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This is an addendum to our recently published Qaper/'/, in which we
have discussed &2 simple non-relativistic model of two-particle decay.
In Section 3 of the paper, Galilean inveriance of the model is trea-
ted ; we construct there the appropriete representation of the Galilei
group 5‘. However, Theorem 3.1 of Ref.l 1is in error ss’'stated ; it
requires an additional assumption, namely that the function v , which
specifies the interaction Haﬁiltonian, is rotetionally invariant. This
corresponds just to the Galilean-invariant cese, which is studied in
the rest of the paper, and will be studied in the sequels ; so the
conclusions are not affected. Nevertheless, we would like to correct
the error, and to present at the same time a more detailed discussion
which should enlight *he role of Galilean transformations of the model
glso in the non-symmetric caseﬁ

Throughout this note, we use the notation of Ref.! . The correc-
ted sssertion readu as follows :

Theorem 1 : Let v(X)=v (r) for some v,& 1?(®*,r%dr) . Then there

is 8 unitary projective representation of ‘5 on & defined by
(U(v,8,%, ¥ (X, %) =

(1a)
- - o - i b
- e(1/2)Mv.(vb+2}(—a) (e & ¥)(r™

"X+ -2),R7'%) .
It holds

V(DTG =@, Uy (2a)
for all f’f%if , where the multiplier & 1is given by

‘*’(J"vf) = ¢(I/2M(V .R'E-8".RT-RV.¥'D) (2b)

It is useful to introduce the following Euclidean-transformations
operators

#) In the relation (3.11a) of Ref.1, &, should be replaced by &+ ¥Vt
and b by zero (or we should set t=t=0). Other minor correeti-
ons are left to a printed version , since they probably cannot cau-
se a misunderstanding. .
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S(R,8) ¢ (S(R,2)L)(E, %) = ¥R (F-4),87'%) (3a)
which obviously fulfil the relations

S(R°,3")S(R,&) = S(R'R,8"+R"8) . (3b)

The definition relation (l1a) can be then expressed for f = (v,a,¥,R)
as
. > > T 2 iH b .
Uy = e(1/2)Mv.(vb+2)(--a) S(R,3-%b) e & . (1b)
The proof relies primarily on Lemma 3.2 .of Ref.1 . Beside it, however,
other auxiliary assertions are needed.

Lemma 2 ¢ The operators g(R,a) 1= E‘S(R,ﬁ)F_1 act as
frm 2NN (D 2 ~iB.B 5 =13 o-la
(S(R.E)Y’)(P,p) = e (R P,R p) - (4)

Proof : The relation (4) is verified directly for @ =FY¥ with
¥Yel™n L1 , and extended by continuity to A . [}

Lemma 3 ¢ The relation

-iH b L. iED . ‘

e 8 s(rR,3)e & = S(R,?) (58)
holds for all REO(3), 8¢R’ and beR 1ff v(¥)=v,(r) for all
e R’ and some v, € L2(IR+,r2dr) .

Proof : According to Stone theorem, the relation (5a) is equivalent
to S(R,é’)ch HgS(R,'é) or

A N A ~ A R - .
S(R,8)8, < HS(2,8) (5)

A 22 2
4 . T2 A P P2
For Ve D(H 1 , thi funstzons Py, end A(§E:'2mZVa arf square inte-
grable so S(R;E)@e D(Hg) s 1t yields S(R,a)D(Hg): D(Hg) . Now one
can take Ve D(Hg) and calculate easily

TR TS T A, ] .
) . f3 [FEDHFM®T 3, =7'5,0) ak
([, 8RB (B,5) = ge™tF-2( R . (6)

[3®-T®RB] RE)

Hence if v 1is rotationally invariant, the same is true for v and

the relation (5b) holds (even as an equality). On the other hand, if

@pe relations (5) are valid, then the rhs of (6) must be zero for all
YeD(H ) ; it is possible only if 9(RP) = 9(3) holds for all PeR’

and , R€ 0(3) . [ ]

Proof of Theorem 1 : It follows from (1b) that

iH b’ iH b 3 (apaoi_zy -—1H b iH b’ iH b
e & Uy = e & o(L/2MW(VD2A-E) T e g(p gdny e 8

8o Lemma 3.2 of Ref.1 combined with Lemma 3 gives
i b’

iH (b+b ")
e & U(y)'= e €

(/207 [7(ord )+2%-8] g5 2 G(beb)) e

Now one has to substitute from here to the relation

iH b

e(i/2)Mv AT D 42X-8") S(R,E-F¥'b")e B ()

upu) =
and a straightforward calculation leads to (2) . B

The assumption of rotetional invariance in Theorem 1 1is sactually
necessary as the following assertion shows :

Proposition 4 : If the operators (1) fulfil the relations (2), then
vix) = vl(r) for some Vi€ L2(R+,r2dr) .

-

Proof : We set v=¥ =0, then (2a) amcquires the form

... iHb . 4HDb . .. iH_(b+b")
S(R,&)e & s(R,8)e & =S@®RE+RE) e 8 .
In particular, choosing y' =(—b,-R'1§,O,R"1) , we get the relation
(5a) so the result follows from Lemma 3 . ]

Let us turn now to the physical meaning of the representation U.
Consider first the isochronousg_ subgroup j ={g‘e£ : b=04§ of g‘ .
If two observers connected with the reference frames S,S° describe
the state of our system at an instsnt t by %t and yé , respecti-

vely, then these vectors are related by
. 2 M7, (2K-8-¥ - ]
P{ = UC0,E+9t,%,R)y, = o VDM (2XE-9) g5 2i50yy (78)

it can be written also as

YR,ET) = o W/DMV(RIETY) 4 (3 3y | (7b)

This is, of course, the passive interpretation. The active one, in
which we have two decaying systems tied to the reference frames S
and S° , is obtained simply by replacing } by f“‘ , or equivalent-
ly, by interchanging the primed and unprimed state vectors.

On the other hand, there is a substential difference between the
active and passive interpretations of the time-translations subgroup
of 5 . The active time translations are connected with the evolution,

and therefore they are governed by the dynamics of the model. The sta-
te vector

-iH t
Y, =e &% =1U(-t,0,0,1)} {ea)



corresponds to the initial condition ?O=‘% . The same state is in

the primed reference frame described by the vector y; which ig in

view of (7a) and (2a) given by

’pt = U(-%,3,v,R)¥ .

This relation is consistent in the following sense. The initial

tion in the primed reference frame is ?6 = %" = U(0,&,V,R)¥
sing then ?é =1U(-t,0,0,1)%" , we arrive again at (8b).

(8b)

condi-
expres-

In contrast with this, definition of time translations in the
passive interpretation is a matter of convention. The simplest possi-

bility is the following : the state is not changed, when an observer

refixes his clock, t ' =t+b, so

Y. = U0,&438,%,R)Y,

for any beR . The corresponding representation of é? (for a.fixed

t ) is trivial in the part of time translations. There are, however,

other possibilities (similar as in Ref.2). Using the equastion (8a) in

. the two frames, the lest relation gives

Yoo = VBB, T RY,

‘

which is the definition of passive Galilei transformation used in (la).

In conclusion, let us say a few words about the general case

when v 1is not rotetionally invariant. A brief inspection of the

proof of Theorem 1 shows that (1) defines a unitary projective
sentat%on of the isochronous subgroup ‘9' of 5’ (in fact, the
tions (2) remain to hold if only b’'=0 ). Hence the conclusions
ning instantaneous Galilei transformations 4o not depend on the

repre-
rela-
concer-

rota-

tional invariance of v . Furthermore, the ®@ctive) time trenslations

in the reference frame S are giver by the operatots e-iHBt

relations (8) hold again.
The only difference is that, according to Proposition 4,

and the

U(.)

is no longer a representation of the full Galilei group é’. The phj—
sical meaning of this fact can be easily illustrated. The relastions

" (2) and (8) give
Yo = U(-t,0,0,1)%"
where

U (¢t,0,0,I) =

= U(0,3+%t,¥,R)U(~t,0,0,1)U(0,-R'&, -3, r"") .

(9a)

(9b)

If v 1s not rotationally invariant, then (9b) is not equa} }o e"iHEt.
3

In particular, for a pure rotation, J’= (0,0,0,R) , one has
. -iH 't
U'(-t,0,0,I) = e &
where H_=UGOHU(™') is the rotated Hemiltonian.
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Hepenmunucrcxaﬂ MoOIeslb OBy X4aCTUYHOr'O pacnana:
CHOBA O rajgnieeBoi HHBapHaHTHOCTH

B oaToii 3aMerxke npuBeneHo mnonpobHoe ob6cykaeHHe MNpobreMbl
rajineeBol MHBAaPHARHTHOCTH JUIA HEPEJIATHBUCTCKOM MOIENN IBYX4acTHY-
HOro pacnajfia pacCMOTpeHHOH B Hauleil HenasHeil pabore. B uacrHocTH,
Mbl HCIpaB/AeM 3/lech OIIHOKY, TONYIIEHHYIO NP (POPMYIHPOBKE OTHOMN
TeopeMbl U3 3Tol paboThI.

PaGoTa BbinonHeHa B JlaGopatopum Teoperuueckoii ¢duanxy OUAH.

Coobuerne OGbenHHeHHOro WHCTUTYTa AdepHBIX HccnemoBaHui. [ly6Ha 1986
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A Non-Relativistic Model of Two-Particle Decay:
Galilean Invariance Revisited

In this note, we discuss in detail the problem of Galilean invariance
for a non-relativistic model of two-particle decay considered in our recent
paper. Corrected version of a theorem deduced there is presented.

The investigation has been performed at the Laboratory of Theore-
tical Physics, JINR.
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