru+ is real-valued in (-00,0) so
w(4)=0 there. In order to establish the relation (3.4), it is suffi-
cient to interchange limit with the integral in (3.2b). If we choose
My as that of Lemma 2.3, the interchange is justified by this lemma

and the dominated-convergence theorem. a2

Now we are going to use the obtained representation of the func-
tion u to prove the main result @

Theorem 3.2 : Assume (a)-(f), then there are positive numbers % ,C
(depending on Vv , but independent of g ) such that the inequality

-iz_ t
u(t) —Ae P Is cf (3.5)

t b

where zp is the pole specified in Theorem II.3.6 and

= [1- ng‘é(zp)J-‘

holds for all t>0 and |g)<d& -

’ (3.6)

Proof : The lhs of (3.5) is zero for g=0 , so we assume g# 0. in
the following. The region & is open and conteins E , hence we can -
choose ?6(0, g) so0 that U (E)—{ZGC : (z-E|<2?}Cﬂ. . Since
Gg 1s continuous in U (E) : here is a positive 03 such that

legz)] €C; within U E) . In fact, we know more sbout this bound :

Lemma 2.2 together witg the relaticn (II.3.11) show that we can dioose
- 2 : . )

C3 = Cy+87°m sup{v3(z) : lz-EIszQ} . (3.7)

.

It is clear from Theorem II.3.6 that fdr small enough g the pole
position fulfils

l2,~El<§ , |y -El<3¢ (3.80)

(cf. Fig.1). We can choose therefore a'e(o,aﬁ) such that (3.8a)
holde if Ilgl<x und at the same time

2
12X C3<? . (3.8b)
In such a case, we have also 12&202 <9<-1§E . Since GSI. is holomor-
phic, the relation

Ga(g)
G () = d
Zp zri ‘[ (f-zp)z §

10

T

Fig.1. To the proof of Theorem 3.2.

holds, which yields the estim&tet)
c 2C
legz )l < 48 2 = —2 (3.9)

27 Pz ?

It is easy to check by contour integration that to each g>0
is some R1 such that

4z t R
p_ 1 -iat A
4A e T {\e Im zp 3 do

, there

1
3 £

holds for 11 H)-R] . 8imilarly Theorem %.1
nated-convergence theorem show thut

together with the domi-

LX) drl < %z

R
ll(t) _ j e-lJ\t
-k

for all K& larger than some R2 - Combining the last two inequalities,
we get

-iz ¢t

- p 2 -iat (+ )

u(t) - Ae j < 3¢ i f Im[

for R> R35 max{Ri,R2} . In order to proceed further with the estimate,
some manipulations with last integral are needed. We denote it for a.
moment ds IR and rewrite it as

nol o oo it (+) A
Z j Irn[ru (a) - Jd.\ ,
J=0 A5

Z =

(3.10)

where {A J =0 is a finite sequence with Ao: -R  and An=,R , and

&) In combination with (3.8&b), the inequality (3.9) shows that A is
properly defined and [Al1<6/5 . Powever, a little later we shall
show that A is the residuam of riX.) at , and as such it is
defined 1ndeperdently of the as °umn%10n (d) ang (5.8). We shall also
mention that in & realistic physjcal situation, A is very close
to 1 -cf. (4.4b) below.



perform the integrstion by parts. In view of Lemma 2.4, the only prob-
lem can arise at 4 =0 , where the "resolvent part" of the integrated
function might not be continuous. Howéever, &{(a)=0 for 4 <0 , and
at the same time, the relations (3.3a) and (3.3c) together with the
assumption (d), Lemma 2.2 and the relstion (3.6b) give

4mxng C J2m

(E-a-g Cz)

IRCYIES

lim ©(x) =0 .
A 0+

for ag {0 ,g Y, i.e., Eence the integration cen be

periormed j it yields

R .
_ 1l i -iat (+) A _
Ip =5 [t e Im(ru (A) = z“p“))}

=-R

As
TV it a (+) A
-/:\ e o (ru (4) - Za a4

The functions I(.) and IJ(‘) are bounded in view of Lemma 2.2, and
therefore 1lim{(a)=0 . Since 1lim &(A)=0 holds obviously, the
first term onmthe rhs tends to zé?%-gg R—>oc ; we-can therefore
choose R4>,E3 such that its modulus will not exceed %s for any
R>R, . Combining this result with (3.10), we get

4
A
-iz_t y b=l AL i a
- | i -ixt d (+) 4y A
tu(t) he < £+ 73 jé:o ‘{:\ e o Imir, "8 Ty da|.
J (3.118)
Now we shall estimate the integrals on the rhs choosing
-
)\1 =E-¢ and Jz = E+¢€ . €3.11b)

We start with

Ef-? ERCRE SN M,[ < ?f-? }Im_leA .

a Zp (z,=4) 2

-R -00
» [(ua—ég)ImA +25 u feh

Jp‘E+{l (u2+5€)2

du ,

where we have substituted us= J&-fx It can be further estimated by
the sum of two integrals ; for the one containing }JRe Af we use

28u r 4d. 46.
» 222d“<25f :duez~=2j)‘2<‘22
¢p-E+Q (u +£p) by %q (u +5p) 9 +4§p ?

together with the above-mentioned fact that lA{<'§ . According to
Theorem II.3.6 and the proof of Lemma 2.3, 'éb(.) ig a8 C®-function

12

Ry g

on a neighbourhood of g=0 containing [-x] . Conseguently, there

is a positive C such that

4

<3 < C,g° . )
0 < p(g) < 43 (3.12)

holds for all ge [-963(}. The first one of the 2bove mentioned two
integrals is estimated in the following wey :

lu2—52 Fg du
. (252‘2{“<J 252<§2
Ap— +? u 4+ p) ?e un+ P
and
2C
2 . }
g°|Im Golz )] 720y
{Im 4] = ’ D < 42 < 2

g ’
(1_ag EEQ)? 25€ I

]

B =g
[1-6%6atz) [?
where we have uged (3.9). Togetcher we have

E-¢ ‘
-iat _& A (14 +28 )—2 2
£e- d‘.Amzp—.Ad“\-< C3+% 04 )¢ "
(+)

Next one has to estimate the analogous integral for the function r, -
Notice that the functions I "and g are differentiable being multi-

—~

(3.13a)

ples of the real snd imaginary parts of the holomorphic function Gy .
In fact, we are interested in their behaviour for 420 only, becau-
)(A)- 0 for A<0 and the integral can be teken therefore
over (O, E—?) . For an erbitrary A>0, an easy calculation yields

se Im r(

d (+)

2 W - IE-ugzenml‘4{2g2y<.\)u-4ng2r‘u))x

43‘(4)2}}.

This guentity ean Ve estimated using Lemma 2.2 "ond Lemma 2.5 as

(3.14)
X (B-xeamg?T(0) + £297 () [(B-arame®T(a)) g

Im EK r(+)(4)‘ < ) B

b b b
g2 2 (Ben? 2,23 4pyoln 12
< @ - gzc X {_82,‘ nC, (E+g 02)(T+ b, +J.7\+~A y2ma +J;(E+g 02) }

according to (3.7) and (3.8b), the term before the curly bracket is

smaller than g2Q%%?J' . The integral of the rhs ean be easily ceal—
culated y we get

E-p

éf' ilmd-i l‘l*)(a)[dax <(1“€ )(E+ ){ [b (E+ ..
. (3.13b)

+ szmh3C1J2_lnl(E—g)t/2 + 832mb201@-‘(E;F) +13-;312m(1+b‘)01@(E-f)3/2£ )
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The reletions (3.13) together show that there is a positive ¢C ; Wwhicgh

is depending on E,? and the function v but independent of t and
R , such that

N :
f? emiat 4 o () A
ax m\r, () - PR aa

Let us turn now to the integral over (E—?,E+?) . For |z—El<? , we
employ the following expansion ‘

2
< Csg” . (3.15)

Gp(2) = Gplz)) + G‘D:(zp)(z—::p) + F(z)('z_zp)Z , ' (3.168)
where

gy = L Galf)

Plz) = 57 a5 (3.16b)

- 2
o (€-2)(¢— 2z )

§-2)(§~ 2
recall that the circie C has been chosen to be contained in the re-

gion ), , where Gy is holouorphic. We use also the fact that zp is

a pole of rg y i.e.,

2" -
E—zp+g an(zp) = Q

(3.16¢)
, ( e '
Since ru*)z rf’ on (n—@,hﬁ?) » the relations (3.16) give
(+) [
r. (A)-o— =
u 25~
.2 > . T Z -3 =
E-a+tg Gﬂ(zp) +g Gn(zp)u—zp) + 82F(J)(v\"zp)2 Zp =
_ - 1 > 5 - A = - giat Fla)
. (A—zp)(-l +g (:_n(zp)) +g P‘m)(.x-zp) Zp T 1-AF() (a-2p)
d((n A 2,2 FUa)+ 82AF(a)?
'd.\(r“ (J)—z-.\)=-gA 2 2
3 [1- e*aFu)(a-2zp)]

For [z-EI(Q ,*we have

Gplf) 7 © 26
13 _ %
]g‘—vzﬂf-zplz df( or 4”?

) 1
[F(2)| € 5.{{

and similarly
2C

|F(2)] < F-;

.

These inequalities together with (3.8b) anad IA! <g give the relations

14
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6,2°73
a +) 36 22(: l+53( ° 48C5 2
ax Im{ry W=7 )€ 58 0 6 220, 2 < .3
- -z —32?) P

2
from which the sought estimate follows eesily, ?

E+Q . A
S e~ 1ut de Im(rl(;)(J.)— Z _J\>de\
E—‘; p

<cge® (3.17)

where

6 5@2
Finally, let us estimate the third integrel. According to Lemma 2.5,
we have

I
fé,‘_—? E+? 7

for A» E+¢ . The relation (3.14) then gives

L2
2¢,(1+g2C,,) ¢
d _(+) 2| 20 7 7
Im <~ r Wi< g { + G
l dr “u l (a-E-g%c,)? (J-E-gzcz)z}

le ] € vy +

\

Integral of the rhs can be easily calculated. Using (3.8b) again, we
get

R o (C,(14g%C.) c
J |~Imﬁr§*)(¢)'d4<sz{—"’——g—i+*‘7—‘} €

2 2
it (§-67c2)" @&, (3.18a)
144 C 12 ¢
2{ 2 0,2 z%
£ (1+C,)+ .
¢ L g? e

On the other hand, for the ”"pole part" of the third integral we have

o0
Lfn e~ 14t d%\ Im zA—_; do| < f IIm —‘—zldu .
+0 P E"’Q-Ap (u+15p)
Estimeting the first integral, we have calculated an analogous expres-
sion, with the only difference consisting in the imerchanges E«—'u\p
and J <> -§p . Since E+§'-.Ap>%q , the same argument can be used,
and we obtain

R 184C, 24C,

[t A a.\' <( 3 _21)52 i (3.180)

E+p P 25@ 59

The relations (3.18) show that there is a positive Cg such that

R

S oot & Im(r"’)(u\)- A _Vaa| < cge? (3.19)
aa u PAEXY 8

E+?' P

holds for 0 <lgl< & and all 't.amd R>E+Q .
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Now one has to collect 211 the obtained estimates., The relations
(3.11), (3.15), (3.17) &nd (3.19) together give

iz_t

- 2
- P &_
u(t) A e < &+ wt(05+c6+c

8)

for O<|g|<H, any >0 =znd R:»R4 . However, £ hzs been an ar-
bitrary positive number, and therefore the inequality (3.5) holds if
we choose C :(05+06*08)/ﬂ . 8

4, The decay law

Theé results of the preceding section can be now used to Jjustify appro-
ximative validity of the exponential decay lew (within a certain time
interval) and tc demonstrate accuracy of this approximation. The decay
law of the state '?O is according to (3.1) given by

P(t) = Ju(t)1? 4.1

its meanimg is the probability to find the heavy particle still unde-
cayed at un instant t

First we notice thst the bound given by Theorem 3.2 is useless
for very small and very large times. For smail times, it is obvious
from (3.5). On the other hand, the decay of {u(.)| for large t is
slower than exponentiel. This is =a consequence of Paley-Wiener theorem,
though not immediste (cf. Ref.I.3, Sec.1.5). Since the spectrum of H
is semibounded, we have either u¢ L’(R+) or &

oo ) 2
fll’l’ll(f%' dt > - oo

g 14 %
{notice that din 3;7=1 50 we can put u(-t)= u(t) if necessary).
However, u 1is a continuous function such that O £{u(t)l€ 't snd
lim u(t) =0 ; the last assertion tollows directly from (3.5), or
EPfernatively from Theorem 3.1 ond Riemenn-Lebesgue lemme. Bither
of the above possibilities then requires u(.) to decay slowly enough
at infinity. Hence Theorem 3.2 gives nothing more than the bound

2 A
P(t)<5—ti

on the decay law for large t .

Ay the same time, the estimate (3.5) can be useful for a wide
interval of intermediate times. Let us first comment on the meaning
of the term "intermediate". A natural time scale for the problem under

16
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consideration is given by the lifetime
o0
= [P(t)at (4.28)
0

this quentity is closely related to the mean life of the heavy partic-
le, but in general the two concepts are not fully identical - see Ref.
I.3, Sec.1.2 for more details. If the decay is purely exponential,
the lifetime is found easily. Our 2im is now to show in which sense
the actual lifetime can be approximaeted by such 2 simple expression.
We remark that T can be affected substantially by the large-time be-
haviour of P(%) if the latter decreases slowly enough at infinity.
This is not disustrous, however. One must reslize that the decay law
itself and not T 1is & measurable guantity. The measurements are actu-
ally perforned within a (possibly large, but f%nite) time interval
and convergence of *he integral is thus a matter of our extrapolation
(a closely related problem is discussed in Ref.I.3, Secs.1.3 and 1.6).
From the practical point of view, T can be therefore replaced by
T1= T(T1) defined by

7 (4.2b)

T, = [ P(H)dt : :

0

for a sufficiently large T1 . Now we have

Proposition 4.1 : Assume (a)-(f). Let 0<ZT,<?%, and lel< 4 , then
the following estimate is valid

T, 7¢C -20.T
2 it R P (4.3)
fody®y -1k < 540+ 50e°F 1z + Rl ;

where 03 ,Q , { are the constunts used in the proof of Theorem 3.2 .

Proof ¢ We have
z,

z
-24 . g 28t
tTt - Z'Z'pl < t{ RIDE taffe : pt;fdtl + [IAIZ— 1{{: e P oat s

00~

=238t
+ \f e P act .
%
The first term cen be estimated- using the relations (3.5} and ¢4.1) ;
we get -
26 t -iz t -iz
p ' -.-’(lu(fﬂ*llxe P |)([u(‘b)[-|Ae P ‘)s

-1z ¢

gcO+anfu-ae P |,

Fece) - (a1Ze

i.e.,
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1c 2

-24 t :
v <5 e (4.42)

[m)- (2l e
which can be used in [ZO’ZH] On the other hand, in [O,Tb] y we
can use the inequality

~2d t
P(t)-|alf e P ‘g1+|n12<g—;<§ .

‘Using further (3.6), (3.8b) and (3.9), we obtain
2. 2.,
G+-gsgz D1~ [1-¢ c_n(zp)ll <
2. 2
b -e%uqcz) |

14 - 1| <

2C
2, 2(n"
(2+ =—x%) g?|a (2 )] 20,
< 5 ?;Q . <%§g29 ’
(1 -—2 %) .
i.e.,
7C
2 H
[ 1a] -1|<'—?—3g2 . (4.4b)
Futting now these estimates together, we get the inequality
-248 7,
1 5 1,2 5 70 5, %0
Ty-5F7 | <5, +—=Cg°ln— +° ‘g o+
1 29 2
2Jp 5 Z5 c§p? 29,
from which (4.3) follows. ]

The relation.(4.3) shows that in the case of a sufficiently weak
coupling the lifetime may be approximated by (2:5;))“1 . It is clear,
that T1 cannot be chosen independently of g . We can put, e.g.,
= N/2J; and T, = 1/25pn foy some N>>1 ; then

‘ . 7C
N 5 2 s 2 -N
lZJpT(Zd.p)-I‘<2N+IOCg Jplnx\u ? g° + e

s0 the rhs can be made arbitrerily small by choosing a suitable N
i
and |g| small enough. These considerstions show that an appropriate

interval of intermediate timet could beX)
) N
£t€ 5+ . (4.5)
2d N
p 24,

Within this restriction, the following estima%tes hold

Theorem 4.2 : suppose (a)-(f) are valid together with (4.5) and

%) Itsdoes not mean, of course, that the whole interval (4.5) is expe-
rimentally attainable ; remember that ‘the real unstable systems
(particles, nuclei) can have lifetime as short that it is impossible
to measure the %time plot of the decay law, or longer than duration
of the Universe itself.
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lgl <min §ar, G2 cc, 5 eMy™74}, . (4.62)

4
then
~24 t
|pct)-1ai2 e P | < scc,mgt (4.6b)
~ ) AR oY) eve

Furthermore, the function [° defined by P(t)= |Ale obeys in
the considered interval the restriction

lﬂﬂcﬂ - 2;p| < 24 (m2)cciPe P . (4.6c)

Proof : The inequelity (4.6b) follows immediately from (4.4a) and
(3.12). Similarly.

2 P
P(t)- A" e o N
I_M - <42 3—32 2co Nt < 600, Ne" gt
[a]2e P

6 .
where we have used the inequality |A|>-7 follow1n§ fro? (3.8b) and
(3.9). Under the assumption (4.6a), we have 6CC4Ne g <= so that

2

-24 t

( B(tY- (a2 e P)

In{?! +

-2t
a2 e P

and (4.6c¢c) follows. B

<2m2 . 6cc,Ne'gt

[F(t)-zé"pt] =

Remark 4.3 » The procedure by which the additional powers of g are
gained on the rhs of (4.6b) and (4.6c) can be formulated in a more
mathematical way. Since the lifetime characterizing the natural time
scale increases, in general, as |g|->» O , it is useful to introduce
the rescaled time t'= gzt when dealing with the weak-coupling limit.
One can write z_(g) =E}+g2g2(g) » where a,=,-1 is a ¢*-function
in some neighbourhood of g=0 such that aQ(g)= 421(E,v) -

-~ 4ﬂzhnv2(d2mE)-#O(g2) . The estimate (3.5) now acquires the form

s =2’ .
ig “Et -ia,(g)t 4
et u(g %t y-nre 2 < Qts_ ) (4.78)
from which we get, e.g.,
=28, (&)t
\P(g'zt')-lltl2 o Fe [< 'S’Tc gt . (4.7D)

5. Fermi golden rule .

Now we would like to establish strict validity of the popular rule
which claims formally that the decay rate, i.e., the decay probability
per unit time equals
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2 2
Fe(e) = 22g"I<EIVY] (5.12)
(recall that we %;e (g; 1) . Since the "projection" IE)(EJ may be

u?derstood as n EA Pc(HO)JA=E » where {Eio)} is the decomposition
of unity of the operator Ho and Pc(HO) is the projection to the
continuous subspace of HO » we can replace the formal expression in
(5.1a) by

.

- opg? 8 S(0)
Mete) = 2re” 5 (v, BY fc(”o”’?o’!FE . (5. 10)

Proposition 5.1 ¢ Undur the assumptiorns(a)-(c), the decay rate (5.1)
equals

2 2(a N4
Mp(8) = 63°mg°|V, (V2mE)| “/2nE . (5.2)
Proof : We denote ?xr: (g) » then a straightforward computation gives

2 d 0) . Y
rF(g) = 2re” gy (}V,E& )kc(ho)yv)

[a=x
ye 2 d Aos 12y
omg L ()% ap
O £3: 1817 2na}

A
8r’og” £ ,({|31(./2mj)l2./2mj dfi L °

f

i.e., the desired result. L]

Comparing to Theorem II.3.6, we see that Fp(g) given by (5.2)
is nothing else than tle lowest-order term in Taylor expansion of

.

ﬂg)sZ%@) . (5.32)

In order to justify the Fermi rule, one has to know therefore that
(5.32) represents the true decay rste (defined in a reasonable way,
with an accuracy ~- O(Ig|2+i) }>. If we adopt the additional assumpti-
ons (d)-(f) beside those of Pronosition 5.1, this is guaranteed by
Theorem 4.2, even up to the sixth order in the coupling constant. One

can write therefore

Fg) = Mplg) (1+0(g2)) . (5.3b)
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6. Conocjuniony

Ve have not drawn out explicit connection between the constants in our
final estimntoo such 28 (3.5) gnd those relsted directly to the func-
tion v . If roquired, these relationscun be éxtracted easily from the
proofs, but they would not be probably of much use. In order to get
some quantitative informstion about the error tied with the pole aporo-
ximation, it is more illustrative to trest a suituble example ; we are
going to return to this problem leter.

There are other ways how to estimate the pole-approximation error.
One of them has been elaborated by Demuth/3 for the Friedrichs model,
and ¥t can be adapted easily to the present caseﬁ) One obtains in
this way a bound which is essentially time indepemdent instead of
(3.5) 3 its rhs contains powers of the coupling constant g and of
5(5) which cheracterizes a family of intervels centred at E which
leads to spectral concentration ; we shall see in the next pert of
this paper that one can choose d&(g)= O(gﬁ) with S e€[0,2) . Demuth’s
estimate can be optimized when we choose B =i then it gives an
error of the order of g4'5

decay laws instead of (4.6b) 7 The decay rcte is now constant within
14/5

, and the same type of estimate for the
the interval (4.5) up to g comparing to our estimate A*gs .
Nevertheless, this is still. sufficient to justify the Fermi rule. Ge-
nerally speaking, Demuth ‘s method provides us with weaker error esti-
mates, but his restrictions imposed on the function v are slso
weaker than ours corresponding to the sssumptions (a)-(c) only.
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HepenaTuoucrckan MOAENL ABYXYaCTUUHOro pacnaga.
NonbcHoe npuBnukerne

PaBoTa noceawera, 8 OCHOBHOM, OGOCHOBaHMM NPUBRMKEHWs, B KOTOPOM MpuBefeH-
HOA Pe3ONIbBEHTA 3AMEHRETCR OAHWM NONMICHHM uneHoM.Hanaran AononuutentHwe ¥c-
NOBUA PEryNAPHOCTH Ha GYHKUMIO V,+ ONMCHBAaKWLYI B3auMoAeNcTeMe, Mu CnocobHu oye-
HWTb PasHOCTbL COOTBeTCTBYiWMX MNPUBEAEHHHX NPONafaTopos. JTOT peaynbTaT Aansb-
we MCNONb3yeTCA ANA BWEOAA OUEHKM OTKNOHEHMWH OT ,3KCMOHEeHUMaNbHOro 3aKoHa pac-
naja, cneaywoiero M3 NOnNCHOro NpUBAMKeHWA. 3a -UCKNOYEHWEeM OueHb Manbix U OYeHb
Gonbuux BpeMeH, NOMYYEHHAA OueHrKa' NPONOPYMOHANbHA YETBEPTON CTeneHU KOHCTaHTH
CBA3M. Mu Takxe NOKaswBaeM 30N10Toe npaeusio PepMmu ANA paccmaTpuBaeMmoii MOpeM U
CpaEHMBaeM NPEANOKEHHH  METOA C paHbWie MpUMEHAEeMHM MeToaoM [lemyTa.
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Dittrich J., Exner P. E2-86-750
A Non-Relatlvistic. Model of Two-Particle Decay.
The Pole Approximation

In this paper, we ‘are concernéd mostly with the problem of justifying the
approximation in which the reduced resolvent is replaced by the pole term
alone. Imposing additional regularity assumptions on the function v, which
speciflies the interaction, we are able to estimate the difference of the cor-
responding reduced propagators. This result is used further to derive an es+:
timate of the deviations from the exponential decay law which results.from
the pole approximation. With exception of very small and very large times,
the obtained bound is proportional to fourth power of the coupling constant.
We prové also Fermi golden rule for the model under consideration, and com-
pare the present method to the one previously used by Demuth,
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