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Let j~(~ be a given externaI electric current and '1 == 
== j ~(x)dx~ the corresponding one-form in n-dimensional flat 
space-time M with t plus signs and s minus signs in the .diago
nal metric .,,~II == <dx~, dx " >. The Maxwell equations 

d<1J 2 == O, 8ctJ 2 == iLo'1 ( 1) 

are to be solved in order to find the electromagnetic field 
F iLII (x) , or the corresponding two-form ctJ 2 == ~ F iLII (x) dx iL A dx 11 

determined by the current. Here ~ O == 417 .10-7 H/rn is the magne
tic cDnstant of the vacuum (which we shall not write in the fol
lowing)and the co-differentiation a is the adjoint of the exte
rior deFivative d with respect to the scalar product 

\À p , cup ) M == r À p A * cu p	 (2) 
M 

in the space of smooth p-forms on M (approaching zero sufficient
ly fast at the boundary if M is noncompact and with a boundary, 
or even with compact suppor t ) , &i = (_1)P*-1 d « üJ p ' 've denote 
by *-1 the inverse of the (unitar! with respect to the same in
ner product (2» Hodge * ope r a t or , *-1 cu == (_l)p(n-p)+s*cu • 

The use of the differential form languag~ in electrodynami~s is 
toa well-known and widely discussed to be reviewed in more de
tail here and we only quote /1-71 as an instance. 

There are two iômediate concequences of the Maxwell equati 
ons (1). The one is the local charge-conservation law, or con
tinuity equation 

S, 1 == O	 (3) 

implied by ô 2 == O. The other is the existence of a potential 
one-form ai = Allex)dxll determined up to a gauge transformation 
(a 1 .... a 1 + dXo)' such that 

<D 2 == da1	 (4) 

which is somewhat more indirect. It follows from the fact that 
~2 is closed, the first equation in (1), and relies on the con
verse of the Poincare'lemma {the triviality of the de Rham coho
mology for the degree considered). 

The existence of vector potential gauge field AiL(X) plays 
a crucial role for the variation and quantization	 of electrody
namics. In fa~t, another approach is not even known. 

On the other hand, given the ~global) current form '1 on M7 

it seems more natural to apply the converse of the Poincaré lem

J\\~t:j1h ii~lUiWtl ~HCnm'" I 
~l\"':~~~JX fiCC:H~n~)fl13.Ur-~'~ 

© 061>enMHeHHhIH HHCTHTYT H,IJ,epHbIX accnenoaaaaá Ilyõaa, 

r;.Wt:.. rU.,I"~-,-c:'-' A 



ma to the charge-conscrvation equation (3) rather than to the 
Bianchi identity that the unknown two-form ~2 should obey. In 

1 li v 
__othis way we cnd up with the two-form K = K (x) dx A dx o f 

2 2 IiV 

the stream potential /8/ 

(5)'1 =: ÔK2 

also determined modulo a gauge transformation 

(6) 
K 2 ~ K; = K 2 + ôy 3 

with an a r b i t r a r y' three-form Y3 and the possibility for an al 
ternative variational formulation of the gauge theories. 

\Ve shall briefly discuss here this alternative variational 
formulation of the classical Abelian gauge theories, on a gene
ral leveI, considering the (generalized) Maxwell equa~ions 

(7)d<1l = O 

and 

(8)ô<1l =, 
for arbitrary field-strepgth 

fi 
(9)'<1l = L<1l 

p =0 p 

and eurrent 

(10),= L 
n 

, 
p := O p 

srnoo t h differential forms on the flat n:= s + t ] - dimensional 
spaee-time manifold M, where <1l and 'p are their homogeneousp
eomponents of de gr cc p. \Je define the sealar product in the s pa c e 
of smooth forms o n M to be 

fi 
(1 I ) (<1l,lJI )M ~ (~, ,I}J ) M
 

P == O p p
 

with the s ca l a r p r-odurt s (~ 'I' )Mof the p-forms d o f i ned ih
p' p
 

eq. (2).
 
The (general i zud ) ~1;IX'vl' 11 e qua t i on s (7) a nd (8) can bc ob-


t a i ne d f r orn t hc a ct. i 1111
 

( I 2)s o-c. (~, d~)M ~ (K, d<t)M 

in wh i.c h ~ i s t lu ti o l d-rs t r cn g t h form a nd t he e xt'e r na l c u r r en t 
enters via i t s s t r r-am po r c n t i a I K, 

, =: 'ÔK. (11) 

The var i o t i on o f th e ac t i o n S with r e s pec t to K y i e l d s the sour
ce-frec equatiol1 

2, 

d<1l = O (14) 

while the variation with respect to <1l results in 

d<1l + 8<1l - ÔK = O (15) 

which is simplified to 

8<ll = ÔK ( 16) 

in view of eq.(14)"and coincides with the second equation, 
eq.(8), according .to (13). 

The stream potential can,be constructed, given the current 
. ,. as a solution of e q , (13), i.e., of 

d * K == (-1) de g , -1 *~:- (l 7 ) 

This can always be done, at least locally, in any contractable 
neighbourhood U of eve r y point x of t he s pa c e-r t i.me M. If K is 
a homotopy o pe r a t o r a nd f is some homo t opy hetween U and x, one 
ean write (of., e.g./2 ,9/ ) the solution of eq~ation (17) explicit 
ly in U 

. deg'-l (18)
'" K =: K [ f * ({ -1) * ')]
 
where f* i s the pull-back of f , Lf the rna n i f oLd is Rn (endowed
 
with the metric ~IiV we are considering), for instaQce, and th~
 

current is defined in it everywhere, the solution (18) is de f i ned
 
in the whole space-time. More generally, if Mo is the sub~anifold
 

ofM, where the current c an be defined, the triviality of the
 
de Rham cohomology HP(Mo) is the conditioD that the homogeneous
 
component ! *K)p of the stream potential can be d~fined by sol

ving equation (17). For -exarnp I e , i f o ric de a l s with -currents I;
 
with compact support in Rn and looks for compactly supported
 
stream-potent í a l forms as solution o f (17) one should beware of
 

H n ( R fit he fact that ) =: R.
 
Th é s t r e am po\ential is d e t e rm i rred up to a gaup,e transforma

tion or
 

* K =: * K -t- d (_ 1) deg y * Y. ( I9) 

or 

K' =: K + 8y (20) 

under which the action (12) is invariant. Of course, one can al 
so solve Eq.(14) (provided there are no obstructions for the· 
manifold where ~ is defined) to introduce a gauge potential a 

<lJ =: da (21 ) 

with its own gauge transformati~n 

a' = a + dX (22) 
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and the usual geometric Ínterpretation. This can be done, howe
ver, (in the variational formulation discussed here) on1y after 
the fie1d equations are written down. And the action functional 
(12) not only has the property that it equals zero fop any field 
configuration which is a solution of the field equations.- (1Lr) 
and (16) but it is also annulated by any soIution of the form 
(21) of on1y the first of the equations, eq.(}4). Hence we can
not get the conventional action by simply inserting '<I> = da in 'f,;
the action (12). We sla~ mention that our action (12) is ohvious
1y invariant under the usual gauge transformations (22) by con l
struction. 

The stream potential K was conceived above, and in the deri 
vation of equation (t4) in particular, as a dynamical variable 
which was fixed after that as an externaI field by its postula
ted relation (13) to the given externaI current. It can be trea
ted as y;ell as an unknown dynamical variable, on an equal foo
ting with the field strength~, with its own dynamics coupled 
to that of '<I>, and cqua t on, (13) can be used at the end to transí 

late it in terms of the current. There are different possibili 
ties to write more actions in conformity with such a point of 
view. The simplest one is perhaps to add to the previous action 
(12) a	 k i.ne t c term of the form (&, 01<) M wh i ch respects the in-í 

variance under the gauge transformations (20) or (19). The varia
tion of the action . 

s == tél>, d<I» M - (K, d<I> ) M + (ô K, aK) M	 E23) 

so	 obtained, in the fields '<I> and K yields the equations 

d<D	 ~ 2d ÔK , 0<1> = 8K - 2d ÔK • (24) 

There are, in general, sources now in both (generalized) Max
well equations. Oue ~ould argue if it is possible to include to 
conventional electrodynamics in this new framework, and if there 
a Lway s shouLd be magnetic monopoles, in particular, implied by 
the action (23). To explain this latter point let us consider, 
e.g., the case of 3+1-dimensional Minkowski space-time M4 • The 
Maxwell equations for the homogeneous part of <I> of degree 2, 

'<1J 2 == ~ F /lV (x) dx 11. 1\ dx v, now read (wi th /l o inc luded aga i.n ) : 

2
d<1J 2 =	 -dÔK 3' 

/lo 

and it follows from 
les ,'" provided d OK 3 
sa, one possibility to incorporate them in the present theory is 
by means of a 3-form component K3 of the stream potential in the 
action, such that dÔK 1= o.

3 

4 

2 
o<I>2 = /lo ÔK 2 - --dÔK 1 ' (25) 

/lo 'li 
thern that there will not be magnetic monopo


== O 01' K 3 == O in particular, and vice ver
 J} 

A point to be noted is that classical strings naturally ap
'pear in this new formulation due to the fact that the support 
of elementary stream potential source K2 in degree 2 (correspon
ding to a point current source '1) actua1ly is a string. This 
foIlows from eq.(18) and is clarified in more detail in a fol
lowing publication under preparation. 

It is pleasure to thank A.T.Filippov and E.Kapuscik for va

luable discussions helping the improvement of the work.
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Kap,lyKoBCKH R.E. 
0 B&pl'.dl\!10P.HOrl QOP:vJYJIHpOBKe KJE1CCH'i2CK!!X 

a5eJieBb!X Ki'L'1H6pOBO lJHO-none Bb!X TeOp!-H':J 

E2-86-735 

:foKa3 aHO, :-:a;-; MO)!(HO CtiJOplvlYJlHpOB aTb flpHHL\HTI ,[leHCTBHH ,[\Jill KJ1aC 

CH'IeCKHX a6eneEbiX K2.J!110pOB04HblX TeopmJ: He 4epe3 KaJIHOpOB04HbJe 

TIOT2Hl\UaJibl II TOKH, 3 C !IOMOll.\LlD K3.J1H6pOBO'lHO-·HHBapHaHTHblX HaiTpll

)!(eHflOCTeH ITOJJH H 3 aBHC5IIL\HX OT K<U1H6pOBKH TIOTeHL\HaJIOB TIOTOKa, 06 

CyiK,il;eHHe npOBOr\HTCH ,[IJIH tiJOpHaJibHO OO~ero 4HCJia n = s+t ITpOCTpaH 

CTBeH!·IO-BpeMeHHblX H3~!epemnJ: H HCTIOJib3yeT ,[\Jill KpaTKOCTH ll3blK ,[IH<p 

t!JepeHL\HaiTbHbfX tiJOpM, 

Pa6oTa BbHIOJIHeHa B na5opaTopmi TeopeTH4eCKOI1 tPH3HKH 0115Il1. 

Coo6meHHe 06benHHeHHoro HHCTHTYTa HllepHbiX HccnenoaaHHH . .Uy6Ha 1986 

Karloukovski V.I. 
On the Variational Formulation of Classical' 
Abelian Gauge Field Theories 

EZ-86--735 

It is shown how one can formulate an action principle for 
classical Abelian gauge theories not by means of gauge poten
tials and currents but in terms of the gauge invariant field 
strengths and gauge variant stream potentials. The discussion 
is on a general formal level in n = s+t space-time dimensions 
and uses, for brevity, the language of differential forms. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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