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In the present short note we discuss the Abelian antisymmet
ric tensor gauge fields in somewhat different physical setting 
than that meant in the pr.evious work on the subject. 

In one of the pioneering studies / 1 / (one could also quote 
the work of Kemmer 12.31 ) V.I.Ogievetsky and I.V.Polubarinov 
investigated the case of an antisymmetrical tensor-potential 
(and the corresponding four-vector field strength) and its mass
less zero-helicity excitation which they called notoph, to ack
nowledge its mirror prbpertíes and imitate relation to the pho
tono . 

After the work of Ogievetsky and Polubarinov / 1 ! and Haya
shi / 4 1 the study of the Abelian antisymmetric tensor gauge 
fields was renewed /5.6.71 in relation to the string theories 
and was connected through the mediation of the latter with the 
problem of quark confinement 181 • Non-Abelian generaliza
tions /9.111 and geome t r í c interpretation /10. 11/ were also dis
cussed. Much work was devoted to the study of the covariant 
quantization, ghost spectrum, BRST invariance and renormaliza
tion of the antisymmetric tensor gauge models 112-16/. Their dis
cussion is usually related in the recent literature to the su
persymmetry and supergravity /12- 14.17- 21/. They have also played 
certain role in the dynamical theory of ccrrents 122/ (in the 
days of current algebra) and in treating dual transformations/ 23/ 

and defects /21/ in solid-state physics. They h~ve had their ap
pear anc e in -mathema t i c s quite some time ago /25/. Most of t he 
recent applications of the antisymmetric-tensor gauge fields 
are in the context ~f the (super) string· theories. 

Without entering into details we only resume the simplest 
case of a second-rank antisymmetric-tensor gauge field f32 = 

1 . 
= 2 B l1v dx l1l\ dx 

V and its third-rank totally antisymmetric field 

strength 
1· II v À 1 11. V À 

Y3=-G \dX'l\dxl\dx =df3 =-(a B \+a BÀ.. +a\ B )dxl\dxl\dx (1)3! I1V 1\ 2 3! 11 v 1\ V ''f-'- 1\ I1V • 

Qne of the properties of such a field with Lagrangian (cf. the 
papers quoted ~bove) 

= - - 11 =...!. vp a _ ~ Àp.va p 2a r 
~ 6 G G v p a - f a B (para ( )GI1G 4 aÀ BI1V 

is that this free Lagrangian describes in four-dimensional ~in
kowski space-tirne a free massless scalar field. Indeed, it fol
lows from (2), or 'the corre spond í ng action 1ift 'l\ ,;t,r"1 
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S = (d{32' d(32)' (3) 

that the equation of motion is 

ôdf32 = O, i. e., ÔY3 =: O (4) 

1 Àp.v a 
or, in terms of the dual field strength * Y3 =: -G (~.. dx 
= 0a- dx a	 3! ''fA-va , 

d * Y3 = O (5) 

which	 reads 

-ap' 0a - ifa Gp. = O	 (6) 

in component formo On the other hand , eq. (1) and d 2 = O imply 

dY3 =	 O (7) 

-p. , 
or ap' G = O, in components. It f o l Lows from eq . (4) that t her e 
éxists a scalar fie1d (a 4-form )(4) such that 

Y3 = Ô)( oi (8) 

which obeys,as is seen upon inserting in (7),the massless free 
fie1d equation 

'~ O. = d õ )( 4 = (d + õ d) )( 4 = ~ X 4õ (9) 

H~r~ the antisymmetric tensor gauge fie1ds appear once again, 
in the simple classical context related to the unconventional 
variational formu1ation proposed in /26/ , and what we find cu
rious enough to note, in this way it ~lso turns out to be natu
rally linked to tbe theory of strings. 

The conventional formulation via minimal coup1ing óf the 
e1ectromagnetic field to the current requires one to introduce 
a potential a for the t"ieÍd strength ~, 

W = da (10) 
and to write then down an action essential1y (up to gauge-fixing 
terms and kinetic terms for the fields of the current) of the 
form 
Sconv = (da, da) + (<:", a). (1 1) 

We dénote by (a, ~) the scalar product 

n
 
(a, 13) = f *13
~	 a p (l2)P.P = o M 
2 

in the relevant space of forms over space-time M and regard a 
~, and <:" as potentia1-, fie1d-strength-, and current-forms 
which can be represented as sums of homogeneous components, a 

n 

2 ap' etc. 
p = o 

In order to formulate the action principIe not by means of 
gauge potentia1s but directly in terms of the gauge invariant 
fie1d strength, we p~oposed to use the stream potential form K, 

<:" = ÔK	 (13) 

,I') 
(for more detai1s about this quantity we refer, e.g., to 127.28/) 
whose existence follows from the charge conservation equation 

0<:" O	 ( 14) 

and the converse of the Poincare 1emma (we reca11 that the co
derivative o is r e Lat ed , oW p = (-1)P*-1d * Ú)p' by means of the 
Hodge * operator and its inverse *-1 to the exterior derivati 
ve d). Then the (genera1ized) Maxwel1 equations 

d$ = O 0<1' =: <:"	 (15) 

follow not on1y from (11) but a1so from the action 

S = (<1>, d<t» - (K., d<1»	 (16) 

in which <1> and K are the variational variables and K is related 
only after the variation to the externaI current <:" by means of 
e q , ( 13) • 

In order to construct a model in which the gauge fielG is 
a true dynamical f í.e l d one shou1d add a kinetic term for K 

to the action (16), 

S -e (CP,	 d <t» - (K , d <t» + S(K) ::: r[f (<t» I- f in t ( CP, K) t- f (K )] d 4 X • ( I 7 ) 

The action (16) is invariant under the gauge transformations 

i r1 
K ----.	 K = K + oy (18) 

I II	 
and a simple choice by which this invariance is not broken and 
which treats the gauge fie1d K as fundamental is 

S (K) ::: (8 K, 8 K ) •	 (19) 

We note that the free second-rank antisymmetric-tensor field 
thcory with the action S(K2) =: (oK2' OK2)is essentia11y the same 
as that discussed in eqs.(I)-(9) and describes, in particular, 
once again a mass1ess sca1ar free fie1d, as a consequence of 
the equation of the motion 
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dÔK 2 == O, i.e., d(1== o (20) 
The equations of motion for 

from (17), are 
the Maxwell field <1>2' following 

in terms of the current d<l>2 :::: 2 dô/( 3 ô<f:l 2 = 01<2 - 2dôK 1 (31 ) 

( 1 == ÔK2 (21) and those for the other field strength 

and the. fact that eq . (21) and Ô 2 == O imply the charge conserva
tión 

I(22)0(1== O. 

It follows from eq.(20) that there exists a scalar field (a 0
form '\0 ) such that 

( 1 == d,\ o (23) 

which obeys, as is seen upon inserting eq.(23) into eq.(22), 
the massless free field. equation 

O ôd'\o = (ôd + dô)'\o == ó'\o. (24) 

In the general case the equations of motion following from 
the action (17), (19) are 

d<l> = 2dôK ô<l> = ÔK - 2dôK. (25) 

The Lagrangian densities appearing in (17) are 

f (K) = (~l Kf.L ) 2+ (a K r« )(a v K ) - (a K _a K )a f.L1{ v _ (a K )(a f.LK) 
r f.L va f.L v v f.L f.L 

~. (26) 

«) (ih) f.L' a f.L 1 - f.L a a f3 - - a 
J.... :::: F af.L F + F,L aa F - 2 (f.L aa{3 F a F + F af.L F (27)'V 

and 
«) (ih) f.L a 11 1 - f.L . a a f3 - - 11 
J...., 'V,K =-·Fa K -F a K +--( ~K a F -Ka F (28)

In t f.L f.L a 2 f.La a fJ f.L 

under the supposition (assumed in the work) that the fields 
tend sufficiently fast to zero at infinity so that the inte~ra~ 

tion by parts is legitimate. The fields appearing in eqs.(17), 
(26)-(28) are (in 3+1-dimensional Minkowski space-time) 

1 f.L v
<1>0:::: F(x) <l>2:~ --2 Ff Ll l (x)dx 1\ dx ~. 

IL (29)
<I> 1 = Ff.L (x ) dx * <t> 3 FIL (x ) dxf.L * <1>4 = F(x) 

and ~nalogously for the stream potential K, e.g., 

1 li I' 
K = -I{ (x)dx r: dx (30)2 2 f.LI/
 
which has no Ko-component, however.
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d <1>0 =: 2dôK 1 d<1> 3 :::r 2 d 0/< 4 

(32)d<l>1= 2dôK2 ô<1>3 = OK 3 - 2dôK 2 

ô<I>1:::: ÔKl ôílJ4 = ÔI<4 - 2 d ÔK 3 . 

In order to ensure that there are no magnetic monopoles in 
eq. (31) we shall assume t ha t 3 vanishes in H 4 and shall furK 

ther confine ourselves for simplicity to the case where the on
ly field source not identically zero is K 2 while K 1 = O and K 4= 

=O in addi tion to K'3 = O. Then the Maxwell equations take their 
usual form 

d<l>2 == O ô<I> 2:::: ÔK 2:::: (1 (33) 

while in the rest of the field equations we can also assume 
<I> 1 = O and <I> 4 = O and reduce the system (32) to 

d<l>1 2dôK 2 d<l> 3 = O 

(34)
ô<I>1 O ô<I> 3 :::: - 2 dÔK 2 • 

The fields <I> 1 and <I> 3 are indispencable to the new variational 
formulation of the Maxwell electrodynamics. Hence the right-hand 
side of eq.(20) is no longer zero identically and it cannot be 
claimed, as in the previous case, that the second-rank antisym
metric-tensor gauge field K2 descripes a scalar particle. 

The Lagrangians (26)-(28) simplify cons1derably 
«) ( f.La v ali 
J.... K) = (af.L K ) (a K ) • f, (<1>, K) = - F' a K ( 35 ) 
and va Int. fL a ' 

f (<I» = F a F af.L _ ~ F- f.L aa F a (3
f.L a· 2 (f.Laaf3 • (36) 

It follows from the singular Lagrangian (36) or (27) that the 
momenta Pv and Pv canonically conjugate to,. the fields F 11 and 
FV are zero, i. e., satisfy the s irnpl e coris t r a i nt s Pv = O, Pv = 
= O. The momenta conj uga t e to the Maxwell field F pv arePp v 
Ppv = Popv , where 

a f (<I» - 11 

P,\pv -;(a,\F p;-) 7J,\p ~/ - 7J >UI Fp + ('\PIIII F (37) 
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so	 that 
-11 (38)

Ppv :; TJ °p F 11 - TJ ov Fp + E OPv 11 F = - p v p , 

or, for the e1ectric Fo n and the magnetic F mn parts separate1y 
the constraints are 

- e (39) 
p on F n , p mo = f mne F 

The action (16) (or (17)) is not equiva1ent to the usuai ac
tion (11) in the sense that the 1atter cannot be obtained from 
the former by simp1y transforming the independent variab1es ~ 
and K' into a and ,. We a1so remark that the canonica1 energy
momentum tensor which fo110ws from the singular Lagrangian (36), 

T 11 ( a 1 - r pv a (lI/'
 
Il V =F ,aIlFÀ!J-TJIlÀa F Ul/ ) + 2 F (-frÀpvaIl F +TJIlÀfrapVa F )


(40) 

or, provided the Maxwe11 equations (33) are taken into account, 

T _ 11 ( . 1 - r pll (41)
À(.1. - F a11 FNI - TI liÀ J 1/) - 2 F f rÀp jI ali F , 

and the corresponding energy
~I	 S 

}{ :=: T = - F a F +
00 sv 

and momentum-densities 
II 

Pe = T o P F ao F P/I 

1 -r s pv (42)-F f a F (-s 1,2,3)
2 r spv 

1, -F r 
11 a pv	 (43)

2 f npv ° F , 

100la180 different1y anel the ru1es of the first order forma
1ism shou1d be app1ied. We note, however, that one can intro
duce the fie1d potentia1 and current 1-forms a 1 and '1 in the 
forma1ism we are considering here, after the Maxwe11's equations 
(33) are derived Erom the action (17), and then one can a1so 
postu1ate the conventiona1 action (11) which further imp1ies 
the usual canonica1 energy-momentum tensor. 
( A1though the physical content of the c1assica1 Faraday-Max
we11 theory remains the same in this first-order variationa1 
framework, it provides us with an examp1e of antisyrnmetric gau
ge fie1d. It describes the e1ectric.charge source of the e1ec
tromagnetic fie1d and is not directly related to the e1ectro
magnetic fie1d itself in the manner the notoph fie1d is. The 
kinetic term (19) for the stream potentia1 antisymmetric gauge 
field dis~ussed here shou1d not be regarded as something more 
than	 an examp1e.

The fact that the gauge fie1d in our a1ternative variational 
formu1ation is the matter ficld of the source current (whi1e 
the e1ectromagnetic field <t> is manifestly gauge invariant) may 

.6 

have some interesting consequences, 
tent of the theory remains intact by 
sense mentioned above. 

To illustrate the 1atter point we 
ry to consider point current sources 

00	 • 

jll (y) = e J (Il (r)o\y - (r))dr, 

'0 supported on the wor1d 1ine 

11~ v" = (11 (r), 

in spite the physical con
the reformu1ation, in the 

reca11 that it is customa'1= jll(x)dx ll of the kind 

(44) 

(45) 

of	 .the point charge e. In order to find the corresponding 
stream potentia1 K20ne shou1d solve eq.(21) and, as we have 
noted in 126.291 , the solution uses a homotopy 

r : [O. 1J x M4 --+ M 4 f(a, x) - y.	 (46) 

and this yie1ds for the examp1e (44) 

1 - a~-
*1\.2 "2K a ~ (x) dx i\ dx
 

1 00 4 ·11 af 11 
()f 

À ss" (47)
• K a~(x) = e.r do- J dr o (f(a , x) - (r)) ( (r) (/lIIÀp aa -a--;ã --a;JT.° -00 

In this way we see that to each point charge 10cated at the 
po i.nt; (11 (r) there eorresponds a string located at the support 
of (47), i.e., on the set of those x for which 

f(a-. x) = (r).	 (48) 

or	 in a forro solved ~ith respect to x 

fL 
fá

x = hll«((r), a) = ~Il(r, ao).	 (49)

H, 
In other words, each point (11 of M4 gets na turally an internaIj1ft string-1ike structure in such a good physica1 theory as is the

"i~, Faraday-Maxwe11 theory of e1ectromagnetism. 
The appearance of string-1ike sources re1ated to the anti 

symmetric tensor gauge fie1d K 2 a I Lows one to look for other 
ways to introduce kinetic terms in the action (17) fo~ the 
stream potentia1 sources, for instance, of the kind of the Nam
bu-Goto string action 130.311 • 

It is p1easure to thank A.T.Fi1ippov and E.Kapuscik for va
1uab1e discussions he1ping the improvemeRt of the work. 
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KapJIYKoBCKH B.H. E2-86-744 
fipHMeHeHHe KaJIHOPOBOqHOft TloPHH 
C aOeJIeBCKHM aHTHCHMMeTpHqHhlM TeH30pOM 
B KJIaCC~eCKoH ~H3HKe 

fiocne KopOTKoro ooc~eHH~ KaJIHOPOBOqHbm TeopHH C aOeJIeB
CKHM aHTHCHMMeTpHqHb~ TeH30pOM 06cv~aeTC~nO~BJIeHHe TaKHX 
noneA B KJIaCCHqeCKOH 3JIeKTpO~HHaMHKe,KaK nOTeH~anwnoTOKa. 
OHH CB~3aH~ C BapHa~HoHHoH ~OPMYJIHPOBKOft aoeneBCKHX KaJIHOPOBOq
HhlX TeopHH, HeCKOJIbKO OTJIHqa~meHC~ OT 06b~HOH.00c~aeTcH B03
MO~OCTb cymecTBoBaHHH cTpYHono~ooHbm o6~eKTOB YEe Ha ypoBHe 
KJIaCCHQeCKOH ~H3HKH 6e3 Cne~HaJIbHOrO npe~nOJIO~eHHH 00 HX cyme
CTBOBaHHH. 

PaooTa B~nOJIHeHa B ilaoopaTopHH TeOpeTHqeCKOH ~H3HKH OHHH. 

Coo6weHHe Ofil,e,llHHeHHOro HHCllItyn lmePHhiX HcCnellOBaHHH. ny6H8 1986 

Karloukovski V.I. E2-86-744 
An Application of the Abelian 
Antisymmetric-Tensor Gauge Theories 
to Classical Physics 

After a brief review of the development of the Abelian anti 
symmetric-tensor g~uge theories we comment on the appearance 
of such a kind of fields in classical electrodynamics as stream 
potentials. They are related to a, somewhat different from the 
conventional, variational formulation Of the Abelian gauge 
theories. Ye speculate about the possibility that string-like 
objects have their natural existence even on a classical level 
in physics without the need to introduce them ad hoc. 

The investigation has been performed at the Laboratory of 
Theoretical Physics. JINR. 
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