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The two-dimensional model of the principal chiral field
—QE SU(NC) with the lagrangian

L=2 X"t [ (3,2 30]
# (1)

is interesting, particularly, because of its similarity to four-

~dimensional gauge theories (asymptotic freedom, dimensional trans-

mutation, dynamical wass generation, instanton structure, etc.).

Polyakov and Wiegmann/1/ have shown the equivalence of model (1)

to the multiflavor ( A}—*-OO ) chiral-invariant Gross-Neveu model
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where ? are Dirac fermions with color ( CZ: 1. AQ ) and
flavor “/J 1 N. ) indices, and |4 (A 1. ) are the color

SU(N ) generators,f tr ('T' TB)— SAB' TaxTcd (841 Sd N-15a£é\cd>
Although this model can dlrectly be solved using the Bethe-ansatz
technique, Polyakov and Wiegmdnn chose to solve another model where
fermiona have oneflavor but transform under the rank—A@ ' symmetric
representation of the color group (for NC=2,representation of isos-
pin S== % rﬂ§ ). Equivalence of this higher—spin model to the
multiflavor one (2) is much more subtle /2/. In fact, Wiegmann /3/
alleged its equivalence to a nonrelativistic substitute /4/ for
model (2) in which even the number of degrees of freedom is half as
small. Therefore, we are going to study the multiflavor relativistic,
model directly without referring td its nonrélativistic or higher-
-8pin versions.

Now we give a more accurate formulation of the problem., First
of all, model (2) with a single coupling constant A cannot be
renormalized in a consistent fashion. Perturbative quantum correc-
tions lead to new counterterms, absent in the initial lagrangian.
The most general renormalizable interaction lagrangian, invariant
under the SU(NC)® SU(NQ and chirel transformations, involves
four independent charges,
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where  §= 10) X (0 o) d((xy) ‘W(*w‘l’)and T

are flavor S[j(N§) generators, As we shall see below, there are
three closed inte%fable subsectors with only two nonzero charges: jf
and any one of 31 ,Ji

The argument of ref. /1/ can be applied to the (‘f‘,éz ) sub-
sector with external sources for flavor-singlet currents. As N,—>o00,
this subsector is equivalent to model (1) with J\=£g7 plus two de-
coupled massless flavorless fields: the colorless one is due to the
abelian (S” “x [// )2 interaction, and the W(N.) one to the
fermion de ermlnant However, for A&—* oo , the latter is decoup-
led from the source terms too; so, integrating it off yields simply
a constant. Thus, in addition to model (1), only colorless massless
excitations are left.

More precisely, in this way one can get only L-singlet states of
model (1) which is invariant under the global transformations
2 LL.QR. The reason is the following. For ﬁ/—* o , in the
aux1llary nonabellan field coupled to the fermion current only the
pure gauge 52 a 2 remains essential (the other part decouples
into the massless gector). But this expression is just an L singlet,
and its R  transformation corresponds to the fact that the fermions
belong to the fundamental representation of R.

The Bethe-ansatz diagonalization of the hamiltonian corresponding
to eq.(3) proceeds in a standard fashion /5-9/. We seek eigenvectors
of the form

N
IV>=\{dfx‘-...deeXP(Z%éﬂJQ)Z&(xMQ.SI V(/ Il ” +a, ")] |0>
QeSs,

(4)
with a definite number N+ (N N"I'N) of pseudoparticles of

chirality ©¢, =%1, In eq.(4), @&(.)=1 if the condition
is Batisfied, and 0 otherwise, The hamiltonian acts on the wave
function as a differential operator,

N N n-1 — .
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(5)

, exchange, respectively, the color @, a,)

where cZ?n and JOM
)

and flavor ( OLMI /n indices of \’a .
Véctor (4) is an eigenvector of the hamiltonian (5) with the
eigenvaluefz and momentum }3,
N N
£= ZOCA én » P:Z £n
n=1 n=1 .
(6)
if the kinetic term acting on the step function cancels the inter-
action term. This occurs if the following relation holds for any
neighboring permutation Cz(n) that differs from Q@ by
exchanging QAR with @ {n-1):
&
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where the S-matrix for pseudoparticles of different chiralities,

when A Ei(d _“)?éo
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(8)
In deriving eqs. (7), (8), we adopted the convention Squﬂ—JCn‘)
x§(x,<x)y=4% §(=x,

The set of conditions (7) imposed on ‘éi
when S-matrix is factorizable /10/

S S 1 S S{" SMHS€HS€ {fé,e}ﬂ{m,n}zga Q[S&[’Smn]_; 0

(9)

is consistent only

Equationa (9) restrict the arbitrary as yet f;"”‘ for men:= 0.
In our case (8), the S-matrix is generglly a linear combination of
the four operator terms with coefficients depending on A= O,i1
and the coupling constants. The analysis of egs. (9) shows that all
the four charges cannot be present simultaneously, and only three
nontrivial cases are allowed by factorizability:
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The only arbitrariness left is the change SO_., —-So , and in

cases (i) and (ii), also Soai??. We are going to investigate

the ( f ’ ) subsector, case (i), which includes eq.(2), and hence,

relates to eq.(l). The S-matrix (i) is diagonal in flavor indices

which come into play only in filling the Dirac sea.

The periodic boundary conditions imposed on the wave function

and {&n}.
- énN Sn‘l Sn,n—f .

lead to the following eigenvalue equations for V

identity
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(10)

For NC > 2 , €q8.(10) lead to a Bethe-ansatz hierarchy /3,9,11/.
Here, we concentrate our atfention on /\é‘:z /5-8, 10/. Eigenvectors
of color isospin %N —M are parametrized by sets of )m(m=/...M)
satisfying the Bethe-ansatz equations
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Eigenvalues are given by M
e = expl iy, 11 T -
" m=f Ny ?.n"zl (12)
Equations (11) have been analyzed in ref./8/. Antiferromagnetic
golutions for N_,_—’OO involve a sea of R:t',i N real

roots with H holes at [)’,‘,’! , and the following configurations of
complex-conjugate pairs: W wide pairs, ‘Im)|>1 ; Q quartets,
each consisting of two pairs with ReA;=Rel,+ @(e’“”), lIm 21' +
JIm, (=1 +(9(€_°N) ; T two-strings, |ImA|= it O(e*"). Ccomplex
pairs cannot be present without holes. The total number of roots

M=R+2W+4Q+2T=4N-1H+2W+2Q+T < N
(13)

must be an integer; this connects oddness of N and H, Logarithm
of eq.(12) determines

fcn=%°¢+ 25 L5 fn ) U4)
" H
£, L=tAN i%.’ﬁNt izg ajltan exp[R (-2 £Xy)],
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where {n are integers.

(15)

(16)

Since the energy (6) is not restrained from below, we need an

ultraviolet cut-off: !

LY AREVE AR 4
aT)

Arbitrariness of the cut-off procedure consists in the choice of
branches in eq.(15). We have considered a general case when a mul-
tiple of 27 (N,, M, H, W, Q, T, 1) is added to eq.(15). The
coefficients can'%e fixed from physical requirements that the vacuum
should have chirality and momentum zero, be a color and Ylavor singlet
without holes, and excitations should have finite energy and momentum,
This leads to a choice equivalent to eq. (15).

After introducing the cut-off (17), we can construct the ground
state. Anticommutativity of the fermion operators in eq.(4)} requires
that for equal chiralities (o, =o¢) and flavors (OA;='A)
the wave vectors must be different 45n15ﬁ-£" ; hence, then
{Lﬁ#{; in eq.(14)., Por both chiralities, each of the lowest vacan-
ciegs allowed by eq.(17) can be occupied only by /Yk particles
of different flavors, which form together a flavor singlet. If
Ni-.:-/‘l:t,\{f_yi with an integer M4 and 0< v < N{ ’
then at the densest packing, /4t-—:1 layers are filled enti-
rely, and on the last level, Y+ places remain empty. The
energy and momentum (6) will then be

E = [T (G o+ /N (N*+N2)+ (ALY NN ~(K+RAIN

+ /LN [v+(N;v4)+V_(N;v)]+(2/wg"{:\g atan explR(CT+) +N atonespln(z-x)]}
~ =1 (18)
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Minimizing the energy (18) with Tespect to f4 V+, h& determlnes
the vacuum:

Homvre), Nooy KLtE _ g LA, g
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(20)
Subtracting the vacuum energy, for excitations with f4+ ﬁL;+ﬂ+
we now let BC—’CO,‘ leaving 4 finite. The charges (i)
become functions of the cut-off parameter so as to eliminate diver-
gencies from physical quantities. Finiteness of the minimum hole

energy, at xﬁz@a/I’Q' requires that
E=5"1In (K/Ju) +o(1),

s (21)

where ji is a scale parameter. In the momentum, eq,(19), besides
terms known to be finite, a K term is left

B = A0-n) K/Grea/NtN). -

To avoid divergency when V[b§£ Ml_ (these states are physically
attainable because the energy is finite for any n + ), we have
to set f\ (9(4/K) or 0(4/}(_) so as to make Pm vanish.
Through eq. (16), this entails a correlation /6,7/ between the two
charges to all orders in perturbation theory

f=ig-1gc., g0

(23)
Now, as I(;*’OO, energy and momentum of excitations take the
form H
-1 ~ B .
E-E= 17 %mﬁ/@(mﬁ n_l)i-db/(LNf)[&(N{‘Di-X(% Y)]Hr;zfcosh @xp,

H ) (24)

P=13" G /N 1) + 5 [N (N )~ (Nj—v_)]irmz_ sinh(J0xy),

where, M= 2/.(/(3 Tl'.-('JL/ \) is a renormalized mass, If /M, @ L.,

the first terms in eqs. (24) correspond to relativistic massless

particles, and the )i terms are bounded and vanish as |, oo,

Changes in -{ also lead to massless, colorless, flavorless
excitations,

Thus, massive spectrum of subsector (i) of model (3) includes
relativistic fermions with rapidities ﬁ{ Qﬁgl . They have color
spin 1 because each hole diminishes M by 2 . The spins com-
bine in different ways depending on the presence of complex pairs.
The transformation under SU( Ny) can be arbitrary according to M, .
In the simplest case when we add one pseudoparticle for each hole,
we obtain the fundamental representation. However, at even }1 s
the numbers )71 may be multiples of ﬁJf , which leads to' flavor
singlets. These flavorless bosonic states represent the L-singlet
gector of the SU(2) principal chiral field (1) in agreement with the
treatment of the model by Faddeev and Reshetikhin /12[.

The S-matrix for holes. is diagonal in flavor indices and can
be calculated /6-8/, irrespective of ﬁ/ . It has the form as for
the N,={ chiral-invariant Gross-Neveu model /6-9,13/ or for the
spin - %' XXX magnet /14/. The free massless particles decouple.
Such an S-matrix for holes does not corroborate the assumption /15/
that in the @jé@) 6} model, fundamental massive particles are in
the vector representation of @964) Thus, the fermionization
program can be performed in a rigorous fashlon and leads to the
results that differ from those obtained by solving the Bethe- ansatz
equations for higher spin S—’OO /1,3,12/.

Now, we would like to compare the exact solution with perturba-
tion theory. Equations (21) and (23) aliow us to fihd the renormali-
zation-group §5 functions:

_’ay/aan = —(2/1" + o(g?), 5

and f5 is expressed through 55 via eq.(23). The 09?3) term
of eq, (25) does not influence the K—>00 1imit.

Our computations by the method of ref./16/ give the following
one-loop f% functions for model (3):

Rfp=-¢-F-F,  &p=-Ng'+25h,
TLjS§=—N§§Z+2?ﬁ, Tfy= NN, A 2N, gh-2N LGh.

(26)

In subsector (i) the special solution to eqs.(26) with proportional
charges is fzg/N . This agrees with the SU( Nc ) exact result
of refs./6,7/ for /V =1 and with eq.(23) at N, =2. Since the
J% functions (25) and (26) in subsector (i) do npt depend on Ag,



it is worth comparing eq.(25) with the two-loop result at A§==1.
We have computed the J%
the interaction lagrangian

—a a\2 —a o\l —a aN2
Ltntf§(uy LY +g1(~{' VRS AT MO

27)
, €q.(27) is reduced through

functions for a generalized model with

where X;zx;x s At 51:?2=g e
the Fierz rearrangement to eg.(3) with one flavor (g=n=0);
and at f= yl=0 , to the Gross-Neveu model /17/. To avoid diffi-
culties with 3; , we used the analytie renormalization /18/.

The two-~loop result has the form

B 0 GGt T LN Gg g g e,

Pi= q! [' N, g«f + (2§ +g4)(g1"92)]
+ S NG (g g+ laN -2 G g0 4] G

ﬁz is obtained from _(54 by exchanging 94 and 92. This corrects
and extends to two loops our previous result /19/. The chiral-invari-
ant one-charge solution to eq.(28) is ;‘=$:ch up to two loops,

and
B= N, gf /% + 2Ncg,3/ﬁ2.

(29)

Besides, there are only two chiral-noninvariant solutions at hL=2J

974 =* 2§, B~ tggf/ﬂ+4y13/ﬁ2’ At ’C:yf'o » eq.(28)

agrees with ref./20/. )

As has been foreseen by Destri /2/, eq.(29) with AL=22 differs
from eq.(25). However, the renormalization schemes of the Bethe an-
satz and perturbation theory are different as well, and the charge
ghould be recalculated from one scheme to another. All schemes
must agree in the tree approximation; therefore, 1= -+ 0(52),
but generally, no constraint on o(gl) can be set beforehand. Of
course, if 1 was a power serieés in , the two-loop 13
functions would be the same /21/, which is just the case for usual
perturbative renormalization schemes in single-charge theories. The
difference between eqs. (25) and (29) indicates that the Bethe-ansatz
scheme is nonanalytically related to conventional perturbation theory

g4=¥_(2/‘-m)y21ny+ o(yzlny), like in the Kondo model /7,22/. Hox:;ever,

8

P o s
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such a recalculation is permitted by the conformity principle.
In conclusion, we point out possible generalizationﬂiof the pre-
sent work., For the SU( NC) principal chiral field with Nc > 2{3/
all our reasonings up to eq.(1l0) remain valid. One may try to solve
the Bethe-ansatz hierarchy without invoking the "string™ hypothesis.
Obviously, like for Nc=2 , the results will be analogous to the
AG =14 case: the mass spectrum, the S-matrix /9/, and the correla-
tion between the charges /6,7/. The scheme can be extended to the
anisotropic (XXZ ,XYZ ) principal chiral field /23/ as well.
Another situation takes place when we try to introduce the Wess-
Zumino term, After fermionization, one obtains a theory with diffe-
rent numbers of left and right fermions /24/. In such a theory
there ig in fact an anomaly, which does not allow one to renormalize
the model consistently, In filling the Dirac sea, any choice of
branches leads to infinities in momentum of some excited states, There
aredifficulties in perturbation theory too.
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Towioe pemenpe MHOrOKOMITOHeHTHO#H Mozaenu I'pocca-Hepé

®epmuonusamua no [lonsxopy - BurMany riaaBHOrO KHPAankHOrO NONA C rpyrmoi
SU(2), r1.e. 0(4)-0-Monenn, NpoBonXTCA CTPOrUM obpa3oM no koxua. Bmecto Toro, uro-
6b1 pewars (PepMHOHHYI0 MOJAENb BBICUIEFO CMHHA, Mbl H3IyuaeM MHOrOKOMMOHEHTHYIO
KHDanLHO-WHHBapHAHTHYK Moznenb I'pocca - Hep€, 3KBHBANIEHTHOCTs KOTOpO# HMCXORHOIA
6030HHON TeopHH Obina MOKAa3aHA CTPOro, €CiIH YHC/I0O KOMIIOHEHT CTpeMHTCR K Geckomeu-
HOCTH. BbINOAHAETCA AUArOHAIH3AILMA PeNATHBUCTCKON MollesM C noMoisio aH3larua Bere,
NpOBORMTCA 3arioNHeHHe MopA [lMpaka, noctpoeHb! H3MUECKHA BAKYyM H BO3OyXaenua
C KOHEYHOW 3Heprueil W HmnynabcoM. O6HapyXkeHO, YTO ABe KOHCTAHTHI B3aHMOAEHCTBHA
B MofienH JOJDKHLL GbITh CBA3aHLL. JinfA MaccMBHBLIX (huaHuecKux Bo3Gyxaenmit S -MaTpuua
OKa3bIBAETCA TAKOH e, KAK H B ONHOKOMIOHEHTHOM cllyuae. 3TO He MOATBEPHaeT Npen-
MONIOMEHHA O TOM, uTO (DYyHIAAMEHTANIbHbIE YACTHLbI 0 -MOJleIH HAXOMATCA B BEKTOPDHOM
npencraBnenny 0(4). Penopmrpynnosaa fS-GpyHKUMA cOrnacyercd ¢ OQHOIAPALHLIM pelue-
HHEM 10 TEOPMH BO3MYILUEHHH.

Pa6ora BoinosteHa B JlabopaTopun TeopeTnueckoit pusnku OUHH.

TipenpuiT OGHENHHCHHOr0 MHCTHTYTa SICPHRIX HCCHCHOBAHHII. .llyﬁlu 1986

Avdeev L.V, Chizhov M.V. E2-86-663
Exact Solution of the Multiflavor Gross-Neveu Model

The Polyakov - Wiegmann fermionization of the SU(2) principal chiral field in two
dimensions, i.e., the 0(4) sigma model, is fulfilled in a rigorous fashion to the end. Instead
of solving a higher-spin fermionic theory, we study the multiflavor chiral-invariant Gross -
Neveu model, strictly shown to be equivalent to the initial bosonic theory if the number
of flavors tends to infinity. The Bethe-ansatz diagonalization of the relativistic model is per-
formed, the filling of the Dirac sea is accomplished, the physical vacuum and excitations
with finite energy and momentum are constructed. A comrelation between the two coup-
lings in the model is found necessary. The S-matrix for the massive physical excitations pro-
ves to be the same as in the one-flavor case. This does not corroborate the assumption that
the fundamental particles of the sigma model are in the vector representation of 0(4). The
renormalization-group beta function agrees with a one-charge solution in perturbation theory.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.
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