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1. Introduction

We sketch here two mathematicel models intended to describe
the point=contact spectroscopical experiments, It adds a new item
to the list of recently discovered applications of the self-adjoint
extensions theory.n

The theory of self~-adjoint extensions is a standard part
of functional anelysis for a more than half century. In the last
years, 1t has attracted & new attention connected with interesting
physical applications. Let us recall some of them:

(a) point interactions: one attempts to give a reasonable meening
to the formal Schroedinger operator

N g '
H=~-A + V(x) + P ;lj (x-xj) (1)
=10

on LZ(Rd). A mathematically clean and effective way to performing
this task sterts with the operator Hj = -/A+ V(x) defined on
the damain from which the interaction points are removed,

D(Ho) = Cgv @\ fx,,...,xN}) o
This operator is generally symmetric but not self=adjoint, One
looks for 1ts self-adjoint extensions which can be identified with
the formal operator (1), with the coupling constants ‘lj related
to parameters of this extension.

There 1s a vast amount literature on this subject; let
us mention, e.ge. [3-53 o The method works for d<£ 3, since in
higher dimensions removing of a poilnt from the domain leaves the
Schroedinger operator e.8.8. At present, the one-~dimensional and
three=dimensional cases are relatively well studied. The one=
dimensional cage has a more rich structure: if we restrict to one
point interaction, then the deficiency indices are (1,1) for
d = 2,3, and (2,2) for 4@ = 1, Hence there are otheg self~adjoint
extensions of HO for d = 1, esge, the so-called d- interaction,
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(b} another applicatioh, closely related to the previous one,con-
cerns &_one-dimensional model of three-particle collisions [6]

in which impenetrable particles on a line interact via two-particle
contact interactions plus three~particle contact interactions.
Addition of the last term allows one to solve the model and deter-
mine resonance behaviour of the system,

(c) singular potentials: consider, e.ge, a one-dimensionel Schroe-
dinger operator H = =4 /dx2 + V(x) whose potential has a (repulsie-
ve) point singulerity at x = 03 we ask whether tummelling is possidle
between RY and R™. It appears [7] that the answer is determined
by the potential alone only if H is e.s8.8.,3 the tunnelling is then
forbidden if

c ¢
JV(x) dx = o0 or j’x2V(x)2dx a oo (2)
Zc 2

for some ¢ > 0, Otherwise the conditions (2) ensure absence of the
tunnelling for the Friedrichs extension of H 3 at the same time,

a particle whose motion is govermed by another extension of H oan,
in general, penetrate the barrier. This can be illustrated on the
example of V(x) = g x2 with 0< g < 3/4 , where the tranemission
coeficient may be calculated explicitly [7] for each 2x2 unitary
matrix U characterizing s particulaxr extension HU p 1t 18 zero

122 U is diagonal. This result is interesating particularly from
the' viewpoint of conservation of topological charges in some field=-
theoretical models (8]

(d) again connected to the previous one, there is the problem of
regularizing singuler potentials. This is an often used trick to
replace a Schroedinger operator with singulaxr potential by a
sequence of operators corresponding to suitably regularized poten-
tials, and to study behaviour of its eigenvalues and other characte-
ristice in the limit when the regularization is removed. If the
original Schroedinger operator is not e.B.a.; however, different
regularigations may lead to different self-adjoint extensions

[9,10] » Recall the example dimcussed in [9] : the operator

Hg = - d%/ax® + V(x)

with the natural domsin
p(HQ) = n(-a®/ax®)n D(V)

for V(x) = |x] =3/4 ’)([_1 1 (x) 1is symmetric with the deficiency
indices (1,1)., Its self-&&joint extensions H, can be constructed
in a standerd way; for the regularization procedure sketched on
Fig. 1 one obtains

I* Sy . T ‘QG(x,O,i)lzd_x (3)

depending on the parameter h, where & = em":"/4 and G is the
Green’s function of Hy = -d /dx2 + V(x) (the form sum).

-

Fig.1. Scheme of a regularization procedure.

On the other hand, in the case of a stronger singularity, the
sketched procedure leads to a single extension specified by Dirich-
let boundary condition Elﬂ .

(e)_metellic model of a molecule, in which one starts with its
graph (see FPig.2 for the anthracene molecule) and assigns to

each of its links a suitable Schroedinger operator. The Hamiltonian
1s then obtained by "glueing" these operators together; it is
nothing else than the choice of a self-adjoint extension.’hen
combined with the free Hamiltonian in R3, this model can yield




yield quasistationary gtates of
the molecule as well [12,13] &

Let us stop the survey, though
it is in no case complete. In what
follows, we are going to demonstrate
Pig.2. Graph of the
anthracene molecule.

another possible application of the
theory of self-adjoint extensionse.

2+ The guantum point-contact spectroscopy

For & metallic contact,bthe common wisdom suggests a
linear relation between the applied voltage and the current accor-
ding to the Ohm’s law. This is true, if the size of the contact
is large enocugh. On the other hand, once its diameter becomes

comparable to the mean free path of electrons in the metal, intere-
sting non-linear effects appear which gave rise to the gew dbranch
of research mentioned in the titlej; & review of this subject cén
bes found in D4J + The small size of the contact causes scattering
of the electrons giving a backward flow, which adds a negative
and voltage-dependent contribution to the current.

Led4 us describe briefly typical experimental results
illustrated on Figs. 3a,b and 4 adapted from [14] .

Au+003°% Mg contact
R=212, T=15K

«
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Fig. 3a. Measured differential resistance dv/dI for a point
contact of the magnetically dilute alloy Au-0.03% Mn &s & function.
of the applied voltage - logarithmic scale.

Au+003% Mgcontact
R= 210, T=15K
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Fig,3b. Measured differen - |
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The non-lineer effects represent usually a few promile to a few
percent of the total current. They are visible iq the differential
resistence dU/dI. The second derivative exhibits typically a more
complicated shape with peaks corresponding to the metal involved;
this 1s the most substantiel informetion provided us by the
metﬁod. Dependence of the cheracteristics on impuritiee in the
metal, temperéture,»external megnetic field, etc., has been also
studied

There are two types of point contactse In the first of
them, dubbed spear-and-anvil ( or presure-~type) contact, a sharply
tipped wire is adjusted by a screw against e flat metallic surface.
The second type consists of two thin metallic films separated
by an insulating (oxide) layer which is perforated at one point,
The c¢ontact diameter is typically a few £ . The device is placed
into & suitable cooling medium, e.g., & liquid helium.

The theory of these contacts is certainly a complicated
matter, and we are not going to discuss it here. Our aim is to
show that simple methematical models cem be constructed which
reprcduce some features of such systems. To this purpose, we need
an expression of the current. We restrict our attention to the
case when the two parts of the contact are made of the same metal,
or more generally, 1f they have the same Fermi energy. Then the
current is given by [15]

I= --—';’iﬂgm(E) [£x(B) = t,(E=eV)] aE, 4)

where . 18 the (positively taken) electron charge, U is the
applicd voltage, T(E) is the transmission coefficient, and

g® = (1 0 em (Fr)) 7 )

is the electron-gas density at the temperature T and Fermi energy
Ep ( the later is typicelly e few eV). The relation (4) decomes
particularly simple in the zero temperature limit when

Ep+eld
I= ‘ﬁgj‘T(E)‘dE ) (6)

Ep

evaluation of the differential resistance is stralghtforward in
this case.

5——-—“’%—.’«—“—- =7

T———

s

3, A madel for the spear-—and-anvil contact
The simplest model of this contact, in which its linear

dimension 1s supposed to be zero, i1s représented by a free electron
moving on the manifold consisting of a halfline commected to a

,plane (Fig.5). For simplicity we neglect spin of the electron

g0 the state Hilbert space is

= 12@R™) + I2(R°) . Such
. a gystem has been discussed in
R- {16] 3 we summarize here the
reaults,

Since the electron motion is

1 supposed to be free except at the

P connection point, we start construce
R tion of Hamiltonian with the .opera~
tor Hy = Hy ®H0,2 s Where

HO 1= - da/d.tz
?
D(HO 1) = ¢y (R fo}) (7e)

=-A
D(H,, 25 = o (R\{B}) ¢ (7B)

; 5,2 Comfiguration mamifold
'Y nodc% of spear-and-
anvil centact.

The operator Ho 13 not ee+s.8¢ §
introducing polar coordinates in the plame, one finds easily that
its deficiency indices are (2,2). Hence it possesses a four=
parameter family of self-adjoint extensions, which can be construce
ted in a standard way; they are parametrized by 2x2 unitary
matrices U, -

It is useful to characterize the extensions by means of
appropriate boundary conditions. In each peir of deficiency func-
tions, one 1s singular at the comnection point, but this difficul=-
ty can be bypassed by introducing the regularized boundary values

[4]

Ly(P) = DB 1,(¥) - 115‘?[?’(:-) = Ly(¥) 1n(r)]. (8)
For aimplicity we restrict our attention to the case when
D(U) & 1 4+ uyy =uy, = detl 40 (9).

(the remaining extensions are described in BG] )« Then we have

Proposition 13 Under the comdition (9), every extension Hy acts .
on ¢ = jfﬁ,lf,‘,}é D(H;) as



{" g—ie i ’A‘f2} »

and its domain D(H;) is a subspace in D(Hé)
by the following bLoundary conditions

\
#,000) =4 F(0)) + BT,
(7 ,) = ¢ #0)) + D Ly(¥,).

I{U{‘f“‘fzf

specified uniquely

(10)

The coefficients here are related to the matrix elements of U by

"

h=[EG =uy,) + €(uyy = aet v)] D)™
B = 2"1/? uy, D(U)-T, C = uy, p(u)~" (1)
=12+ 22[1+ 20+ aetu] - n(w)7,

i

C

where € = e%:"/4 and y’ = 0.5772164+o 1is the Euler s constant.

and (11), that for

a diagonal U, the boundary conditions separate; then H is of

the form Hoiﬁ) C)Hé % s the orthogonal sum of approprlate exten-
gsions of the operators (7 From the viewpoint of our model, this

case is not interesting, since transm1551on between the' two parts

It is clear from the relations (10)

of the configuration manifold is impossible,

Assume therefore that U is non-diagonal, It is not
difficult to calculate the reflection coefficient for an electron
moving along the halfline; it equals to Iau(k)l2 , where

(A=ik) [1+

(x) = - -
*u (a+ik) [1+ %{-i-(y' -D+1ns

(Y’-D+1n§)]+—-—BC (12)
5] +——BC’

One can also consider scattering of an electron moving in the
plane on the singular point. Only its s-wave part is non-trivialy
the corresponding on-shell S-matrix is non=-unitary and fulfils

(5,000 2 = 1 = Jay®) .

In other words, the transmission probability is the same in both
directions, This is just the quantity we need for evaluation of

the 2urrent-voltage characteristicse. In order to express it more
explicitly, we parametrize the matrix U as. follows

8

U=e

and introduce

Then one

P = sin(el + & + g; )005/5

&
€

"

¢§( el +8 )cosﬁ s ©
~e (o =4 )sin/5 ’

(8 -at dsin
o1t +§)COS/5 (13)

n(f + g),

sin(of +8 )005/5 - s-in?
cos(a + O )co;/s + cos €,

=1 - IaU(k)|2 to be

T(k2)=

21/2;3' 2

can-calculate the transmission coefficient T(kz) =

k sin%ﬂg

SEP- 2% In k = FEW( 5F8 + EfPink +3 k2™ P ainp)’

o

(12)

4+ A model for the thin-film contact

We consider again the simplestApossiblé model in which
a free electron moves on the manifold consisting of two planes
connected at one point (Fig.6),

RZ
4
R? ’

Fig.6. Configuration manifold
for the model of thin-films
contact.

- D(U)

F1=trU + det U

with neglection of the electron
spin [17]) + The state Hilbert
space is therefore of the form

% = 12(R?) @ 1°(R?) , end the
construction sterts from the ope-
rator HO = H0,1 (-I-)HO’2 , where
now both Hy , are given by (7b).
The deficiency indices are again
(242) so that there is & four-
parameter femily of self-adjoint
extensions HU of H0 parametrized
by 2x2 unitary matrices U, As in
the preceding case, we restrict
our attention to a class which
contains most of them (weferring
to [17] for a complete description):
we assume

$ 0. . (15)

9




Then one has

Proposition 23 Under the condition (15), every extension HU acts
om €= 1% ,Phenmy) as m¥ = [- AL ,- AP, , end
its domain D(HU) is a subspace in D(H, ) determined by the
boundary conditions

Li(Py) = A T 4/’1) +B Ly(%p)

L1(y’2) a C LO( ()01) +D LO(S‘J?) » (16)

where the coefficients are related to the matrix elemants of U by

Aa ¥ =1n 2+ gg [ 1+ uyy -y, - det ﬁ] DkU? =1 ’

o
[}

% o’ ¢ = o u, )" “an
Uy ’ = 77 Yy ’ 7
Daf ~1m2+ [ 1=uy+u,-dtu]oom .

As in the preceding seotion, the case’of a diagonal U
is not interesting, because the motion is then separated between
the two planes, Hence we assume again that U i1s non-diagonal,
and consider scattering of an electron moving in the first plane
on the singular point. For the s-wave,we get So(k) =1+ 2aU(k) »
where

w 21 k
umau(k) =g [+ By cpswm$)] ww (188)
, »
21 21 It
"’U(k)."%’ c{[1 +2(f-a+ 1 g-)}[a + 2y =D+ 1m ,‘,)]4 #,nc}

(184)
while the remaining part of the S-matrix is trivial. The scatte-
ring is egain non-unitary, and a straightforward caloulation
shows that T(k°) = 1 - lso(k)|2 equals

" 0¥ = 4lby(0| 2y (19)

1t is easy to check that this is the probability current through
the connection point

'5. Disocussion
Using now the transmission coefficients (14) and (19),
one can calculate the current-~voltage characteristics. In parti-
cular, the differential resistance in the zero~temperature limit 1is

%' g: By + o) . (20)

10

The resulting function depends om the peremeters specifying the
self-adjoint extension used. Their choice requires an additional
physical information; it schould be guided by some concept of what
heppens to an eleetron passing througt the contact. However, we are
not going to discuss this question here.

We limit ourselves with illustrating how much the described -

method can reproduce the measured gquantities, Consider the model

of Section 3. The rhs of (20) has four adjustable parameters,with the

help of which it is possible to fit the "background" non-linear
shape of dU/dI Jjust to give en example, we plot on Fig.7 the
corresponding function for six extensions . The unpleasant feature
of the model is that the resistance is growing at large U : it
behaves like ~ U‘/Q(ln U)2 » Similar results can be obtained for
the model of Section 4 - cf, Figs. 3a,b, 4,7,8 end 9.

du
dr

arbitrary units

0 1 : 2 3 4
el
Fig. 7. Differential resistance for various self-adjoint
extensions in the model of spear-and-anvil contact.
The Fermi energy is taken to be EF = 0.2.

A .
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temperature resistance curves with a few peaks. According to our

%%l a Eg~01, « =p=F =1, 8=0 opinion, this is the line, along which models of this type should
b Eg=02, C{pis,g asin a be developed further,
: 47 -
3| ¢ E02, o=10° p-T .50, g-%-10° o eepebop-

d Ep=05, «p8Fasinc c b o=p=g=1, 6=0

' du =8 = .
i ¢ o=0=0, p=1/2, %=1
! d  «=107 p-T2,6-0, ¢-T/2-10"
= = - _qi

| ‘8l e a—U,ﬂ-L5,64|§—’V2
1

arbitrary units

L L 1 ] 1 1 1 A

5. -4 3 2 - 0 1 2 '
In eV ;

Fig, 8. Differential resistance for various self-adjoint

extensions and various Fermi energies in the model . !
of thin-films contact. The logarithmic scale.

On the other hand, the models under consideration cannot
give a more complicated structure of the current-voltage characte- r
ristics, such as peeks in the second derivative,etc. This is, how-
ever, not surprising, because it reflects structure of the metal '
which has been completely neglected in our considerations, where the
electrons are assumed to be free.

Fig., 9. Differential resistance for various self-adjoint
extensions in the model of thin-films contact.
The Fermi energy equals zero.

In conclusion, let us mention a preliminary results con-

cerning another model of the pressure-type contact. In this model References
the plane is replaced by a half-space to which a halfline is attached.
. One must specify now how the electrons behave on the surface of such ' 1. Albeverio S., Hgegh-Krohn R.: J. Oper. Theory, 1981, v.6,
a "plane’; this is achieved by imposing the Neumenn conditions on pp. 313-339.
the boundary plene, with exclusion of the connection point, 2 Albeverio S, Gesztesy F., Hgegh-Krohn R., Kirsch W,: J, Oper.
*  Adding now a potential to the halfspace part of the "pre - Theory, 1984 , v. 12, pp. 101-126.
Hamiltonian" and taking a particular extension, we obtain zero- 3. Albeverio S., Hgegh-Krohn R.: Physica, 1984, v. 1244, pp,11-28.
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MaTeMaTHUYeCKHe MOMENH LA KBaHTOBOM
KOHTAKTHOH CHEeKTPOCKOMHH

llpuBomsTcA OBe NpOCTHE MaTeMaTHYECKHE MOJeH, Nefbl KO-
TOpHIX SIBIIAETCH OMMCAHHE 3SKCMNepHMEeHTOB B KBAHTOBOM KOHTAKTHOH
CrneKTpockonuM, ITo pobasBnseT eme OAHO Ha3BaHHMe K CIUCKY He~
JABHO OTKDHTHIX NMPHUMEHEHH! TEeOPHH CaMOCONPSIKeHHBIX paCHHUpPEeHH.

Pabora BrmomHeHa B JlaGopaTopuu TteopeTHueckod dusuxmu OUAHU.

Coobuienne O6bequMHEHHOrO MHCTHTYTa A[OEpHBIX HccnemosaHMit. lyGHa 1986

Exner P., Seba P. E2-86-746
Mathematical Models for Quantum Point

Contact Spectroscopy

We sketch two mathematical models intended to describe
the point contact spectroscopical experiments. It adds a new
item to the list of recently discovered applications of the
self-adjoint extension theory.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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