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L o el o ot

Let j, (x) be a given external electric current and (1 =
=j (x)dx* the corresponding one-form in n-dimensional flat
space-time M with t plus signs and 8 minus signs in the diago-
nal metric nH¥ =<dz#, d&x¥>. The Maxwell equations

0y =0, &b, =pply (0

are to be solved in order to find the electromagnetic field
F#V(x), or the corresponding two-form &, = é—F#u(x)dx“/\de

determined by the current. Here Ho =4r.1077 H/m is the magne-

tic constant of the vacuum (which we shall not write in the fol-
lowing) and the co-differentiation & is the adjoint of the exte-—
rior derivative d with respect to the scalar product

(Ap,wp)M—:l&/\pA * 0, (2)

in the space of smooth p-forms on M (approaching zero sufficient-
ly fast at the boundary if M is noncompact and with a boundary,

or even with compact support), dw _ = (-DPx"1 d% o _.We denote
by *! the inverse of the (unitary with respect to the same in-
ner product (2)) Hodge * operator, *-1 4 = (=1)P(M=P)+s x .

The use of the differential form language in electrodynamics is
too well-known and widely discussed to be reviewed in more de-
tail here and we only quote 17/ as an instance.

There are two immediate concequences of the Maxwell equati-
ons (1). The one is the local charge-conservation law, or con-
tinuity equation

831 =0 (3)

implied by 82 = 0. The other is the existence of a potential
one-form ajy =Aﬁﬂx)dx“ determined up to a gauge transformation
(@y » a; +dxg), such that :

@, = day (4)

which is somewhat more indirect. It follows from the fact that
®, is closed, the first equation in (1), and relies on the con-
verse of the Poincare'lemma (the triviality of the de Rham coho-
mology for the degree considered).

The existence of vector potential gauge field Au(x) plays
a crucial role for the variation and quantization of electrody-
namics. In fact, another approach is not even known.

On the other hand, given the (global) current form {y on M,
it seems more natural to apply the converse of the Poincaré lem-—
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ma to the charge-conservation equation (3) rather than to the
Bianchi identity that the unknown two-form @&, should obey. In

this way we cnd up with the two-form  «, = énKI“,@)dx#Ade of

2
the stream potential/g/

él = 8’(2 (5)

also determined modulo a gauge transformation

)

Ko = Koy = Kog +5y3 (6)
with an arbitrary three-form y, and the possibility for an al-
ternative variational formulation of the gauge theories.

We shall briefly discuss here this alternative variational
formulation of the classical Abelian gauge theories, on a gene-
ral level, considering the (generalized) Maxwell equations

a =0 (7)

and

8 =¢ (8)

for arbitrary field-strength

o - 3 @ (9)
p=0 P

and current

n
= 2 : (10)
(= 204
smooth differential forms on the flat n=s8 +1t i- dimensional
space-time manifold M, where ¥  and { are their homogeneous
components of degree p, Ve define the scalar product in the space
of smooth forms onM to be

n
9, - X (1)
@9, - X @),

with the scalar products (Qrwap)MOf the p—forms defined in

eq.(2).
The (generalized) Maxwell equations (7) and (8) can be ob-
tained from the action

S = (@, db)y = (x, dd)y, . (12)
in which @ is the ricld-strength form and the external current

enters viad its stream potential k, :

¢ = Bk. (1)

The variation of the action S with respect to « yields the sour-
ce—frec cquation

2

Twk = KIE*(-D

¢ - 0 (14)
while the variation with respect to ® results in

ad + 80 - ok =0 (15)
which is simplified to ’
8% = 8« : (16)

in view of eq.(l14)+and coincides with the second equation,
eq.(8), according to (13).
The stream potential can.be constructed, given the current

. ¢, as a solution of eq.(13), i.e., of

dwk = (%8S, | Coan,

This can always be done, at least locally, in any contractable
neighbourhood U of every point X of the space-time M. IfK 1is

a homotopy operator and f 1s some homotopy between U and x, one
can write (of., e.g./zﬁ/) the solution of equation (17) explicit-
ly in U

degC—l . 4)] , (18)
where f* is the pull-back of f. If the manifold is R"™ (endowed
with the metric p#¥ we are considering), for instance, and the
current is defined in it everywhere, the solution (18) is defined
in the whole space-time. More generally, if My is the submanifold
of M, where the current can be defined, the triviality of the
de Rham cohomology HP(My) is the condition that the homogeneous
component { *xx)_ of the stream potential can be defined by sol-
ving equation Fl?). For -example, if one deals with currents £
with compact support in R® and looks for compactly supported
stream-potential forms as solution of (17) one should beware of
the fact that H®*(R™) = R.

Thé stream potential is determined up to a gauge transforma-
tion or
degy

xk = ke d(-1) £, ' (19
or .
K= Oy ' . (20)

under which the action (12) is invariant. Of course, one can al-
so solve Eq.(14) (provided there are no obstructions for the
manifold where ® is defined) to introduce a gauge potential a

$ = da (21)

with its own gauge transformation

a’ =a +dy . (22)
3



and the usual geometric interpretation. This can be done, howe-
ver, (in the variational formulation discussed here) only after
the field equations are written down. And the action functional
(12) not only has the property that it equals zero for any field
configuration which is a solution of the field equations (14&)
and (16) but it is also annulated by any solution of the form
(21) of only the first of the equations, eq.(}4). Hence we can-
not get the conventional action by simply imserting ® =de in
the actiom (12). We slao mention that our action (12) is obvious-
ly invariant under the usual gauge transformations (22) by con-
struction.

The stream potential « was conceived above, and in the deri-
vation of equation (14) in particular, as a dynamical variable
which was fixed after that as an external field by its postula-
ted relation (13) to the given external current. It can be trea-
ted as well as an unknown dynamical variable, on an equal foo-
ting with the field strength ®, with its own dynamics coupled
to that of ®, and equation (13) can be used at the end to trans-
late it in terms of the current. There are different possibili-
ties to write more actions in conformity with such a point of
view. The simplest one is perhaps to add to the previous action
(12) a kinetic term of the form (&, BK)M which respects the in-
variance under the gauge transformations (20) or (19). The varia-
tion of the action

S = (®, dﬂﬂM - (x, d¢)M + (5k, BK)M (23)
so obtained, in the fields ® and « yields the equations
ad = 2d& , 50 = 5k - 2d8«. (24)

There are, in general, sources now in both (generalized) Max-
well equations. One .could argue if it is possible to include to
conventional electrodynamics in this new framework, and if there
always should be magnetic monopoles, in particular, implied by
the action (23). To explain this latter point let us consider,
e.g., the case of 3+I-dimensional Minkowski space-time M,. The
Maxwell equations for the homogeneous part of & of degree 2,

'@2 = %.Fuv (x) dx* A dx", now read (with ko included again):

A0, = 2-ddr, , B, = p bk, - —2-ddk, , (25)
2 3 2 0 2 1
Ko Ko

and it follows from them that there will not be magnetic monopo-
les, provided dbkg =0 or «g=0 in particular, and vice ver-

sa, one possibility to incorporate them in the present theory is
by means of a 3-form component k3 of the stream potential in the
action, such that ddr,g £ 0.

4

A point to be noted is that classical strings naturally ap-

'pear in this new formulation due to the fact that the support

of elementary stream potential source xy in degree 2 (correspon-
ding to a point current source {y) actually is a string. This
follows from eq.(18) and is clarified in more detail inm a fol-
lowing publication under preparation.

It is pleasure to thank A.T.Filippov and E.Kapuscik for wva-
luable discussions helping the improvement of the work.
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KapayroBcky B.H. E2-86-735
0 BapiallMoBHO $OpPMYIIHMPOBKE KIACCHUELCKIX
abeneBbiX KAIMOPOBOUHO~TIONEBRX TEODPHT

TToxasano, max MOXKHO CHOPMyNHPOBAaTL FPUHIMI AelcTBUA JIA KiacH
CHUeCKHX adesieBnlX KaJlUOpPOBOUHEIX TeOpHIl He dYepe3 KaJUOpPOBOUHEIE
NOTEeHIHAJBl U TOKHM, & C NOMOWDbI KaaubpCBOYHO-HHBAapHAHTHBIX Hanpsa—
HKEHHOCTEH MoJId W 3aBUCAIMX OT KanuMOpOBKH MOTEHIHMAJ0B noToka. 06-
CyxdeHHe MNpOBOAHUTCH ANA $opMalibHO ofmero 4yuciaa n = s+t npocrtpal-
CTBEHHO~-BpeMEHHbIX H3MepeHHH M HCIOoNL3YeT A KPATKOCTH A3BIK aHd
depeHUHANTBHLEIX GODM,

PaboTa BononHeHa B JlaGopaTtopuu Teoperudeckol dusmuku OWAU.

Coobuienne O6beaHHCHHOrO HHCTHTYTa ALepHBIX HccnepoBaHHi. ly6Ha 1986

Karloukovski V.I. E2-86-735
On the Variational Formulation of Classical’
Abelian Gauge Field Theories

It is shown how one can formulate an action principle for
classical Abelian gauge theories not by means of gauge poten-
tials and currents but in terms of the gauge invariant field
strengths and gauge variant stream potentials. The discussion
is on a general formal level in n = s+t space-time dimensions
and uses, for brevity, the language of differential forms.
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Communication of the Joint Institute for Nuclear Research. Dubna 1986




