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The two-dimensional modelof the principal chiral field 

S2 E SU( N 
c 

) wi th the lagrangian 

L== ~ 
Z 

À-f tr [(a 52-1) d Q]
P j-t 

(1 ) 

is interesting, particularly, because of its similarity to four
-dimensional gauge theories (asymptotic freedom, dimensional trans

mutation, dynamical mass generation, instanton at ruc t ure , etc.). 

Polyakov and Wiegmann/1/ have shown the equivalence of model (1) 

to the muLtiflavor ( fi; -)- o-o ) ch í.r-a L-J nvariant Gross-Neveu model 

- a . a (- a cx.t t 2 

L = f J- ~ LOJA t J -'À t J ~ TA tj)' 
(2 ) 

a
where f. are 'D'ir-ac fermions wi th colar ( a = 1 '" Nc ) and 

flavor (j~ 1 '" ~ ) indices, and ~ (A= i N:-1 ) are the colar0'0 

SU(Nc) generators, h (TA T ) = t D T:lT;&=i(ÔadS(~Nc-16gScd.).
B AB

, 
Although this model dan directly be solved using the Bethe-ansatz 

technique, Polyakov and Wiegm~nn chose to solve another model where 

f ofermions have oneflavor but transfôrm under the rank-lV symmetric 

representation of the color group (for Nc=2,repres~ntation of 1sos

pin S= 1 N ). Equivalence of this higher-spin model to thet 
rnu Lt Lf Lav or one (2) is much mo r e subtle /2/. In fact, Wiegmann /3/ 
alleged its equivalence to a nonrelativistic substitute /4/ fo~ 

model (2) in which even the number of degrees of freedom is half as 

small. Therefore, we are going to study the multiflavor relativistic 

model directly ~ithout referring td its nonr~lativistic OI' higher

-epin versions. 

~w we give a more accurate formulation of the problem. First 
of alI, model (2) with a single coupling constant J\ cannot be 
renormalized in a consistent fashion. Perturbative quantum correc

tione lead to new counterterms, absent in the initial lagrangian. 

The most general renormalizable interaction lagrangian, invariant 

under the SU(NJ ® SU (N~) and chiral transformations, involves 
four independent charges, 

@&.tllJiHeUHhiU HHCmryrI 
n1.iel:tBt-JI ',Ir ('t .~~J10n:mryO 
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L i nt = [f - {fINe - j/Nf - It/(NcNf )] (t; }r;):-2(jt~/~)(f:~ T:t'fj'f 
-2(j+ it/Nc)(ta~1j~t:)2_ 4it (t;~ T:~ ti rt)2 

(3) 

_ *a I> ( i a a t,-.J g a A "') 

- 4 t+j ~t~ f ~l t+j -/ r~ ~+j -1 f-j ~+l- rj 
Cl 

tf+,f: , 

O 1 ) (0 -1) J., _ (f-\ - t * * ~ J 
where ~==- ( 1 O 1 r1= 1 O' 1- f+)' ~=t ~=(t+1tJ,and T 
are flavor SU(Nf) generat or s , As We shall see below, there are 
three cl~sed integrable subsectors with only two nonzero charges: ;C 
and any one of a li" ~ . 

d' c1 J • 
The. argument of ref. /1/ can be applied to the ( f ,!J ) sub-

sector wi th externaI e ourc ea for flavor-singlet currents. As 0~ 00 , 

this subsector is equivalent to model (1) with )l=2J7 plus two de
coupled massless flavorless fields: the colorless one ia due to the 

-Cl o. 2 
abelian ('f". ~tfJ) interaction, and the u.(NcJ one to the 
fermion de(erminant. However, for Nf -7 ex:> , the latter is decoup
led from the source terms too; so, integrating it off yields simply 
a constant. Thus, in addition to model (1), only colorless massless 
excitations are left. 

More precisely, in this way one can get only L-singlet states of 
model (1) which is invariant under the global transformations 

S2 -+ L Q R. The reason is the following. For N.i - 00 , in the 
auxiliary nonabelian field coupled to the fermion current, only the 

pure gauge S2-1~J2 remains essential 'the other part decouples 
into the massless sector). But thi8 expression is just an ~ singlet, 
and its R transformation corresponds to the fact that the fermions 

~elong to the fundamental representatiôn Df R. 
The Bethe-ansatz diagonalization Df the hamiltonian corresponding 

to eq.(3) proceeds in a standard fashion /5-9/. We seek eigenvectors 
Df the form 

IV>=fdX1 ····dXN exp(tIk x \ '\' 8-(x. <...< X ~)1r(~(···J~N\[n úlan(x )110>J' n==f fI.;,;0 a.1 11.. V&\L.... N) _,To<.· 11~ 
QES 'df n» "I" 

N 
(4 ) 

with a definite number N± (N=Nt+N_) of pseudoparticles of 

chiraJ.i ty OCn =±1' In eq , (4), (}(...) = 1 if the condition 
is satisfied, and O otherwise. The hamiltonian acts on the waVe 
function as a differential operator, 

2 

N N h-f 

H=-i];;ot;, o/í/;C~ f 4.'[z f,f}(ol..1o<,:>Ô(X..- x.'>{-f+9:E.tj~.+ /.J;.. f/;..), 
~ (5) 

where? and /f? exchange, respectively, the color (a.... , a.. )
mn . • 1ft h. ". " 

and flavor ( d-m} In ) ind ic es of Va. . 
V~ctor (4) ia an eigenvector Df the hamiltonian (5) with the
 

eigenvalue E and momentum P ,
 
HN 

p=z ~ItE= s.-.« 
11=1 n n. =1 

(6 )
 

if the kinetic term acting oh the step function cancels the inter

action term. This occurs if the following r €lation holds for any
 
neighboring permutation Qcn 

) that differs from a by
 

exchanging Qn wi th Q (n-1) :
 
~, 

Vain) 
===s V on 1 Q(tt-1) Q' (7 )
 

where the S-matrix for pseudoparticlea Df different chiralities,
 

when A. == 1- (o<.. - OC ) -4 O , is
 
m n 2 }ri. n T 

,.-.J • '"'-' -1 

:= 2· A -f + (J +ã:P + -It:P :P ) -1(' A ~Smn. c ~M" L L\lfll'l ~ "'" (í m n mn m n • 

(8 ) 

In deriving eqs , (7), (ê), We adopted the convention f)(Xm-X;n")
 

x f) (Xwz < XII) = i S- (X m - XI'\).
 

The set Df conditions (7) imposed on ~ is consiatent only
 

when S-matrix is factorizable /10/
 

Stl1I\Snm=1" SI,"Sl"Sm;-SWl"Sln~tfl7 {~J!1n{m)n}=~ ~[Stl' StI\1I1;; O.. 
(9 ) 

Equationa (9) restrict the arbi trary as yet S...." for l::::.rnn = O. 
In our case (8), the S-matrix ia generally a linear combination Df 
the four operator terms with coefficients depending on Ao= O,±1 
and the coupling constante. The analysis Df eqs. (9) shows that alI 

the four charges cannot be present simultaneously, and only three 
nontrivial cases are allowed by factorizability: 
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(i) f, j=l=Oj J=A:::=Oj Sâ= el'lh 2~Ã+l fE; 
2 'l;~+i 

/;=l;'(f, 9-)= ~(~+f2_g-2)/9;; ?= ~(f,1::= 2 atan(y-f). 

(Lã ) f, õ=l-O; u=Â=O; $ll=ei~Â 2~b+i:P) t;"t;=='l;J'2(f;.g). 
d' r 2~h+1 

(iii) f,~=t-o; o=ã=O; SA=ei 
'2

6 2l;f1+l:f5ff!>. ~/lJ~~n(f)Iz.). 
ri Ó 2'l;ó+i I c ( 

The only arbi trariness left is the ~hange $0_ - so ,and in 
cases (i) and (ii), also SO~±fP~. We are going to Lnvea t í.ga t e 
the ( jC , ~ ) subsector, case (i), which includes eq.(2), and hence, 
relates to eq.(l). The S-matrix (i) is diagonal in flavor indices 
which come into play only in filling the Dirac sea. 

The periodic boundary conditions imposed on the w~ve function 

lead to the following eigenvalue equations for V.j tOt and {k}:
luel1 1 y n 

LZ V==e il:n 
... 

y 2 n = Sn n+1 ... SnN Sn1 o o. Sn,n-f •,ri. ' (10 ) 

For ~c» ~ ,eqs.(10) lead to a Bethe-ansatz hierarchy 13,9,11/. 
Here, we concentrate our attention on tt =2 15-8, 101. Eigenvectors 
of color isospin iN -M are parametrized by sets of Àm(m=f... M) 
satisfying the Bethe-ansatz equations 

/ ~tn-(; ~ !l )N+ (À.m+l;+~~)N fl Àm- À.(+ i 

À/II-Àl-l\À",-~-~l \Àm+~-2l I::: f 
(11) 

Eigenvalues are given by . fv1 
i i:n L [ . ÀI Jn Â",-l;0(;"+! i e == exp l~ocn' l-",) 'I "'I. _~ 1.' . 

" In=f A m '7 ~ - 2, l ( 12 ) 

Equations (11) have been analyzed in ref./8/. Antiferromagnetic 

$olutions for N± - 00 involve a sea of R~! N real 
roots wi th H holes at XI,. , and the following configurations of 

complex-conjugate pairs: W wide pairs, \Jm}.J>1 ; Q -quar-t eta , 
each consisting of two pairs with ReÀ1=ReÀ2-tO(ecN),IImÀ11 t 
IImÀ2.'=1+(Q(e-cN

) ; -T two-strings, IIm .ÀI-= i + (()(e-cN ) . Complex 
pairs. cannot be present without holes. The total number Df roots 

M= R.+2w+4Q+2.T-= iN-iH+2W+2Q+T < !N 
(13 ) 

must be an integer; this connects oddness of N and H. Lo-garithm 

Df eq.(12) determines 

{ = ~ + 1.3C L f f , (~4) 
r'l ex: ti 

n H 

f±L= ±AN=+ ±-i31N:t: ±2~ atanexp[J((-~±Xlt)], 
t";f (15) 

A= Ci In f(1+U;) r(1-i~) +~ _1 Jt 
r(f-U;)r(~+l?") 2- I (16) 

where ~ are integers. 
Since

n
the energy (6) is not restrained from õelow, we need an 

ultraviolet cut-off: 

2Jí L f 
eX-r3n'> -K. 

(17'} 

Arbitrariness Df the cut-off procedure consists in the choice Df 
branches in eq.(15). We have considered a general case when a mul

tiple of 2:J{,(N±, M, H,. W, Q., T, 1) is added to- eq.(15). The 
coefficients can be fixed from physical requirements that the vacuum 
should have chirality and momentum zero, be a color and flavor singlet 
without holes, and excitations should have finite energy and momentum. 

This leads to a choice equivalent to eq. (15). 
After introducing the cut-off (17). we can construct the ground 

state. Anticommutativity Df the fermion operators in eq.(4} requires 

that for equal chiralities (~rtl=~n) and flavors (J".=Jn.) 
the wave vectors must be differeht --km 4 /:,. i hence, then 

.f".=l-ln in eq.(14). For both chiralities, each of the lowest vacan
cies allowed by eq.(17) can be occupied only by IVJ particles 
Df different flavors, which form together a flavor singlet. If 

N:J:. := jJ-± N:f -)l± wi th an integer )A± and O< 'V'± < N~ , 
then at the densest packing, )A ± .: 1 layers are filled enti
rely, and on the last leveI, V± places rema in empty. The 
energy and momentum '(6) will then be 

E = L-i (iJítJ[/Nf)(N:+N~)+ (2A/L) N+N_-(K+Jl/L)N 
H 

-+ fJí!(L N5)rY+(NrY)'r~_(N[~)]+(2/L) Y{N-fatanexp[~(-'Ç+x,,)]+N_ atane<p(:J(~7;-1)]}, 
. t:'1 (18) 
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p= 1.:1 (i:R+:n/N5) (N:-N!)- (K+3í/L)(N-f-N_)	 Changes in f also lead to massless, colorless, flavorless 
excitations. 

t .rV(LNt)f)f+(N(~~)-~(N.r~)]+ (2/L)Y{N+atanexpíJ[(-~+X~)l-N_atl1l exp[7L~~-~)l}.	 
tt 

Thus, massive spectrum of subsector (i) of model (3) includes~ C1 (19) 
Minimizing the energy (18) wi th Tespec t to H) y±, N± determines rela tivistic fermions with rapidi ties Jl. X lt . They have colo: 

the vacuum: spin i because each hole diminishes M by f. The ap.í na com
bine in different ways depending on the presence of complex pairs.

*_ i KL+31 := _1 (KL+Jl1"IL ===0H"*=y±'1r=.O	 The transfOrmation under SUe NJ-) can be arbitrary according to n±. . ) N±- 2. iU:R/NtJ\' E~ 2 i:ié+~Nf+K' P.c · ] In the simplest case when we add one pseudoparticle for each hole, 

(20 ) we obtain the fundamental representation. However, at	 even 11, 
Subtracting the vacuum energy, for excitations with N±=Nt+n± the numbers n± may be mul tiples of Nf , which Leads to' flavor 

we now let K~ 00, leaving Yl..± finite. The charges (i)  singlets. These flavorless bosonic states represent the L-singlet 

sector of the SU(2) principal chiral field (1) in agreement with thebecome functions of the cut-off parameter so as to eliminate diver
treatment of the model by Faddeev and Reshetikhin /12/,. 

energy, at X~ = V(1/K), requires that The S-ma trix for holes. is diagonal in flavor indices and c an 

be calculated /6-8/, irrespective of ~f' It has the form as for 
l;= JL-1 In (Kif-) + 0(1), the chiral-invariant Gross-Neveu model /6-9,13/ or for the 

gencies from physical quantities. Finiteness of the minimum hole 

Nf=1 
(21)	 spin -! Xxx. magnet /14/. The free massless particles d ec oup Le , 

Such an S-matrix for holes does not corI'oborate the assumption /15/ 

terms known to be .finite, a K term is left	 that in the ([)(4) Õ model, fundamental massive particles are in 

the vector representation of (()(4). 'I'hus , the fermionization 

program can be performed in a rigorous fashion and leads to the 

where)A is a scale parameter. In the momentum, eq.(19), besides 

p~ =A.(n_-n-f) K/(l3l t .Jl! N t i\) . f results that d í.f'f'e r' f.rom those obtained by solving the Bethe-an'satz(22 ) 

To avoid divergency when rl+ =f:. rt_ (these states are physically e qua t i ona for higher 'spin S ~ 00 /1,3,12/. 

attainable because the energy is fini te for any n + ), we have Now, we would like to compare the ~xact solution with perturba

tion theory. Equations (21) and (23) allow us to fihd the renormalito se~ A = o:1/K") or o(1/K) so as to make PC:' vanish.
 
Through eq. (16), this entails a correlation /6,7/ between the two zation-group )-> f'unc t í.ons ;
 

charges to all orders in perturbation theory'
 ~ = () a / d In K2. ::= - (2/jL) fJ2 + o(r;3 ) 1 

CJ (Í	 (25)

f =: l r; -1c;3 + 0.0' i> O	 and f>-i is expressed through 531J via eq , (23). The o~3) term 
o	 • 

(23 )	 of e q; (25) does n ot influence the K --+ 00 limi t , 

Now,	 as K~ 00, energy and .momen.tum of excita tions take the Our computations by the method of .ref./16/ give the following 
one-loop ~ functions for model (3):form H 

E -E#+~ Cf(í:rr+1l/N/)(n~+n:)+JL/(LNf)[)I+('}-)nt~(~~)]t1rlLcosh (:rr X~) t 2 ~2 02 fi':' N 2 rv-I
JL ~-5" = - fi - ~ - n. ) (Jl J->1 = - ci +2l'n,11=1 

. H (24) 
li f>~ = -N ~2+ 2~~, JCf>ft = -NL Nr "'2~2Nc~j;-2~1ho . 

t>;C1(1.1í.+jJN.l)(n~ -rr) +:JL/(LNf")['>4-(Nr~)-~(N.c~)J+ttlL sinh(;:RX~), ~ f (26 ) 
2 J J ~ =f In subsector (i) the special solution to eqs.(26) ~ith proportional 

wher e, m = 2j1- /Ct'iL+Jí./Nf} .i a renormalized Ir n± a: L / charges is f =-~/N~ . This agrees ~i th the sue N; ) exact resul ta mas s , 
the first terms in eqs.(24) correspond to relativistic massless of refs. /6,7/ for ~ =1 and with eq , (23) at Ne =2 . Since the 

particles, and the V± terms are bounded and vanish as L---.,. 00. r ft functions (25) a nd (26) in subsector (i) do np t depend on ty, I 
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i t is worth comparing eq , (25) wi th the two-loop resul t at Nf = 1. 
We have computed the ~ functions for a generalized model with 

the interaction lagrangian 

L = f ('\' a~ tay~. -+ ~Jf'\l'°Y·-I2. Gji"'tJ<-'l'''-):	 Illlt 

. (27 ) 

where }f-\k -= ~ o~. At /}1 = f/2 ~ /J 1 e q , (27) is r~duced through 
'1\ 
(the Fierz rearrangement to eq , (3) wi th one flavor (? -= A. =0); 

and a t f = fj2 = O , to the Gross-Neveu model /17/. To avoid diffi  I 
culties with t*, we used the analytic renormalization /18/. 

i 

Tbe two-loop result has the form 

f->§ = - JC'g1 ~2. + 1C' [ (1'1<- t) f (~,-~;l+ ff' ff2 ~+:12)] I 

fi.;=: JL-1 [- Nc ~~ t (25 +~-t)(~i-92)1 
+ Jc.2

{ N ~1 (9~-t 9:>+f2N f2-2ffj1-tf!2)-j :l (71-!z)}, c c	 (28 ) 

This	 corrects~2. is obtained from f'-t by exchanging [J~ and ~ 2. • 

and extends to tw~ 100ps our previous result /19/. The chiral-invari
to two 100ps,ant one-charge solution to e q , (28) is ~=~= ~f up
 

and
 

~f>t :::: - Nc ~~ 1:Jí + 2 Nc, ~~ /1(,2. 
(29 ) 

Besides, there are only two chiral-noninvariant solutions at Nc.=2: 

~~ ==	 -12. = ± 2f J ~~ = ± 2~:In +471
3 

/ Je. At f==ff2.= O, eq , (28) 

agrees with ref./20/.
 
As has been foreseen by Destri /2/, eq , (29) wi th t{= 2 differs
 

from eq.(25). However, the renormalization schemes of the Bethe an

satz and perturbation theory are different as well, and the charge
 
should be recalculated from one scheme to another. AlI schemes
 

must agree in the tree approximation; therefore, /l1 = fi + O (fi),
 
but generally, no constraint on O(~) can be set beforehand. Of
 

course, if ~1 was a power seriés in fi ' the two-loop J3
 
functions would be the same /21/, whicb is just the case for usual
 

such a recaicuLation is permitted' by the conformity principie. 
In conclusion, we point out possible generalizations of the pre

sent wo rk , For the SUe Nc. ) principal chiral field wi th N > 2. {3/c 
alI our rssonings up to eq.(10) rema in valid. One may try to solve 
the Bethe-ansatz hierarchy without invoking the "string" hypothesis. 
Obviously, like for IV =2 , the results will be analogous to thec
IVf = 1 case: the mass spectrum, the S-matrix /9/, and the correla
tion between the charges /6,7/. The scheme can be extended to the 
anisotropic (XXZ ,XYZ ) principal chiral field /23/ as wel1. 
Another situatiDn takes place when we try to introduce the Wess
Zumino termo After fermionization, one obtains a theory with diffe
rent numbers of left and right fermions /24/. In such a theory 
there i~ in fact an anomaly, which does not allow one to renormalize 
the model consistently. In filling the Dirac sea, any choice Of 
branches leads to infinities in momentum of some excited states. There 
aredifficulties in perturbation theory too. 

References:
 

/1/ A.M.Polyakov and P.B.Wiegmann, Phys.Lett. 131B (1983) 121.
 
/2/ C.Destri, Phys.Lett. 156B (1985) 362.
 

/3/. P.B.Wiegmann, Phys.Lett. 141B (1984) 217.
 
/4/ A.M.Tsvelick, Regularizati?n procedure for exactly integrBble
 

relativistic models, Landau-Institute preprint No.7, Chernogolov

ka, 1983;
 
A.M.Tsvelick and P.B.Wiegmann, JETP Lett. 38 (1983) 489.
 

/5/ A.A.Belavin, Phys.Lett. 87B (1979) 117; 
N.Andrei and J.H.Lowenstein, Phys.Rev.Lett. 43 (1979) 1698. 

./6/ J.H.Lowenstein, Surveys,in High-Energy Phys. 2 (1981) 207. 

/7/	 J.H.Lowenstein, iru Les Hoches Summer-School Proc., Vol. 39, eds. 
J.-B. Zuber and R.Stora (North-HQlland Physics Publishing, 
Amsterdam, 1984). . 

/8/ C.Destri and J.H.Lowenstein., NucLs Phya , B205 (1982) 369.
 
/9/ N.Andrei and J.H.Lowenstein, Phys.Lett. 9QB (1980) 106;
 

91B (1980) 401. 
/10/ C.N.Yang, Phys.Rev.Lett. 19 (1967) 1312. 
/11/ B.Suíherland, Phys.Rev.Lett. 2Q (1968) 98. 

/12/ L.D.Faddeev and N.Yu.Reshetikbin, i~Proc. VII Conf. on the 
perturbative renormalization schemes in single-charge theories. The Problems of Quantum Field TheorY(JINR, D2-84-366, Dubna, 1984) 
differencebetween eqs. (25) and (29) indicates that the Bethe-ansatz 37; Ann.Phys. (N.Y.) 167 (1986) 227. 
scheme is nonanalytically related to conventional perturbation theory ~ /13/	 V:Kurak and J.A.Swieca, Phys.Lett. 82B (1979) 289. 
94= i -(2/Jí,)i2.1n!l+0W-2. htj) , like in the Kondo modell7, 22/. However, 

9
8 



~J 

't 
• > 

/14/ L.D.Faddeev and L.A.Takhtajan, Zap.Nauchn.Semin. LOMI 109 WILt YOU FILL BLANK SPACES IN YOUR LIBRARY! 
(1981') 134. You can r eceive hy posl lhe books Iisted below. Pricca - in US S. 

/15/ A.B.Zamo1odchikDv anu A1.B.ZamD1odchikDv, Nuc1.Phys. B133 inclu~ing lhe packing and registered poslage
 
(1978) 525; Anns Phye , (N.Y.) 120 (1979) 253;
 
E.Brezin and J.Zinn-Justin, Phys.Rev. B14 (1976) 3110. 03,4-82-704	 Proceedings of the IV International 

School on Neutron Physics. Oubna. 1982 12.00 
/16/	 A.A. V1adimirDv, TMF 43 (1980 J 210 /TheDr. Math. Phys , 43 .(

(1980) 417/. 01'1-83-511 Proceedings of the Conference on Systems and 
/17/ D.Gross and A.Neveu, Phys.Rev. D10 (1974) 3235. " Techniques of Anal~tical Computing and Their 

AppIications	 in Theoretical Physics. Oubna.1982. 9.50/18/ E.R.Speer, J.Math.Phys. 9 (1968) 1404.
 
/19/ L.V.Avdeev and M.V.ChizhDV, Phys.Lett. 145B (1984) 397. ) 07-83-644 Proceedings of the International School-Serninar
 

/20/	 W.Wetze1, Phys.Lett. 153B (1985) 297. 
/21/	 A.A.V1adimirDv and D.V.Shirkov, Usp.Fiz.Nauk 129 (1979) 407; 

G.M.Avdeeva, A.A.Be1avin and A.P.Protogenov, Yad.Fiz.18 
(1973) 1309. 

/22/	 N.Andrei, K.Furuya and J.H.Lowenstein, Rev.Mod.Phys. 55 
(1983) 331. 

/23/	 r.V.Cberednik, TMF 47 .(1981) 225. 
/24/	 A.M.Po1yakov and P.B.Wiegmann, Phys.Lett. 141B (1984) 223. 

Received by Publishing Departrnent 

on October 4, 1986. 

10 

on Heavy Ion~hysics. AIushta, 1983.	 11.30 

D2~13-83~89	 Proceedings of the Workshop on Radiation Problems
 
and Gravitational Wave Detection. Dubna. 1983. 6.00
 

013-84-63	 Proceedings of the XI International
 
Symposium on Nuclear Electronics.
 
Bratislava, .Czechoslovakia. 1983.
 12.00 

E1.2-84-160	 Proceedings of the 1983 JINR-CERN School 
of Physics. Tabor, Cz~choslovakía, 1983. 6.50 

02-84·-366	 Proceedings of the VII International Cónference 
on the Problems of Quantum Field Theory. 
AIushta, 1984. 11.00 

01,2-84-599	 Proceedings of the VII International 
Seminar on H1gh Energy Physics Problems. 12.00 
Dubna, 198(. 

D17-SQ-8S0	 Proceedings of the,lll International Symposiu~
 
on Selected Topics in Stat"istical He~hanics.
 
Dubna. 1984. /2 volumes/. 22.SG
 

D10,11-84-818 Proceedings of the V International Meeting 
on Problems	 of Mathematical Simulation, 
Programming	 and Mathematical Methods 
for Solving	 the Physical Problems, 
Dubna, 1983	 7.50 

Proceedings of the IX AlI-Union Conference 
on Charged ParticIe Accelerators. 
Oubna, 1984. 2 volumes • 25.00 

D4-85-851 . Proceedings on the International School
 
on Nuclear Structure. Alushta, 1985. 11.00
 

011-85--791	 Proceedings of the International Conference 
on Computer Algebra and Its Applications 
in Theoretical Physics. Oubna, 1985. 12.00 

013-85-793	 Proceedings of the XII International Symposium 
on Nuclear Electronics. Oubna, 1985. 14.00 

Orders for the above-mentioned books can be sent at tne address: 
PubIishing" Department. JINR-

Head Post Office. P.O.ffox 79 101000 Moscoy. USSR 



SUBJECT CATEGORIES 

OF THE JINR PUBLICATIONS 

Index Subject 

1. High energy experimental physics 

2. High energy theoretical physics 
3. Low energy experimental physics 
4. Low energy theoretical physics 
5. Mathematics 

6. Nuclear spectroscopy and radiochemistry 
7. Heavy ion physics 
ts. cryogemcs 
9. Accelerators 

10. Automatization of data processing 
11. Computing mathematics and technique 
12. Chemistry 

13. Experimental techniques and methods 
14. Solid state physics. Liquids 
15. Experimental physics of nuclear reactions 

at low energies 
16. Health physics. Shieldings 
17. Theory of condenced matter 
18. Applied researches 
19. Biophysics 

Jl.B.ABnees, M.B.I.IHJKOB E2-86-663 

TO'IIIOe peWeHHe MHOrOKOMDOHeHTHOH MOAenH fpocca-He&e 

lllepMHOHH31UlW1 no non.RKOBY - BHrMauy rnaauoro KHp&n&Horo non.11 c rpynnoH 
SU(2), T.e. 0(4)-u-MoAeJIH, nposonHTc.R CTpOrHM o6pa30M no KOHIUl. BMecTO Toro, '1To-
6bl pewaTb 4JepMHOHHYIO MOAen& BbiCWero CnHHa, Mbl H3y'llleM MHOroKOMnOHI!HTHYJO 
KHp&nbHG-HH&apHaHTHYIO MO.Ilen& fpocca - Heae, 3KBHB&JieHTHOCTb KOTOpDH HCXOAHOH 
0030HHOH TeopHH 6blna nOKa3aHa CTporo, ecnH qHCJIO KOMnOHeHT CTpeMHTCJI K 6ecKOHeq
HOCTH. BblnOnHlleTC.II AHarOH&nH31UlW1 pen.RTHBHCTCKOH MOAeJIH C DOMOliV>IO aH3aTUil BeTe, 
npoBOAHTC.II 3aDOJIHeHHe MOp.ll llHpaKa, nOCTpoeubl 4JH3uqecKHH &aicyyM H B036yJKAeHH.R 
C KOHequOH 3HeprHeH H HMnynLCOM. 06HapYJKeHO, 'ITO ABe KOHCTaHTbl B3aHMO.IleHCTBH.II 
B MOAenH AOlllKHbl 6h1Tb CBJI3aHbl. lln.R MaCCHBHbiX 4JH3uqecKHX B036YJKAeHHH 8 -MaTpHl.Ul 
OKa3biBaeTCJI TaKOH lKe, KaK H B OAHOKOMDOHeHTHOM Cny'llle. 3TO He nOAT&ePJKA&eT DpeA
nonolKeHH.II 0 TOM, qyo 4JyH,llllMeHT&nbHble qaCTHIVd l1 -MOAenH HaXOA.IITC.II B &eKTOpHOM 
npencnsneHHH 0 ( 4) . PeHopMrpynnoBaR ,8-<l>yuKUH.R cornacyeTc.R c OAHo3apJIAHbiM pewe
HKeM no TeopHH B03MYI.I.IeHHH. 

Pa6oTa abmoJIHeHa a Jla6opaTOpHH Teo~ecxoit 4JH3HKH OHRH. 

ITpenpHHT 061.e.Jume1Dloro HIIC111T)'T& liAepHWX KCClle)I.OBIIHIIii. ,l\y6Ha 1986 

Avdeev L.V., Chizhov M.V. E2-86-663 

Exact Solution of the Multiflavor Gross-Neveu Model 

The Polyakov - Wiegmann fermionization of the SU(2) principal chiral field in two 
dimensions, i.e., the 0(4) sigma model, is fulfilled in a rigorous fashion to the end. Instead 
of solving a higher-spin fermionic theory, we study the multiflavor. chiral-invariant Gross -
Neveu model, strictly shown to be equivalent to the initial bosonic theory if the number 
of flavors tends to infinity. The Bethe-ansatz diagonalization of the relativistic model is per
formed, the filling of the Dirac sea is accomplished, the physical vacuum and excitations 
with fmite energy and momentum are constructed. A correlation between the two coup
lings in the model is found necessary. The S-matrix for the massive physical excitations pro
ves to be the same as in the one-flavor case. This does not corroborate the assumption that 
the fundamental particles of the sigma model are in the vector representation of 0( 4 ). The 
renormalization-group beta function agrees with a one-charge solution in perturbation theory. 

The investigatiqn has been performed at the Laboratory of Theoretical Physics, JINR. 
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