

# Объединенны ИНСТИТут яАерНых <br> исследованй <br> дубна 

E2-86-750

J.Dittrich, P.Exner

A NON-RELATIVISTIC MODEL
OF TWO-PARTICLE DECAY.
The Pole Approximation

Submitted to "Czechoslovak Journal of Physics B"

## 1. Introduction

This is the third part of the paper devoted to analysis of a Lee-type decay model. The previous parts $/ 1,27$ are referred to hereafter as $I$ and II, respectively. The model is described in I , where its Galilean invariance has been proven. In II, we have separated the centre-ofmass motion ; then we have shown that the reduced resolvent of the fiamiltonian has just one simple second-sheet pole $z_{p}=\lambda_{p}-i \delta_{p}$ for small enough values of the coupling conetant $g$.

Here we continue the analysis, with the main attention concentrated on the reduced evolution oterator and the decay law. It can be checked easily that these two functions are exponeritial if one replaces the (analytically continued) reduced resolvent by the pole term of its Laurent expansion. Cur aim is to estimate how occurate such an approximation could be. In order to get an explicit bound on the nonexponential corrections, we must require the function $v$ additionally to have some mild regularity properties. They serve us to prove some technical lemmas collected in Section 2 , which are used efterwards to derive our main results, in particular, the estimate expressed by Theorem 3.2. is a consequence of this result, we obtair in Section 4 bounds on the deviations of the decay law from exponentiality, and on the difference between the actual decay rate and $2 \delta_{p}$. They give no restriction for very small and very larfe times, but between these two extremes, they con be used in the weak-coupling limit, being proportional to $g^{4}$ and $g^{6}$, respectively. This fact in turn justifies validity of Fermi golden rule for our model. In conclusion, we comment on another estimate of the pole-approximation error which could be obtained by adapting the method used by Demuth $/ 3 /$ for the Friedrichs model ; we compare the two cases.

The next part of the paper will deal with spectral concentration and with the scattering theory for our model. is earlier, we refer to formulae, theorems, etc, of the preceding parts by adding I or II to
their number. However, a comment should be made. For the printed version, due to appear in Czech.J. Phys.B, the material has been reorganized ; in the original preprint version the part II was just a short addendum. We make references hure to the definitely shaped text ; hence (II.2.9) means the formula (I.4.9) of the preprint version, Theorem II.3.6 corresponds to I.5.6 in the preprint version, etc.

## 2. A few lemmas

Before formulating and proving the main result, we need some technical preliminaries. Let us mention first the assumptions. As we have remarked, we must add new requiroments to those used in II. In order to make the exposition self-contained, we present the full list :

Assumptions 2.1 : (a) $v$ is rotationally invariant, $\hat{v}(\vec{p})=\hat{v}_{1}(p)$ for some $\hat{\mathrm{v}}_{1} \in \mathrm{~L}^{2}\left(\mathbb{R}^{+}, \mathrm{p}^{2} \mathrm{dp}\right)$ and all $\overrightarrow{\mathrm{p}} \in \mathbb{R}^{3}$,
(b) for brevity, let un introduce the functions $v_{2}: v_{2}(p)=\left|\dot{\hat{v}}_{1}(p)\right|^{2} p$ and $v_{3}: v_{3}(1)=v_{2}(\sqrt{2 m \lambda})$. Then we assume that $v_{3}$ can be continued analytically to a region $\Omega \subset C$ whose intersection with. $\mathbb{R}$ contains the puint $E$,
(c) $\hat{v}_{1}(\sqrt{2 \mathrm{mE}}) \neq 0$,
(d) there in a positive $C_{1}$ such that $\left|\hat{v}_{1}(p)\right|^{2} \leqslant C_{1}, v_{2}(p) \leqslant m C_{1}$ and $\left|v_{2}^{\prime}(p)\right| \leqslant c$, for all $p \in(0, \infty)$,
(e) the region $\Omega$ in (b) is such that $\Omega \supset(0, \infty)$,
( $f$ ) in addition to ( $d$ ), we have $m\left|v_{2}^{\prime \prime}(p)\right| \leqslant C_{1}$ for all $p \in(0, \infty)$.
Notiçe that if (e) is valid, then the assumptions (d) and (f) are in fact restrictions to the behaviour of $\hat{v}_{1}$ in a neighbourhood of the points 0 and $\infty$ only.

Our main concern is the function $r_{u}$ defined by the relations (II.3.4) and (II.3.5) which characterizes the reduced resolvent,

$$
\begin{equation*}
r_{u}\left(z, H_{g}\right)=\left[E-z+g^{2} G(z)\right]^{-1} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
G(z)=4 \pi \int_{0}^{\infty} \frac{v_{2}(p)}{z-\frac{p^{2}}{2 m}} p d p=4 \pi m \int_{0}^{\infty} \frac{v_{3}(\lambda)}{z-\lambda} d \lambda, \tag{2.2}
\end{equation*}
$$

and its analytic continuation $r_{u}^{\Omega}\left(\cdot, H_{B}\right)$ from the upper halfplane $C^{+}$ $\bar{\equiv}\{z: \operatorname{Im} z>0\}$ to $\mathbb{C}^{+} U \Omega$ referring to the continuation $G_{\Omega}$ of $G$ of. (II.3.11) and (II.3.15). For simplicity, we shall drop mostly $H_{g}$ writing $r_{u}(z)$ inetead of $r_{u}\left(z, H_{g}\right)$. Now we are going to derive a series of four lemmas.

Lemma 2.2 : Assume ( 4 ) and (d), then the inequality

$$
\begin{equation*}
|G(\xi \pm i \eta)|<C_{2} \tag{2.3a}
\end{equation*}
$$

holds for all $\xi \in \mathbb{R}$ and $\eta>0$, whexe

$$
\begin{equation*}
c_{2}=4 \pi^{2} m c_{1}^{2 / 3}\left[m^{2} c_{1}^{2 / 3}+9\left(\frac{2 e^{2}+1}{\sqrt{2} e^{2} \pi^{2}}\right)^{4 / 3}\|v\|^{4 / 3}\right]^{1 / 2} . \tag{2.3b}
\end{equation*}
$$

Proof : For any $z \in \mathbb{C} \backslash \mathbb{R}$, we have

$$
\begin{equation*}
\overline{G(z)}=G(\bar{z}), \tag{2.4a}
\end{equation*}
$$

so it is possible to restrict to the upper sign only. The relation (2.2) gives the expression

$$
G(\xi+i \eta)=-4 \pi m \int_{-\xi}^{\infty} \frac{(x+i \eta) v_{3}(x+\xi)}{x^{2}+\eta^{2}} d x
$$

which makes it possible to estimate the imaginary part immediately,

$$
\begin{equation*}
|\operatorname{Im} G(\xi+i \eta)| \leqslant 4 \pi m^{2} C_{1} \int_{-\xi}^{\infty} \frac{\eta d x}{x^{2}+\eta^{2}}<4 \pi^{2} m^{2} c_{1} \tag{2.5}
\end{equation*}
$$

The real part is more difficult to manage. We choose a number a>0 and distinguish four cases :
(i) $\xi \geqslant a$ : then we split the expression for $\operatorname{Re} G(\xi+i \eta)$ into three parts,

$$
\begin{equation*}
\operatorname{Re} G(\xi+i \eta)=-4 \pi m\{J(-\xi,-a)+J(-a, a)+J(a, \infty)\} \tag{2.6a}
\end{equation*}
$$

where

$$
\begin{equation*}
J(b, c)=\int_{b}^{c} \frac{x v_{3}(x+\xi)}{x^{2}+\eta^{2}} d x \tag{2.6b}
\end{equation*}
$$

The first and the third tern can be then estimated as

$$
|J(-\xi,-a)+J(a, \infty)| \leqslant \frac{1}{a} \int_{-\xi}^{\infty} v_{3}(x+\xi) d x=\frac{\|v\|^{2}}{4 \pi m a} .
$$

Since the function $v_{2}$ is real-valued, we have $v_{2}(\sqrt{2 m(x+\xi)})=v_{2}(\sqrt{2 m g})+$ $+v_{2}^{\prime}(\sqrt{2 m(\xi+\eta)})(\sqrt{2 m(x+\xi)}-\sqrt{2 m \xi})$ with $\emptyset$ between 0 and $x$, so

$$
|J(-a, a)| \leqslant \int_{-a}^{a}\left|v_{2}^{\prime}(\sqrt{2 m(\xi+\hbar)})\right| \frac{x}{x^{2}+\eta^{2}} \frac{2 m x}{\sqrt{2 m(x+\xi)}+\sqrt{2 m \xi}} d x<2 C_{1} \sqrt{2 m a}
$$

Together we get

$$
\begin{equation*}
|\operatorname{Re} G(\xi+i \eta)|<\frac{1}{a}\|v\|^{2}+8 \pi m C_{1} \sqrt{2 m a} . \tag{2.7a}
\end{equation*}
$$

(ii) $0 \leqslant \xi<a$ : in this cace we replace the curly bracket in (2.6a) by $J(-\xi, \xi)+J(\xi, a)+J(a, \infty)$. The first and the last integral can be estimated as ahove,

$$
\begin{aligned}
& \qquad|j(-\xi, \xi)|<2 C_{1} \sqrt{2 m \xi}<2 C_{1} \sqrt{2 m a} \\
& \text { and } \\
& \qquad|J(a, \infty)| \leqslant \frac{1}{a} \int_{a}^{\infty} v_{j}(x+\xi) d x<\frac{\|v\|^{2}}{4 \pi m a}
\end{aligned}
$$

Finally: for the middle term we get

$$
\begin{aligned}
0 & \leqslant J(\xi, a) \leqslant C_{1} \int_{\xi}^{a} \frac{x}{x^{2}+\eta^{2}} \sqrt{2 m(x+\xi)} d x \leqslant \sqrt{2 m} C_{1} \int_{\xi}^{a} \frac{x(\sqrt{x}+\sqrt{\xi})}{x^{2}+\eta^{2}} d x< \\
& <\sqrt{2 m} C_{1} f_{\xi}^{a}\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{\xi}}{x}\right) d x .
\end{aligned}
$$

The rhs can be easily calculated and shown to be bounded by $2 C_{1} \sqrt{2 m a}\left(t+e^{-2}\right)$ from above; it yields

$$
\begin{equation*}
|\operatorname{Re} G(\xi+i \eta)|<\frac{1}{a}\|v\|^{2}+8 \pi m C_{1}\left(2+e^{-2}\right) \sqrt{2 m a} \tag{2.7b}
\end{equation*}
$$

(iii) if $-a \leqslant \xi<0$, we have to estimate $J(-\xi, \infty)=J(-\xi, a)+J(a, \infty)$.

Since

$$
0 \leqslant J(-\xi, a)<\sqrt{2 m} C_{1} \int_{-\xi}^{a} \frac{d x}{\sqrt{x}}<2 C_{1} \sqrt{2 m a},
$$

we get
$\mid$ Re $G(\xi+i \eta) \left\lvert\,<\frac{1}{a}\|v\|^{2}+8 \pi_{1} m C_{1} \sqrt{2 m a}\right.$
(iv) finally, if $\xi<-a$, we use $J(-\xi, \infty) \leqslant J(a, \infty)$ obtaining in this way
$|\operatorname{Re} G(\xi+i \eta)|<\frac{1}{a}\|v\|^{2} \ldots$
Putting now the estimates (2.7) together, we see that (2.7b) holds true for every $\{\in \mathbb{R}$. Next one has to optimize its rhs with respect to a : itgives
$|\operatorname{Re} G(\xi+i \eta)|<3\left[4 \pi m \sqrt{2 m} 0_{1}\left(2+e^{-2}\right)\|v\|\right]^{2 / 3}$,
and combining this inequality with (2.5), we arrive at (2.3).

Lemma 2.3: Assume (a)-(d), then there are positive numbers $\mathcal{H}_{1}$ and $\eta_{0}$ such that to each $g, 0<|g|<\mathscr{X}_{1}$, a function $u_{g} \in \mathrm{I}^{\prime}(\mathbb{R})$ exists, which fulfins the inequality

$$
\left|\operatorname{Im} r_{u}\left(\xi \pm i \eta, H_{g}\right)\right| \leqslant u_{g}(\xi)
$$

for all $\xi \in \mathbb{R}$ and $\eta \in\left(0, \eta_{0}\right)$.
Froof : Since

$$
\begin{equation*}
\overline{r_{u}(z)}=r_{u}(\bar{z}) \tag{2.4b}
\end{equation*}
$$

holds for all $z \in \mathbb{C} \backslash \mathbb{R}$, we may again consider the upper sign only. If $\eta \in\left(0, \eta_{0}\right)$, where $\eta_{0}$ has yet to be specified, the relation (?.1) together with the preceding lemma give

$$
\begin{align*}
\left|\operatorname{Im} r_{u}(\xi+i \eta)\right| & =\frac{\left|\eta-g^{2} \operatorname{ImG}(\xi+i \eta)\right|}{\left|E-\xi-i \eta+g^{2} G(\xi+i \eta)\right|^{2}}< \\
& <\frac{\eta_{0}+g^{2} G_{2}}{\left[E-\xi+g^{2} \operatorname{Re} G(\xi+i \eta)\right]^{2}} . \tag{2.10}
\end{align*}
$$

Now one employs the analytically continued function $G_{\Omega}$; we are interested in zeros of the function $f: f(g, z)=-E+z-g^{2} G_{\Omega}(z)$. According to Theorem II. 3.6 , there is a complex neighbourhood $\Omega_{2}=$
$=(E-2 \delta, E+2 \hat{\delta}) \times\left(-2 \eta_{0}, 2 \eta_{0}\right)$ of the point $E$ and a positive $H_{2}$ such that for each $g$, $0<|g|<x_{2}$, there is just one $z_{p}(g)$ fulfilling $f\left(g, z_{p}(g)\right)=0$. Furthermore, the assumption (c) together with Theorem II. 3. 6 imply existence of a positive $\mathscr{H}_{3}$ such that $\operatorname{Im} z_{p}(g)<0$ for $0<\lg \mid<\mathcal{H}_{3}$. We can always choose $\mathscr{X}_{3} \leqslant \mathcal{H}_{2}$, and therefore $f(g, \xi+i \eta) \neq 0$ for $0<|g|<\mathcal{H}_{3}, \xi \in(E-2 \delta, E+2 \delta)$ and $\eta \in\left[0,2 \eta_{0}\right)$,
because the only zero iies then in the lower part of the rectangle $\Omega_{2}$. It further implies that

$$
\mathrm{m}_{\mathrm{g}} \equiv \min \left\{|f(g, \xi+i \eta)|:|E-\xi| \leqslant \delta, 0 \leqslant \eta \leqslant \eta_{0}\right\}>0
$$

holds if $0<|g|<\mathscr{H}_{3}$; combining this with (2.10), we get

$$
\begin{equation*}
\left|\operatorname{Im} r_{u}(\xi+i \eta)\right|<\frac{\eta_{0}+g^{2} c_{2}}{m_{g}^{2}} \tag{2.11a}
\end{equation*}
$$

for $\xi \in(E-\delta, E+\delta)$ and $\eta \in\left(0, \eta_{0}\right)$. Finally, we set $\mu_{1}=\min \left\{\mathscr{H}_{3}\right.$,
$\left.\left(\delta / 2 C_{2}\right)^{1 / 2}\right\}$. This number is positive, and $|\xi-E|-g^{2} C_{2}>\delta-\mathcal{R}_{1} C_{2}>0$ holds for $0<|g|<\mathcal{H}_{1}$ end $\xi$ which lies outside the interval ( $\mathrm{E}-\delta, \mathrm{E}+\delta$ ). Under these conditions, the inequality (2,10) gives

$$
\begin{equation*}
\left|\operatorname{Im} r_{u}(\xi+i \eta)\right|<\frac{\eta_{0}+g^{2} C_{2}}{\left(|\xi-E|-g^{2} C_{2}\right)^{2}} \tag{2.11b}
\end{equation*}
$$

and one can define the function $u_{g}$ by the rhs of (2.11a) and (2.11b) in the respective intervals. The integrability of $u_{g}$ is then obvious.
Lemma 2.4 : Under the assumptions (a)-(d), there exists a finite $r_{u}^{( \pm)}\left(\xi, H_{g}\right) \equiv \lim _{\eta \rightarrow 0+} r_{u}\left(\xi \pm i \eta, H_{g}\right)$ for each $\xi \in \mathbb{R}$ and $0<|g|<\varkappa_{1}$. The functions $\eta_{\mathrm{u}}^{( \pm)}$are $\mathrm{C}^{\infty}$ in $(-\infty, 0) \cup\left(\mathbb{R}^{+} \cap \Omega\right)$ and bounded in $\mathbb{R}$ If, in addition, the assumption (e) holds, then $r_{u}^{( \pm)}$are $C^{\infty}$ in $\mathbb{R} \backslash\{0\}$.
Proof : In view of (2.4b), we consider $r_{u}^{(+)}$only. We have $r_{u}\left(\xi+i \eta, H_{g}\right)=$ $=-f(g, \xi+i \eta)^{-1}$; the preceding proof shows that $|f(g,)$.$| is bounded$ from below by a poritive constant in $\mathbb{R} \times\left(0, \eta_{0}\right)$. Hence $\left|r_{u}^{(+)}(\xi)\right|$ is bounded by a constant independent of $\xi$, if only the limit exists. It is clear that the limit exists and defiries a $C^{\infty}$-function if the same is true for $\lim G(\xi+1 \eta)$. Therefore if $\xi \in \Omega \cap \mathbb{R}^{+}$, the assertion follows from $\eta^{\rightarrow 0+}$ Lemma II.3.4. If $\xi<0$, we have

$$
\left|\frac{v_{3}(\lambda)}{(\xi+i \eta-\lambda)^{n}}\right| \leqslant \frac{v_{3}(\lambda)}{|\xi|^{n}}
$$

and $4 \pi m \oint_{3}^{\infty} v_{3}(\Lambda) d \Lambda=\|v\|^{2}<\infty \quad$ so existence of the limit and its differentiability is implied by the dominated-convergence theorem. Let us turn now to checking existence of $\lim _{\eta \rightarrow 0+} G(\xi+i \eta)$ for the remaining $\xi$. If $\xi=0$, we have

$$
\begin{aligned}
|G(i \eta)| & \leqslant 4 \pi m \int_{0}^{\infty} \frac{v_{3}(\lambda)}{|i \eta-\lambda|} d \lambda \leqslant 4 \pi m \int_{0}^{\infty} \frac{v_{3}(\Lambda)}{\lambda} d \lambda \leqslant \\
& \leqslant 8 \pi m \int_{0}^{m}\left|\hat{v}_{1}(p)\right|^{2} d p+8 \pi m^{-1} \int_{m}^{\infty}\left|\hat{v}_{1}(p)\right|^{2} p^{2} d p \leqslant \\
& \leqslant 2 m^{-1}\left(4 \pi m^{3} C_{1}+\|v\|^{2}\right)<\infty
\end{aligned}
$$

and the limit exists due to the dominated-convergence theorem. If there are some positive $\xi$ left, i.e., the assumption (e) is not valid, it is sufficient to verify that the function $v_{3}$ has a bounded derivative in a neighbourhood of $\xi$ - cf. proofs of Lemmas II.3.3 and II. 3.4 . It follows from the assumption (d), which yields

$$
\left|v_{3}^{\prime}(\lambda)\right|=\left|v_{2}^{\prime}\left(\sqrt{2 m_{\Lambda}}\right) \sqrt{\frac{m}{2 \lambda}}\right| \leqslant c_{1} \sqrt{\frac{m}{2 \lambda}}
$$

Lemma 2.5: Assume (a)-(f), then the continued function $G_{\Omega}$ fulfils

$$
\begin{align*}
& \left|G_{\Omega}^{\prime}(\xi)\right| \leqslant b_{1}+\frac{b_{2}}{\sqrt{\xi}}+\frac{b_{3}}{\xi}, \\
& \left|\operatorname{Im} G^{\prime}(\xi)\right| \leqslant \frac{b^{\prime}}{\sqrt{\xi}} \\
& \text { for } a l l \\
& b_{1}=8 \pi m \text {, where } \\
& b_{2}=2 \pi(\pi+2) m C_{1} \sqrt{2 m}, \\
& b_{3}=12 \pi m^{2} c_{1},  \tag{2.12c}\\
& b_{4}=2 \pi^{2} m c_{1} \sqrt{2 m} .
\end{align*}
$$

$$
(2.12 a)
$$

$$
(2.12 b)
$$

Froof : According to Lemma II. 3.4 and the assumption (e), the function $G_{\Omega}$ is defined on some complex neighbourhood of the halfline $(0, \infty)$. The relation (2.2) gives

$$
G^{\prime}(z)=-4 \pi m \int_{0}^{\infty} \frac{v_{-}(\lambda)}{(z-\lambda)^{2}} d \lambda
$$

for $z \in \mathbb{C} \backslash \mathbb{R}$, and therefore

$$
\begin{equation*}
G_{\Omega}^{\prime}(\xi)=-4 \pi m \lim _{\eta \rightarrow 0+} \int_{-\xi}^{\infty} \frac{\lambda^{2}-\eta^{2}+2 i \eta \lambda}{\left(\lambda^{2}+\eta^{2}\right)^{2}} v_{3}(\xi+\lambda) d \lambda \tag{2.13a}
\end{equation*}
$$

In order to estimate the rhs, we express $v_{3}(\xi+\lambda)$ by Taylor expansion. Since $v_{2}$ is twice differentiable and real-valued by assumption, we have

$$
\begin{aligned}
v_{3}(\xi+\lambda)= & v_{3}(\xi)+v_{2}^{\prime}(\sqrt{2 \mathrm{~m} \xi})(\sqrt{2 m(\xi+\Lambda)}-\sqrt{2 m \xi})+ \\
& +\frac{1}{2} v_{2}^{\prime \prime}(\sqrt{2 m(\xi+\hbar)})(\sqrt{2 m(\xi+\lambda)}-\sqrt{2 m \xi})^{2}
\end{aligned}
$$

for some $\gamma$ between 0 and $\lambda$. After a rearrangement, the last expression becomes

$$
\begin{align*}
v_{3}(\xi+\lambda)= & v_{3}(\xi)+v_{2}^{\prime}(\sqrt{2 m \xi}) \frac{m \lambda}{\sqrt{2 m \xi}}+ \\
& +\left[v_{2}^{\prime \prime}(\sqrt{2 m(\xi+\ell)})-\frac{v_{2}^{\prime}(\sqrt{2 m \xi})}{\sqrt{2 m \xi}}\right] \frac{2 m^{2} \lambda^{2}}{(\sqrt{2 m(\xi+\lambda)}+\sqrt{2 m \xi})^{2}} \tag{2.13b}
\end{align*}
$$

substituting it to (2.13a), we obtain expressions for the real and imaginary parts of $G_{\Omega}(\xi)$. Estimating them, we make use of the following relations which can be proved easily
$\lim _{\eta \rightarrow 0+} \int_{\xi}^{\infty} \frac{\lambda^{2}-\eta^{2}}{\left(\lambda^{2}+\eta^{2}\right)^{2}} d \lambda=\frac{1}{\xi}$,
$\lim _{\eta \rightarrow 0^{+}} \int_{-\xi}^{\xi} \frac{\lambda^{2}-\eta^{2}}{\left(\lambda^{2}+\eta^{2}\right)^{2}} \mathrm{~d} \lambda=-\frac{2}{\xi}$,
$\lim _{\eta \rightarrow 0+} \int_{-\xi}^{j} \frac{\lambda^{2}-\eta^{2}}{\left(\Lambda^{2}+\eta^{2}\right)^{2}} u d \lambda=0$,
$\lim _{\eta \rightarrow 0+} \int_{-\xi}^{\xi} \frac{\lambda^{2} \pm \eta^{2}}{\left(\lambda^{2}+\eta^{2}\right)^{2}} \lambda^{2} d \lambda=2 \xi$,
$\lim _{\eta \rightarrow 0+} \int_{\xi}^{\infty} \frac{\eta \lambda}{\left(\Lambda^{2}+\eta^{2}\right)^{2}} d \lambda=\lim _{\eta \rightarrow 0+} \int_{-\xi}^{\xi} \frac{\eta u}{\left(\lambda^{2}+\eta^{2}\right)^{2}} d \lambda=0$,
$\lim _{\eta \rightarrow 0+} \int_{-\xi}^{\xi} \frac{\eta \lambda^{2}}{\left(\lambda^{2}+\eta^{2}\right)^{2}} d \lambda=\frac{\pi}{2}$,
$\lim _{\eta \rightarrow 0+} \int_{-\xi}^{\xi} \frac{\eta|\lambda|^{3}}{\left(\lambda^{2}+\eta^{2}\right)^{2}} d \lambda=0$.
In this way, we get

$$
\begin{equation*}
\left|\operatorname{Re} G_{\Omega}^{\prime}(\xi)\right| \leqslant \frac{4 \pi \mathrm{~m}^{2} \mathrm{C}_{1}}{\xi}+4 \pi \mathrm{~m} \frac{2\left|v_{3}(\xi)\right|}{\xi}+8 \pi \mathrm{~m}^{2}\left[\frac{\mathrm{C}_{1}}{\mathrm{~m}}+\frac{\left|v_{2}^{\prime}(\sqrt{2 \mathrm{~m} \xi})\right|}{\sqrt{2 \mathrm{~m} \xi}}\right] \tag{2.14a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\operatorname{Im} G_{\Omega}^{\prime}(\xi)\right| \leqslant \frac{4 J^{2} m^{2}}{\sqrt{2 m \xi}}\left|v_{2}^{\prime}(\sqrt{2 m \xi})\right| \tag{2.14b}
\end{equation*}
$$

combining these inequalities with the assumption (d) and $\left|G^{\prime}(\xi)\right| \leqslant$ $\leqslant\left|\operatorname{Re} G_{\Omega}^{\prime}(\xi)\right|+\left|\operatorname{Im} G_{\dot{\Omega}}^{\prime}(\xi)\right|$, we arrive at (2.12).
Remark 2.6: There are alternutive ways haw to estimate the rhs of (2.14a) frou the assumption (d). Instead of (2.12c), we may choose, e.g., $\quad b_{1}=8 \pi m C_{1}, b_{2}=2 \pi(\pi+6) m C_{1} \sqrt{2 m}$ and $b_{3}=4 \pi m^{2} C_{i}$. However, as far as we are not interested in actual values of the constants involved in the estimates, this ambiguity is irrelevant.

## 3. The pole approximation

Now we are ready to formulate and prove the main resalts. In accordance with (II. 2.5 ), the undecayed state is represented by the vector $\Psi_{0}=\binom{1}{0}$. We have
$E_{u} U(t) \Psi_{O} \equiv\binom{u(t)}{0}=u(t) \Psi_{0}$,
where obviously $u$ is a continuous function such that $|u(t)| \leqslant 1$. We are interested in the quantity $u(t)$, which represents the non-decay probability amplitude at on instant $t$. One can check easily the relation

$$
\frac{1}{2 \pi i} \int_{\mathbb{R}}\left(\frac{1}{\lambda-\xi-i \eta}-\frac{1}{\lambda-\xi+i \eta}\right) e^{-i \xi t} d \xi=e^{-i \lambda t-\eta|t|}
$$

and furthermore, $e^{-i \lambda t-\eta|t|} \rightarrow e^{-i \lambda t}$ pointwise with the 1 hs bounded independently of $\eta$. The functional-calculus rules (cf., e.g., Ref. I.27, Theorem VIII.5) then imply

$$
U(t) \equiv e^{-i H_{g} t}=\underset{\eta \rightarrow 0+}{\sin } \frac{1}{2 \pi i} \int_{\mathbb{R}}\left[R\left(\xi+i \eta, H_{g}\right)-R\left(\xi-i \eta, H_{g}\right)\right] e^{-i \hat{\xi} t} d \xi \cdot(3.2 a)
$$

From this relation, one can calculate $E_{u}{ }^{U}(t) \Psi_{0}$ interchanging the projection $E_{u}$ with the integral (cf. Ref.5, Theorem III.2.19) ; it gives

$$
\begin{equation*}
u(t)=\lim _{\eta \rightarrow 0+} \frac{1}{2 \pi i} \int_{\mathbb{R}}\left[r_{u}\left(\xi+i \eta, H_{g}\right)-r_{u}\left(\xi-i \eta, H_{g}\right)\right] e^{-i \xi t} d \xi \quad . \tag{3.2b}
\end{equation*}
$$

Theorem 3.1: hssume (a)-(d), then there is a positive $\mathscr{H}_{1}$ such that for $0<|g|<\varkappa_{1}$, the function $\omega$ defined by

$$
\begin{equation*}
\omega(\lambda):=\frac{1}{\pi} \operatorname{Im} r_{u}^{(+)}\left(\lambda, H_{g}\right)=\frac{g^{2}}{\pi} \frac{\mu(\lambda)}{\left(E-\lambda+4 \pi g^{2} I(\lambda)\right)^{2}+g^{4} \mu(\lambda)^{2}} \tag{3.3a}
\end{equation*}
$$

where

$$
\begin{equation*}
I(\lambda) \equiv I(\lambda, v)=\mathcal{P} \int_{0}^{\infty} \frac{\left|\hat{v}_{1}(p)\right|^{2} p}{\lambda-\frac{p^{2}}{2 m}} p d p \tag{3.3b}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma(\lambda)=4 \pi^{2} m\left|\hat{v}_{1}(\sqrt{2 m \lambda})\right|^{2} \sqrt{2 m \lambda} \theta(\lambda) \tag{3.3c}
\end{equation*}
$$

belongs to $L^{1}(\mathbb{R})$ and fulfils

$$
\begin{equation*}
u(t)=\int_{\mathbb{R}} e^{-i \lambda t} \omega(\lambda) d \lambda \tag{3.4}
\end{equation*}
$$

for all $t \in \mathbb{R}$.
Proof : The existence of $r_{u}^{(+)}(\lambda)$ is established by Lemma 2.4 . Proving this lemma, we have shown that the limit $G(\lambda+i 0)$ exists under the present assumptions for all $\lambda \in \mathbb{R}$, and

$$
r_{u}^{(+)}(\lambda)=\left[E-\lambda+g^{2} G(\lambda+i 0)\right]^{-1}
$$

Furthermore, an inspection of the proof of Lemma II. 3.4 shows that
$G(\lambda+i 0)=4 \pi I(\lambda)-i \gamma(\lambda)$ for $\lambda>0$, so a simple calculation leads to (3.3a). On the other hand, $r_{u}^{(+)}$is real-valued in $(-\infty, 0)$ so $\omega(\Lambda)=0$ there. In order to establish the relation (3.4), it is sufficient to interchange limit with the integral in (3.2b). If we choose $\mathcal{H}_{1}$ as that of Lemma 2.3, the interchange is justified by this lemma and the dominated-convergence theorem.

Now we are going to use the obtained representation of the function $u$ to prove the main result :
Theorem 3.2 : Assume ( $a$ ) ( $f$ ), then there are positive numbers $\mathcal{H}, C$ (depending on $v$, but independent of $g$ ) such that the inequality

$$
\begin{equation*}
\left|u(t)-A e^{-i z_{p} t}\right| \leqslant \frac{C B_{B}^{2}}{t} \tag{3.5}
\end{equation*}
$$

where $z_{p}$ is the pole specified in Theorem II.3.6 and

$$
\begin{equation*}
A=\left[1-g^{2} G_{\Omega}^{\prime}\left(z_{p}\right)\right]^{-1} \tag{3.6}
\end{equation*}
$$

holds for all $t>0$ and $|g|<\mathscr{H}$.
Proof : The lhs of (3.5) is zero for $g=0$, so we assume $g \neq 0$. in the following. The region $\Omega$ is open and contains $E$, hence we can choose $\rho \in\left(0, \frac{E}{2}\right)$ so that $\bar{U}_{2 \varphi}(E) \equiv\{z \in \mathbb{C}:|z-E| \leq 2 \rho\} \subset \Omega$. Since $G_{\Omega}$ is continuous in $\bar{U}_{2 G}(E)$; there is a positive $C_{3}$ such that $\left|G_{\Omega}(z)\right| \leqslant C_{3}$ within $\bar{U}_{2 G}^{2 q}(E)$. In fact, we know more about this bound : Lemma 2.2 together with the relation (II.3.11) show that we can choose

$$
\begin{equation*}
c_{3}=c_{2}+8 \pi^{2} m \sup \left\{v_{3}(z):|z-E| \leqslant 2 \rho\right\} \tag{3.7}
\end{equation*}
$$

It is clear from Theorem II.3. 6 that for amall enough $g$ the pole position fulfils

$$
\begin{equation*}
\left|z_{p}-E\right|<\varphi, \quad\left|u_{p}-E\right|<\frac{1}{2} \varphi \tag{3.8a}
\end{equation*}
$$

(cf. Fig. 1). We can choose therefore $x \in\left(0, x_{1}\right)$ such that (3.8a) holds if $|g|<x$ und at the same time

$$
\begin{equation*}
12 x^{2} c_{3}<\rho \tag{3.8b}
\end{equation*}
$$

In such a case, we have also $12 a^{2} C_{2}<\rho<\frac{1}{2} E$. Since $G_{\Omega}$ is holomorphic, the relation

$$
G_{\Omega}^{\prime}\left(z_{p}\right)=\frac{1}{\alpha^{1}} \int_{C} \frac{G_{Q}(\xi)}{\left(\xi-z_{p}\right)^{2}} d \xi
$$



Fig.1. To the proof of Theorem 3.2.
holds, which yields the estimate ${ }^{\text {() }}$

$$
\begin{equation*}
\left|G_{\Omega}^{\prime}\left(z_{p}\right)\right| \leqslant \frac{4 \pi \rho}{2 \pi} \frac{C_{3}}{\rho^{2}}=\frac{2 C_{3}}{\rho} \tag{3.9}
\end{equation*}
$$

It is easy to check by contour integration that to each $\mathcal{E}>0$, there is some $R_{1}$ such that

$$
\left|A e^{-i z_{p} t}-\frac{1}{\pi} \int_{-K}^{R} e^{-i \lambda t} \operatorname{Im} \frac{A}{z_{p}-\lambda} d \lambda\right|<\frac{1}{3} \varepsilon
$$

holds for all $k>R_{1}$. Similarly Theorem 3.1 together with the domi-nated-convergence theorem show that

$$
\left|u(t)-\int_{-R}^{R} e^{-i \lambda t} \omega(\lambda) d \lambda\right|<\frac{1}{3} \varepsilon
$$

for all F larger than some $\mathrm{R}_{2}$. Combining the last two inequalities, we get

$$
\begin{equation*}
\left|u(t)-A e^{-i z_{p}^{t}}\right|<\frac{2}{3} \varepsilon+\frac{1}{\pi}\left|\int_{-R}^{R} e^{-i \lambda t} \operatorname{Im}\left[r_{u}^{(+)}(\lambda)-\frac{A}{z_{p}-\lambda}\right] d \lambda\right| \tag{3.10}
\end{equation*}
$$

for $R>R_{3} \equiv \max \left\{R_{1}, R_{2}\right\}$. In order to proceed further with the estimate, some manipulations with last integral are needed. We denote it for a. moment as $I_{R}$ and rewrite it as

$$
I_{R}=\sum_{j=0}^{n-1} \frac{1}{\lambda} \int_{\lambda_{j}}^{\lambda_{j+1}} e^{-i \lambda t} \operatorname{Im}\left[r_{u}^{(+)}(\lambda)-\frac{A}{z_{p}-\lambda}\right] d \lambda
$$

where $\left\{\lambda_{j}\right\}_{j=0}^{n}$ is a finite sequence with $\lambda_{0}=-R$ and $\lambda_{n}=R$, and
*) In combination with ( 3.86 ), the inequeiity ( 3.9 ) shows that $A$ is
 show that $A$ is the residuum of rut(.) at $z p$, and as such it is
defined independently of the ascumption (d) and ( 3.8 ) . mention that in a realistic physjcal situation, $A$ is very close mention that in a realist
perform the integration by parts. In view of Lemma 2.4, the only problem can arise at $\downarrow=0$, where the "resolvent part" of the integrated function might not be continuous. However, $\omega(\lambda)=0$ for $\lambda<0$, and at the same time, the relations ( $3.3 a$ ) and ( 3.3 c ) together with the assumption (d), Lemma 2.2 and the relation ( 3.86 ) Eive

$$
\omega(\lambda) \leqslant \frac{4 \pi \mathrm{mg}^{2} C_{1} \sqrt{2 m \lambda}}{\left(E-\lambda-g^{2} C_{2}\right)^{2}}
$$

for $\lambda \in\left(0, \frac{E}{2}\right)$, i.e., $\lim \omega(\lambda)=0$. Hence the integration cen be performed ; it yields $\quad l \rightarrow 0+$

$$
\begin{aligned}
I_{R}= & \frac{1}{\pi}\left[\frac{i}{t} e^{-i \lambda t} \operatorname{Im}\left(r_{u}^{(+)}(\lambda)-\frac{A}{z_{p}-\lambda}\right)\right]_{\lambda=-H}^{R}- \\
& -\frac{i}{\pi t} \sum_{j=0}^{n-1} \int_{l_{i}}^{\lambda_{j+1}} e^{-i \lambda t} \frac{d}{d \lambda} \operatorname{Im}\left(r_{u}^{(+)}(\lambda)-\frac{A}{z_{p}-\lambda}\right) d \lambda .
\end{aligned}
$$

The functions $I($.$) and \gamma($.$) are bounded in view of Lemma 2.2, and$ therefore $\lim _{\lambda \rightarrow \infty} \omega(\lambda)=0$. Since $\lim _{\lambda \rightarrow-\infty} \omega(\lambda)=0$ holds obviously, the first term on the rhs tends to zero $\stackrel{\lambda \rightarrow \infty}{\lambda \rightarrow \infty} \mathrm{R} \rightarrow \infty$; we can therefore choose $R_{4} \geqslant R_{3}$ such that its modulus will not exceed $\frac{1}{3} \varepsilon$ for any $R>R_{4}$. Combining this result with (3.10), we get

$$
\left|u(t)-A e^{-i z_{p} t}\right|<\varepsilon+\frac{1}{\pi t} \sum_{j=0}^{n-1}\left|\int_{\Lambda_{j}}^{\lambda_{j+1}} e^{-i \not x t} \frac{d}{d \lambda} \operatorname{Im}\left(r_{u}^{(+)}(\lambda)-\frac{A}{z_{p}-\lambda}\right) d \lambda\right|
$$

Now we shall estimate the integrals on the rhs choosing

$$
\begin{equation*}
\lambda_{1}=E-\rho \quad \text { and } \quad \lambda_{2}=E+\varrho \quad . \tag{3.11b}
\end{equation*}
$$

We start with

$$
\begin{aligned}
& \left|\int_{-R}^{E-\rho} e^{-i \lambda t} \frac{d}{d \lambda} \operatorname{Im} \frac{A}{z_{p}-\lambda} d \lambda\right| \leqslant \int_{-\infty}^{E-\rho}\left|\operatorname{Im} \frac{A}{\left(z_{p}-\lambda\right)^{2}}\right| d \lambda= \\
& =\int_{\lambda_{p}-E+\rho}^{\infty}\left|\frac{\left(u^{2}-\delta_{p}^{2}\right) \operatorname{Im} A+2 \delta_{p} u \operatorname{Re} A}{\left(u^{2}+\delta_{p}^{2}\right)^{2}}\right| d u,
\end{aligned}
$$

where we have substituted $u=\lambda_{\mathrm{p}}-\lambda$. It can be further estimated by the sum of two integrals ; for the one containing treal we use

$$
\int_{A_{p}-E+\rho}^{\infty} \frac{2 \delta_{p} u}{\left(u^{2}+\delta_{p}^{2}\right)^{2}} d u<2 \delta_{p} \int_{\frac{1}{2} \rho}^{\infty} \frac{u d u}{\left(u^{2}+\delta_{p}^{2}\right)^{2}}=\frac{4 \delta_{p}}{\rho^{2}+4 \delta_{p}^{2}}<\frac{4 \delta_{p}}{\rho^{2}}
$$

together with the above-mentioned fact that $|A|<\frac{6}{5}$. According to Theorem II. 3.6 and the proof of Lemma 2.3, $\delta_{p}($.$) is a Comefunction$
on a neighbourhood of $g=0$ containing $[-\not X, \mathcal{H}]$. Consequently, there is a positive $C_{4}$ euch that

$$
\begin{equation*}
0 \leqslant \delta_{p}(g) \leqslant c_{4} g^{2} \tag{3.12}
\end{equation*}
$$

holds for all $g \in[-\mathcal{H}, \mathcal{X}]$. The first one of the above mentioned two integrals is estimated in the following way:

$$
\int_{\lambda_{p}-E+\rho}^{\infty}\left|\frac{u^{2}-\delta_{p}^{2}}{\left(u^{2}+\delta_{p}^{2}\right)^{2}}\right| d u<\int_{\frac{1}{2} \rho}^{\infty} \frac{d u}{u^{2}+\delta_{p}^{2}}<\frac{2}{\rho}
$$

and

$$
|\operatorname{Im} A|=\frac{g^{2}\left|\operatorname{Im} G_{\Omega}^{\prime}\left(z_{p}\right)\right|}{\left|1-g^{2} G_{\Omega}\left(z_{p}\right)\right|^{2}} \leqslant g^{2} \frac{\frac{2 C_{3}}{\rho}}{\left(1-\mathscr{X}^{2} \frac{2 C_{3}}{\rho}\right)^{2}}<\frac{72 C_{3}}{25 p} g^{2} \quad \text {, }
$$

where we have used (3.0). Togeiuher we have

$$
\begin{equation*}
\left|\int_{-R}^{E-\rho} e^{-i \lambda t} \frac{d}{d \lambda} \operatorname{Im} \frac{A}{z_{p}-\lambda} d \lambda\right|<\left(\frac{144}{25} c_{3}+\frac{24}{5} c_{4}\right) \rho^{-2} g^{2} \tag{3.13a}
\end{equation*}
$$

Next one has to estimate the analogous integral for the function $r^{(+)}$. Notice that the functions $I$ and $\gamma$ are differentiable being murtiples of the real and imaginary parts of the holomorphic function $G_{\Omega}$. In fact, we are interested in their behaviour for $\mathcal{\lambda} \geqslant 0$ only, because $\operatorname{Im} r_{u}^{(+)}(\lambda)=0$ for $\lambda<0$ and the integral can be token therefore over ( $0, \mathrm{E}-\mathrm{e}$ ). For an arbitrary $\lambda>0$, an easy calculation yields

$$
\begin{align*}
& \text { Im } \frac{d}{d \lambda} r_{u}^{(+)}(\lambda)=\left|E-\lambda+g^{2} G_{\Omega}(\lambda)\right|^{-4}\left\{2 g^{2} \gamma(\lambda)\left(1-4 \pi g^{2} I^{\prime}(\lambda)\right) \times\right. \\
& \left.x\left(E-\lambda+4 \pi g^{2} I(\lambda)\right)+g^{2} \gamma^{\prime}(\lambda)\left[\left(E-\lambda+4 \pi g^{2} I(\lambda)\right)^{2}-g^{4} \gamma^{\prime}(\lambda)^{2}\right]\right\} . \tag{3.14}
\end{align*}
$$

This quentity can be estimated using Lemma 2.2 and Lemma 2.5 as

$$
\begin{aligned}
& \left|\operatorname{Im} \frac{d}{d \lambda} r_{u}^{(+)}(\Lambda)\right| \leqslant \\
& \leqslant \frac{g^{2}}{\left(\rho-g^{2} c_{2}\right)^{4}}\left\{8 \pi{ }^{2} m C_{1}\left(E+g^{2} C_{2}\right)\left(T+b_{1}+\frac{b_{2}}{\sqrt{\lambda}}+\frac{b_{3}}{\Lambda}\right) \sqrt{2 m \Lambda}+\frac{b^{4}}{\sqrt{\Lambda}}\left(E+g^{2} C_{2}\right)^{2}\right\}
\end{aligned}
$$

according to ( 3.7 ) and ( $3.8 b$ ), the term before the curly bracket is smaller than $g^{2}\left(\frac{11}{12} p\right)^{-4}$. The integral of the rhs can be easily calculated ; we get
$\int_{0}^{E-P} \operatorname{Im} \frac{d}{d \lambda} r_{u}^{(+)}(\lambda) \left\lvert\, d x<\left(\frac{144 g}{121 \rho^{2}}\right)^{2}\left(E+\frac{f}{12}\right)\left\{2\left[b_{4}\left(E+\frac{\rho}{12}\right)+\right.\right.\right.$
$\left.\left.+8 \pi^{2} m b_{3}{ }^{C} \sqrt{2 m}\right](E-\rho)^{t / 2}+8 \pi^{2} m b_{2} c_{1} \sqrt{2 m}(E-p)+\frac{16}{3} \pi^{2} m\left(1+b_{1}\right) c_{1} \sqrt{2 m}(E-\rho)^{3 / 2}\right\}$.

The relations (3.1 3 ) together show that there is a positive $\delta_{5}$, which is depending on $E, P$ and the function $v$ but independent of $t$ and R , such that

$$
\begin{equation*}
\left|\int_{-R}^{E-\rho} e^{-i \lambda t} \frac{d}{d \lambda} \operatorname{Im}\left(r_{u}^{(+)}(\lambda)-\frac{A}{z_{p}-\lambda}\right) d \lambda\right|<C_{5} g^{2} \tag{3.15}
\end{equation*}
$$

Let us turn now to the integral over $(E-\rho, E+\rho)$. For $|z-E|<\rho$, we
employ the following expansion $/ 4 /$

$$
\begin{equation*}
G_{\Omega}(z)=G_{\Omega}\left(z_{p}\right)+G_{\Omega}^{\prime}\left(z_{p}\right)\left(z-z_{p}\right)+F(z)\left(z-z_{p}\right)^{2}, \tag{3.16a}
\end{equation*}
$$

where

$$
\begin{equation*}
F(z)=\frac{1}{2 \pi i} \int_{C} \frac{G_{\Omega}(\xi)}{(\xi-z)\left(\xi-z_{p}\right)^{?}} d \xi \quad ; \tag{3.16b}
\end{equation*}
$$

recall that the circie $C$ has been chosen to be contained in the region $\Omega$, where $G_{\Omega}$ is holomorphic. We use also the fact that $z_{p}$ is a pole of $r_{u}^{\Omega}$, i.e.,

$$
\begin{equation*}
E-z_{p}+g^{2} G_{\Omega}\left(z_{p}\right)=0 \tag{3.16c}
\end{equation*}
$$

Since $r_{u}^{(+)}=r_{u}^{\Omega}$ on ( $E-\rho, E+\rho$ ), the relations (3.16) give

$$
r_{u}^{(+)}(\lambda)-\frac{A}{z_{p}-\lambda}=
$$

$$
=\frac{1}{E-\lambda+g^{2} G_{\Omega}\left(z_{p}\right)+g^{2} G_{\Omega}\left(z_{p}\right)\left(\Lambda-z_{p}\right)+g^{2} F(\Lambda)\left(\lambda-z_{p}\right)^{2}}-\frac{A}{z_{p}-\lambda}=
$$

so

$$
=\frac{1}{\left(\lambda-z_{p}\right)\left(-1+g^{2} G_{\Omega}^{\prime}\left(z_{p}\right)\right)+g^{2} u^{\prime}(\lambda)\left(\lambda-z_{p}\right)^{2}}-\frac{A}{z_{p}-\lambda}=-g^{2} A^{2} \frac{F(\lambda)}{1-g^{2} A F(\lambda)\left(\lambda-z_{p}\right)}
$$

$$
\frac{d}{d \lambda}\left(r_{4}^{(\lambda)}(\lambda)-\frac{A}{z_{p}-\lambda}\right)=-g^{2} A^{2} \frac{F^{\prime}(\lambda)+g^{2} A F(\lambda)^{2}}{\left[1-g^{2} A F(A)\left(\lambda-z_{p}\right)\right]^{2}}
$$

For $|z-E|<\rho$, "we have

$$
|F(z)| \leqslant \frac{1}{2 \pi} \int_{C} \frac{G_{\Omega}(\xi)}{\left|\xi-2 \| \xi-z_{p}\right|^{2}} d \xi<\frac{1}{2 \pi} \frac{C_{3}}{\rho \rho^{2}} 4 \pi \rho=\frac{2 C_{3}}{\rho^{2}}
$$

and similarly

$$
\left|F^{\prime}(z)\right|<\frac{2 C_{3}}{\rho^{3}}
$$

These inequalities together with $(3.8 b)$ and $|A|<\frac{6}{5}$ give the relations

$$
\begin{aligned}
& \left|\frac{d}{d \lambda} \operatorname{Im}\left(r_{u}^{(+)}(\lambda)-\frac{A}{2_{p}-\lambda}\right)\right| \leqslant \frac{36}{25} g^{2} \frac{2 C_{3}}{\rho^{3}} \frac{1+\frac{6}{5} \mathcal{f}^{2} \frac{2 C_{3}}{\rho}}{\left(1-\frac{6}{5} भ^{2} \frac{2 C_{3}}{\rho^{2}} 2 q\right)^{2}}<\frac{48 C_{3}}{5 p^{3}} g^{2} \\
& \text { som which the sought estimate follows easily, }
\end{aligned}
$$

$$
\begin{equation*}
\left|\int_{E-\rho}^{E+\rho} e^{-i \lambda t} \frac{d}{d \lambda} \operatorname{Im}\left(r_{u}^{(+)}(\lambda)-\frac{A}{z_{p}-\lambda}\right) d \lambda\right|<c_{6} g^{2} \tag{3.17}
\end{equation*}
$$

where

$$
c_{6}=\frac{96 c_{3}}{5 p^{2}}
$$

Finally, let us estimate the third integral. fccording to Lemma 2.5, we have

$$
\left|G_{\Omega}^{\prime}(\lambda)\right| \leqslant b_{1}+\frac{b_{2}}{\sqrt{E+\varphi}}+\frac{b_{3}}{E+\varphi} \equiv c_{7}
$$

for $\lambda \geqslant E+\rho$. The relation (3.14) then gives

$$
\left|\operatorname{Im} \frac{d}{d \lambda} r_{u}^{(+)}(\lambda)\right|<g^{2}\left\{\frac{2 C_{2}\left(1+g^{2} C_{7}\right)}{\left(\lambda-E-g^{2} C_{2}\right)^{3}}+\frac{C_{7}}{\left(\lambda-E-g^{2} C_{2}\right)^{2}}\right\}
$$

Integral of the rhs can be easily calculated. Using ( 3.8 b ) again, we get

$$
\begin{align*}
\int_{E+\rho}^{R}\left|\operatorname{Im} \frac{d}{d \lambda} r_{u}^{(+)}(\lambda)\right| d \lambda & <\dot{g}^{2}\left\{\frac{c_{2}\left(1+g^{2} c_{7}\right)}{\left(\rho-g^{2} C_{2}\right)^{2}}+\frac{c_{7}}{\rho-g^{2} C_{2}}\right\} \leqslant  \tag{3.18a}\\
& \leqslant g^{2}\left\{\frac{144 C_{2}}{\left.121 \rho^{2}\left(1+\partial^{2} c_{7}\right)+\frac{12 C_{7}}{11 \rho}\right\} .}\right.
\end{align*}
$$

On the other hand, for the "pole part" of the third integral we have

$$
\left|\int_{E+p}^{R} e^{-i \lambda t} \frac{d}{d \lambda} \operatorname{Im} \frac{A}{z_{p}-\lambda} d \lambda\right|<\int_{E+\rho-\lambda_{p}}^{\infty}\left|\operatorname{Im} \frac{A}{\left(u+1 \delta_{p}\right)^{2}}\right| d u
$$

Estimating the first integral, we have calculated an analogous expression, with the only difference consisting in the interchanges $E \leftrightarrow \lambda_{p}$ and $\delta_{p} \leftrightarrow-\delta_{p}$. Since $E+\rho-\lambda_{p}>\frac{1}{2} \rho$, the same argument can be used. and we obtain

$$
\begin{equation*}
\left|\int_{E+\rho}^{R} e^{-i \lambda t} \frac{d}{d \lambda} \operatorname{Im} \frac{A}{2_{p}-\lambda} d \lambda\right|<\left(\frac{144 C_{3}}{25 \rho^{2}}+\frac{24 C_{4}}{5 \rho^{2}}\right) g^{2} \tag{3.18b}
\end{equation*}
$$

The relations (3.18) show that there is a positive $C_{8}$ such that

$$
\begin{equation*}
\left|\int_{E+p}^{R} \theta^{-1 \lambda t} \frac{d}{d \lambda} \operatorname{Im}\left(r_{u}^{(+)}(\mu)-\frac{\Lambda}{z_{p}-\lambda}\right) d x\right|<c_{8} g^{2} \tag{3.19}
\end{equation*}
$$

holds for $0<|g|<X$ and all $t$. and $R>E+\rho$.

Now one has to collect ajl the obtained estimates. The relations (3.11), (3.15), (3.17) and (3.1y) together give

$$
\left|u(t)-A e^{-i z_{p} t}\right|<\varepsilon+\frac{g^{2}}{\pi t}\left(C_{5}+C_{6}+C_{8}\right)
$$

for $0<|g|<\mathcal{H}$, any $t>0$ and $R>R_{4}$. However, $\varepsilon$ has been an arbitrary positive number, and therefore the inequality (3.5) holds if we choose $C=\left(C_{5}+C_{6}+\sigma_{8}\right) / \pi$.

## 4. The decay law

The results of the preceding section can be now used to justify epproximative validity of the exponential decay law (within a certain time interval) and to demonstrate accuracy of this approximation. The decay law of the state $\Psi_{0}$ is according to (3.1) given by
$P(t)=|u(t)|^{2}$;
its meaning is the probability to find the heavy particle still undecayed at an instant $t$.

First we notice thet the bound given by Theorem 3.2 is useless for very small and very large times. For smail times, it is obvious from (3.5). On the other hand, the decay of $|u()$.$| for large t$ is slower than exponentiri. This is a consequence of Paley-Wiener theorem, though not immediate (cf. Ref.I. 3 , Sec.i.5). Since the spectrum of $H_{E}$ is semibounded, we have either $u \& L^{1}\left(\mathbb{R}^{+}\right)$or

$$
\int_{0}^{\infty} \frac{\ln |u(t)|^{2}}{1+t^{2}} d t>-\infty
$$

(notice that $\operatorname{dim} \mathscr{H}_{u}=1$ so we can put $u(-t)=\bar{u}(t)$ if necessary). However, $u$ is a continuous function such that $0 \leqslant|u(t)| \leqslant 1$ and $\lim _{t \rightarrow \infty} u(t)=0$; the last assertion follows directly from (3.5), or aiternatively from Theorem 3.1 and Riemann-Lebesgue lemma. Either of the above possibilities then requires $u($.$) to decay slowly enough$ at infinity. Hence Theorem 3.2 gives nothing more than the bound

$$
P(t)<\frac{g^{2} C^{\prime}}{t}
$$

on the decay law for large $t$.
At the same time, the estimate (3.5) can be useful for a wide interval of intermediate times. Let us first comment on the meaning of the term "intermediate". A natural time scale for the problem under
consideration is given by the lifetime

$$
\begin{equation*}
T=\int_{0}^{\infty} P(t) d t \tag{4.2a}
\end{equation*}
$$

this quantity is closely related to the mean life of the heavy particle, but in general the two concepts are not fully identical - see Kef. I.3, Sec.1.2 for more details. If the decay is purely exponential, the lifetime is found easily. Our aim is now to show in which sense the actual lifetime can be approximated by such a simple expression. We remark that $T$ can be affected substantially by the large-time behaviour of $P(t)$ if the latter decreases slowly enough at infinity. This is not disustrous, however. One must realize that the decay law itself and not $T$ is a measurable quantity. The measurements are actually performed within a (possibly large, but finite) time interval and convergence of the integral is thus a matter of our extrapolation (a closely related problem is discussed in Ref.I.3, Secs.1.3 and 1.6). From the practical point of view, $T$ can be therefore replaced by $T_{1}=T\left(\tau_{1}\right)$ defined by

$$
\begin{equation*}
T_{1}=\int_{0}^{\tau_{1}} p(t) d t \tag{4.2b}
\end{equation*}
$$

for a sufficiently large $\tau_{1}$. Now we have
Proposition 4.1 : Assume (a)-(f). Let $0<\tau_{0}<\tau_{1}$ and $|g|<\dot{\mathscr{H}}$, then the following estimatc is valid

$$
\begin{equation*}
\left\{2 \delta_{\mathrm{p}} \mathrm{~T}_{\mathrm{q}}-1 \left\lvert\,<5 \delta_{\mathrm{p}} \tau_{0}+5 \operatorname{Cg}^{2} \delta_{\mathrm{p}} \ln \frac{\tau_{1}}{\tau_{0}}+\frac{7 \mathrm{C}_{3}}{\sigma_{\mathrm{g}}} \mathrm{~g}^{2}+\mathrm{e}^{-2 \delta_{\mathrm{p}} \tau_{1}}\right.\right. \tag{4.3}
\end{equation*}
$$

where $C_{3}, \varphi, \mathscr{H}$ are the constants used in the proof of Theorem 3.2. Proof : We have

$$
\begin{aligned}
\left|T_{1}-\frac{1}{2 \delta_{p}}\right| \leqslant & \left|\int_{0}^{\tau_{1}}\left[P(t)-|A|^{2} e^{-2 \delta_{p} t}\right] d t\right|+\left||A|^{2}-1\right| \int_{0}^{\tau_{0}} e^{-2 \delta_{p} t} d t+ \\
& +\int_{\tau_{1}}^{\infty} e^{-2 \delta_{p} t} d t
\end{aligned}
$$

The first term can be estimated using the relations (3.5) and (4.1) ; we get

$$
\begin{aligned}
\left|P(t)-|A|^{2} e^{-2 \delta_{p} t}\right|= & \left|\left(|u(t)|+\left|A e^{-i z p t}\right|\right)\left(|u(t)|-\left|A e^{-i z_{p} t}\right|\right)\right| \leqslant \\
& \leqslant(1+|A|)\left|u(t)-A e^{-i z_{p} t}\right|
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\left|P(t)-|A|^{2} e^{-2 \delta_{p} t}\right|<\frac{110}{5 t} g^{2}, \tag{4.4a}
\end{equation*}
$$

which can be used in $\left[\tau_{0}, \tau_{1}\right]$. On the other hand, in $\left[0, \tau_{0}\right]$, we can use the inequality

$$
\left|P(t)-|A|^{2} e^{-2 \delta_{p} t}\right| \leqslant 1+|A|^{2}<\frac{61}{25}<\frac{5}{2} .
$$

Using further (3.6), (3.8b) and (3.9), we obtain

$$
\begin{align*}
\left||A|^{2}-1\right| & \leqslant \frac{\left(1+\left|1-g^{2} G_{\Omega}^{\prime}\left(z_{p}\right)\right|\right)\left|1-\left|1-g^{2} G_{\Omega}^{\prime}\left(z_{p}\right)\right|\right|}{\left|1-g^{2} G_{\Omega}^{\prime}\left(z_{p}\right)\right|^{2}}< \\
& <\frac{\left(2+\frac{\left.2 C_{3} भ^{2}\right) g^{2}\left|G_{\Omega}^{\prime}\left(z_{p}\right)\right|}{\left(1-\frac{2 C_{3}}{\rho} भ^{2}\right)^{2}}<\frac{78}{25} g^{2} \frac{2 C_{3}}{\rho}\right.}{\text { i.e., }} \\
\left||A|^{2}-1\right| & <\frac{7 C_{3}}{\rho} g^{2} .
\end{align*}
$$

Futting now these estimates together, we get the inequality

$$
\left|T_{1}-\frac{1}{2 \delta_{p}}\right|<\frac{5}{2} \tau_{v}+\frac{11}{5} \mathrm{Cg}^{2} \ln \frac{\tau_{1}}{\tau_{0}}+\frac{7 \mathrm{C}_{3}}{2 \delta_{\mathrm{p}} \rho} \mathrm{~g}^{2}+\frac{\mathrm{e}^{-2 \delta_{\mathrm{p}} \tau_{1}}}{2 \delta_{\mathrm{p}}}
$$

from which (4.3) follows.
The relation.(4.3) shows that in the case of a sufficiently weak coupling the lifetime may be approximated by $\left(2 \delta_{\mathrm{p}}\right)^{-1}$. It is clear, that $\tau_{1}$ cannot be chosen independently of $g$. We can put, e.g., $\tau_{1}=N / 2 \delta_{p}$ and $\tau_{0}=1 / 2 \delta_{p} N$ for some $N \gg 1$; then

$$
\left|2 \delta_{\mathrm{p}} \mathrm{~T}\left(\frac{\mathrm{~N}}{2 \delta_{p}}\right)-1\right|<\frac{5}{2 N}+10 \mathrm{Cg}^{2} \delta_{\mathrm{p}} \ln \mathrm{~N}+\frac{7 \cdot \mathrm{C}_{3}}{\varphi} \mathrm{~g}^{2}+\mathrm{e}^{-\mathrm{N}}
$$

so the rhs can be made arbitiarily small by choosing a suitable $N$ and $|g|$ small enough. These considerations show that an appropriate interval of intermediate times coule be

$$
\begin{equation*}
\frac{1}{2 \delta_{p} N} \leqslant t \leqslant \frac{N}{2 \delta_{p}} \tag{4.5}
\end{equation*}
$$

Within this restriction, the following estimates hold :
Theorem 4.2 : Suppose (a)-(f) are valid together with (4.5) and

[^0]$|g|<\min \left\{x,\left(12 \mathrm{CC}_{4} \mathrm{Ne}^{\mathrm{N}}\right)^{-1 / 4}\right\}$,
then
\[

$$
\begin{equation*}
\left|P(t)-|A|^{2} e^{-2 \delta_{p} t}\right|<5 \mathrm{CC}_{4} \mathrm{Ng}^{4} \tag{4.6~b}
\end{equation*}
$$

\]

Furthermore, the function $\tilde{\Gamma}$ defined by $P(t)=|A|^{2} e^{-\tilde{\Gamma}(t)}$ obeys in the considered interval the restriction

$$
\begin{equation*}
\left|\frac{\tilde{\Gamma}(t)}{t}-2 \delta_{p}\right|<24(\ln 2) C C_{4}^{2} N^{2} e^{N} g^{6} \tag{4.6c}
\end{equation*}
$$

Proof : The inequality (4.6b) follows immediately from (4.4a) and (3.12). Similarly.

$$
\left|\frac{P(t)-|A|^{2} e^{-2 \delta_{p} t}}{|A|^{2} e^{-2 \delta_{p} t}}\right|<\frac{11}{5} \frac{49}{36} 2 \mathrm{CC}_{4} \mathrm{Ne}^{N} g^{4}<6 \mathrm{CC}_{4} \mathrm{Ne}^{\mathrm{N}} g^{4}
$$

where we have used the inequality $|A|>\frac{6}{7}$ following from (3.8b) and (3.9). Under the assumption (4.6a), we have $6 \mathrm{CC}_{4} \mathrm{Ne}^{\mathrm{N}} \mathrm{g}^{4}<\frac{1}{2}$ so that

$$
\left|\tilde{\Gamma}(t)-2 \delta_{p} t\right|=\left|\ln \left(1+\frac{F(t)^{2}-|A|^{2} e^{-2 \delta_{p} t}}{|A|^{2} e^{-2 \delta_{p} t}}\right)\right|<2 \ln 2 \cdot 6 C C_{4} N e^{N} g^{4}
$$

and (4.6c) follows.
Remark 4.3 The procedure by which the additional powers of $g$ are gained on the rhs of (4.6b) and (4.6c) can be formulated in a more mathematical way. Since the lifetime characterizing the natural time scale increases, in general, as $|g| \rightarrow 0$, it is useful to introduce the rescaled time $t^{\prime}=g^{2} t$ when dealing with the weak-coupling limit. One can write $z_{\dot{p}}(g)=E+g^{2} a_{2}(g)$, where $a_{2}=\alpha_{2}-i \beta_{2}$ is a C ${ }^{\infty}$-function in some neighbourhood of $g=0$ such that $a_{2}(g)=4 \pi I(E, v)-$
$-4 \pi^{2} \operatorname{im} v_{2}(\sqrt{2 m E})+O\left(g^{2}\right)$. The estimate (3.5) now acquires the form

$$
\begin{equation*}
\left|e^{i g^{-2} E t^{\prime}} u\left(g^{-2} t^{\prime}\right)-A e^{-i a_{2}(g) t^{\prime}}\right|<\frac{C g^{4}}{t^{\prime \prime}} \tag{4.7a}
\end{equation*}
$$

from which we get, e.g.,

$$
\begin{equation*}
\left|P\left(g^{-2} t^{\prime}\right)-|A|^{2} e^{-2 \beta_{2}(g) t^{\prime}}\right|<\frac{11 c}{5 t^{\prime}} g^{4} \tag{4.7b}
\end{equation*}
$$

## 5. Fermi golden rule

Now we would like to establish strict validity of the popular rule which claims formally that the decay rate, i.e., the decay probability per unit time equals

$$
\begin{equation*}
\Gamma_{\mathrm{F}}(\mathrm{~g})=2 \pi \mathrm{~g}^{2}\left|\left\langle E \mid V \psi_{0}\right\rangle\right|^{2} \tag{5.1a}
\end{equation*}
$$

(recall that we use $K=1$ ). Since the "projection" $|E X E|$ may be understood as $\left.\frac{d}{d \lambda} E_{\lambda}^{(0)} F_{c}\left(H_{0}\right)\right|_{\lambda=E}$, where $\left\{E_{\lambda}^{(0)}\right\}$ is the decomposition of unity of the operator $H_{0}$ and $\mathrm{P}_{\mathbf{c}}\left(\mathrm{H}_{0}\right)$ is the projection to the continuous subspace of $H_{0}$, we can replace the formal expression in (5.1a) by

$$
\begin{equation*}
\Gamma_{F}(g)=\left.2 \pi g^{2} \frac{d}{d \lambda}\left(v \Psi_{0}, E_{\lambda}^{(0)} F_{c}\left(H_{0}\right) v \psi_{0}\right)\right|_{\lambda=E} \tag{5.1b}
\end{equation*}
$$

Proposition 5.1 : Under the assumptiors (a)-(c), the decay rate (5.1) equals

$$
\begin{equation*}
\Gamma_{\mathrm{F}}(\mathrm{~g})=\delta \pi_{i}^{2} \mathrm{mg}{ }^{2}\left|\hat{\mathrm{v}}_{1}(\sqrt{2 \mathrm{mE}})\right|^{2} \sqrt{2 \mathrm{mE}} \tag{5.2}
\end{equation*}
$$

Proof : $\dot{W}$ denote $\mathcal{Y}_{\mathrm{v}}=\binom{\hat{0}}{\hat{v}}$, then a straightforward computation gives

$$
\begin{align*}
& r_{F}(g)=\left.2 \pi g^{2} \frac{d}{d \lambda}\left(\psi_{v}, E_{\lambda}^{(0)} F_{c}\left(H i_{0}\right) \psi_{v}\right)\right|_{\lambda=E}= \\
&=2 \pi g^{2} \frac{d}{d \lambda}\left\{\vec{p}:|\vec{p}|^{2} \leq 2 m \lambda\right\} \\
&\left.\left.\int \hat{v}(\vec{p})\right|^{2} d \vec{p}\right|_{\lambda=E}= \\
&=\left.8 \pi^{2} m g^{2} \frac{d}{d \lambda} \int_{0}^{1}\left|\hat{v}_{1}(\sqrt{2 m \xi})\right|^{2} \sqrt{2 m \xi} d \xi\right|_{d=E},
\end{align*}
$$

i.e., the desired result.

Comparing to Theorem II.3.6, we see that $\Gamma_{\mathrm{F}}(\mathrm{g})$ given by (5.2) is nothing else than the lowest-order term in Taylor expansion of

$$
\begin{equation*}
\Gamma(g) \equiv 2 \delta_{p}(g) \tag{5.3a}
\end{equation*}
$$

In order to justify the Fermi rule, one has to know therefore that (5.3a) represents the true decay rate (defined in a reasonable way, with an accuracy $\sim O\left(|g|^{2+\varepsilon}\right)$ ). If we adopt the additional assumptions (d)-(f) beside those of Pronosition 5.1, this is guaranteed by Theorem 4.2, even up to the sixth order in the coupling constant. One can write therefore

$$
\begin{equation*}
\Gamma(g)=\Gamma_{F}(g)\left(1+O\left(g^{2}\right)\right) \tag{5.3b}
\end{equation*}
$$

## 6. Conojugions

We have not drawn out explicit connection between the constants in our final estimatoo buch $8 s$ (3.5) and those related directly to the furiction $v$. If roquired, these relationscen be extrected easily from the proofs, but they wuild not be probably of much use. In order to get some quantitative informetion about the error tied with the pole aporoximation, it is more illustrative to treat a suitable example ; we are going to return to this problem leter.

There are other ways how to estimate the pole-approximation error. One of them has been elaborated by Demuth $/ 3 /$ for the Friedrichs model, and it can be adapted easily to the present case ${ }^{()}$. One obtains in this way a bound which is essentially time indepertent instead of (3.5) ; its rhs contains powers of the coupline constant $g$ and of $\delta(g)$ which characterizes a family of intervels centred at $E$ which leads to spectral concentration ; we shall see in the next pert of this paper that one can choose $\delta(g)=0\left(g^{\beta}\right)$ with $\beta \in[0,2)$. Demuth's estimate can be optimized when we choose $\beta=\frac{2}{5}$; then it gives an error of the order of $g^{4 / 5}$, and the same type of estimate for the decay laws instead of (4.6b). The decay rete is now constant within the interval (4.5) up to $g^{14 / 5}$ comparing to our estimate $\sim g^{6}$. Nevertheless, this is still sufficient to justify the Fermi rule. Generally speaking, Demuth's method provides is with weaker error estimates, but his restrictions imposed on the function $v$ are also weaker than ours corresponding to the gesumptions (a)-(c) only.

## References

1 J.Dittrich, P.Exner, preprint JIMF E2-86-209, Dubna 1986 ; Czech.J. Phys. B, 1987, v.37, to appear.
J.Dittrich, P.Exner, preprint JINR E2-86-709, Dubna 1986 ; Czech.J. Phys.B, 1987, v.37, to appeor.
M.Demuth, Math. Nachr., 1976, v.73, pr.65-72.
M.A.Lavrentiev, B.V.Shabat : Nethods of the Theory of Functions of a Complex Variable (in Russian), Nauke, Moscow 1965.
4) There is a slight incorrectness in Demuth's paper, namely $\lambda_{\text {f }}$ in his eq. (26) should be replaced by $z_{\text {p }}$. liowever, this fact affects only the numerical values of the constants appearing in the obtai-

5 N.Dunford, J.T.Schwartz : Linear Operators, I.General Theory Interseience Publishers, New York 1958.
We do not reproduce the fill list of references from the preceding parts of the paper. Here we have referred to
I. 3 P.Exner : Open Quantum Systems and Feynman Integrals, D.Reidel Publ.Co, Dordrecht i984.
I. 27 M.Reed, B.Simon : Methods of Modern Mathematical Physics, I. Functional Analysis, Academic Press, New York 1972.

## Диттрих Я., Экснер П

Нороллтиоистская модель двухчастичного распада

Робота посвящена, в основном, обоснованип приближения, в котором приведен ная резольвента заменяется одним полюсным членом. Налагая дополнительные условия регулярности на функцию $v$, описывающую взаимодействие, мы способны оце нить разность соответствующих приведенных пропагаторов. Этот результат дальше используется для вывіда оценки отклонений от, экспоненциального закона рас пада, следуюцего из полюсного приближения. За исключением очень малыіх и очѐн больших времен, полученная оценка , пропорциональна четвертой степени констан свази. Мы также показываем золотое правило Ферми для рассматриваемой

Работа выполнена в Лаборатории теоретической физики Оияи.

$$
.=i
$$

In this paper, we are concerned mostly with the problem of justifying the approximation in which the reduced resolvent is replaced by the pole term alone. Imposing additional regularity assumptions on the function $v$, which specifies the interaction, we are able to estimate the difference of the cor responding reduced propagators. This result is used further to derive an es timate of the deviations from the exponential decay law which results.from the pole approximation. With exception of very smalt and very large times, e prove lso Feril golden rule for the model under consideration and conware the present method to the one previously used by Demuth.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.


[^0]:    *) Itr does not mean, of course, that the whole interval (4.5) is experimentally attainable ; remember that the real unstable systems (particles, nuclei) can have lifetime as short that it is impossible to measure the time plot of the decay law, or longer than duration

