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1. Introduction

The relevance of instanton configurations /1,2/ in the vacuum
of quantized Yang-Mills theories has been newly confirmed by lat-
tice investigations /3~6/, recently. Similarly to what has been
exercized originally in the non-linear 0(3) G -model /7,8/, the
quantum fluctuations manifested in Monte-Carlo generated equilibri-
un field configurations have been smoothed away by a relaxation pro-
cedure ("cooling"), leaving quasistable background fields with ac-
tions and well-defined topological charges in close correspondence
to continuum multi-instantons. Moreover, massless staggered lattice
fermions find a number of zero-modes carried by these background
fields in strict accordance to the Atiyah-Singer index theorem /4/
{modulo fermion doubling) for (anti~) selfdual Yang-Mills fields.

A background topological susceptibility has been estimated /4,5,9/
reasonably close to the phenomenologically expected value, in spite
of the relatively small lattices simulated so far.

Obviously, it is interesting to investigate on the lattice
other models, too, which possess topological excitations., Examples
recently studied are the Georgi-Glashow model /10/ and a three-
dimensional spin model /11/. In this paper we address the topologi=-
cally rion-trivial excitations of the 2D Abelian Higgs model. The
classical field equations of this model are known to have multi-
vortex solutions /12-16/., The latter describe translation invariant
quantized magnetic flux tube configurations within the 3D pheno-
menélogical Ginzburg-Landau theory of superconductivity /17/. To
our knowledge, not much is known about the explicit form of general
solutions beyond existence theorems and some basic properties of
multi-vortices, TQerefore, a numerical study like ours may provide
some more useful information for those interested in superconduc-
tbrs. However, the scope of our present investigation is merely to
demonstrate that "lattice vortices"™ can be identified at all and
possess characteristics known from their continuum counterparts.

As far as the Euclidean quantized 1+1 D Abelian Higgs model is
concerned, we want to address the question as well, whether & di-
lute gas picture can be substantiated. A first and preliminary
study of this kind was published in Ref./18/.

Additionally, on the technicai gide, we take the opportunity
of the 2D model just to gather more experience with relaxation
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procedures and with applying verious lattice prescriptions for the
topological charge. In particular, we shall be able to be more ex-
plicit about the role of "dislocations™ /19,7/, & notion which
comprises shortest-range lattice excitations which still do carry
a topological charge (according to one or another lattice prescrip-
tion), Dislocations are blamed to obscure the topological charge

to be ascribed to the generic strongly fluctuating Monte-Carlo con-
figuration. Therefore, they may be the cause for Monte-Carlo over-
estimates of the topological susceptibility /19/ and for deviations
from scaling.

In order to make the paper selfexplanatory, we will reproduce
the main facts concerning the continuum theory in Section 2, before
we are formulating the ‘model on the lattice in Section 3. Different
relaxation procedures are described in Section 4, followed by a
presentation of the numerical results in Section 5. The conclusions
are to be drawn in Section 6,

2, The Abelian Higgs model ‘and its vortex solutions

We consider an Abelian gauge field Ai coupled to a complex
scalar Higgs field ¢ in two (EBuclidean) dimensions. The action
of the model is defined

S fate {2 BE Dl + a(lolt 2] (2.1)
with Fi = %A] = BjA; and D, =0 - igA;

The scalar selfcoupling A is understood positive. Thus, we are
in the Higgs phase describing a neutral scalar and a neutral vecw
tor boson with masses

mg = 2{fa and

respectively. In the following we will put £° = 1/2.
All field configurations can be subdivided into equivalence
clasges labelled by an integer topological charge

m, = T? {3 ) (2.2)

g -
Q= TH_'T fdlx 9:3 F. = ydzx Fn , (2.3)

3
ar
The 1latter can be rewritten as a sum of winding numbers corres-

ponding to the homotopy group ﬁ}(s1) of mappings from a compact
one-~dimensional manifold S1 onto the gauge group U(1). E.g., if

asymptotically

$(r0) —— u(e) =e*?C ypy

r:]z(l —=00

f-ue,
A ’(204)
Alo) — = i?u"(e) 9, UO)

"then we get a contribution to Q from a contour at infinity:
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The classical field equations are the following ones

e 7 _ (2.5)

Qiﬁj =2 In(¢ 5;5) )

D¢ =2a¢(l¢)*-%)

The character of their solutions strongly depends on the ratio of
the couplings A and 32

(2.6)

b=2 & (2.7)

In the context of the Ginzburg-Landau theory b = 1 characteri-
zes the transition between type I superconductivity (b<1, com-
plete expulsion of magnetic flux) and type II superconductivity
(b>1, with gradual penetration of magnetic flux tubes repelling
each other).
In this paper we concentrate on the case b = 1, for which

Bogomolny has proven the bound /13/

S=WN

IRI=N,  N=012,.. (2.8)

!
and for which the only smooth solutions with finite action are
known to be either exact N~vortex or N-antivortex configura=-
tions, saturating the Bogomolny bound in (2.8) /15/. Thus, for
b =1 there is a c¢lose analogy to the 4D Yang-Millse theory.
The multi-(anti-) vortices are localized around the pointlike
zeros of the Higgs field ¢ o They satisfy an exponential bound

- 1¢*) <« - (1-€) mg Ix|
(£*-1¢1*) ¢ M exp(-(1-€)mgixl) 2.9)
F & M exp(-(1-€)mIx])



we demand finite action, i.e. the following pure gauge behaviour
with certain numbers O<€ and O<M(E )<O0 [12,15/.

3. The Abelian Higgs model on the lattice

We start with the Wilson-like lattice action
2’ 2
Suw S (- ws 0,00 + 2[R v -
n s
o1
- 2R, l?m’i\ COS(ﬂonfi‘\ =¥y *On.i)] + ﬁa (R): _€z}z} (3.1

where @r1i represents the compact link variables Un 4= exp 16% i
? 14
(i = 1,2), and the Higgs fields reside on the lattice sites ’

n=x, oz ¢n = Rn exp iTE . @p(n) abbreviates the plaquette angle,
iseey

GP(”) = 9”:4 + @m?lz - Gnri,4 - On,z . (3.2)

In the naive continuum limit (with lattice spacing a—0 ) one
realizes that (3+1) turns into (2.1) with the identification of
the coupling constants

By = a:_g" ’ /?’2,: 1 and ﬂs = Aa? (3.3)

Adhering to the case of b = 1 , we find that the (classical) con-
tinuum limit corresponds to simultaneously ﬂ1-<>co and ﬂB —= 0
with.

2 (34 (‘)’3 = /i (3.4)

kept fixed.

To our knowledge the continuum limit of the corresponding
quantized theory has not yet been investigated., We do not know,
therefore, about the exlstence of any "scaling window" and how
/31 should be related to the lattice spacing a. In our numeri-
cal investigations we took ﬂ1 2 0,5 and worked on a 162
lattice with periodic boundary conditions.

- Several topological charge definitions on a lattice have
been discussed recently by Panaglctakopoulos /20/. He argued
that Llscher's prescription to construct the charge locally in
terﬁh of transition functions relating the gauges defined
throughout adjacent cells /21/, is equivalent in the present con-

text to

QL = f{r Z [@P(")] , (3.5)
n
where [ 0] ] instructs to reduce the plaquette angles to the in-
terval [-W,+7] . Q, is invariant under continuous deforma-
tions of the lattice field as long as no exceptional configura~
tions are involved. Such configurations, for which the topologi-
cal charge cannot be assigned unambiguously have [Ob(n)] = £
for one plaquette at least.
The so-called "background charge" operator proposed by
Panagiotakopoulos /20/ disregards all local excitations with
large plaquette actions

4-(05@P > € < €e<2 (3.6)

and replaces their contribution by

@t =2 5[ = om] + &2 5 [6,m)] (3.7)

W e " oneet SO P '

EE denotes the maximally connected clusters of "excited" pla-
quettes falling under inequality (3.6) and those having a common
link with them. The remaining sum in (3.7) runs over the '"normal"
plaquettes. Qg happens to be unambiguously defined as long as

[ 2 gm] 4%

negt
Obviously, it is only in the continuum limit ﬂ1-—*4b that "ex-
cited" plaquettes receive a vanishing statistical weight. Thus,
strictly only in this limit one is allowed to let & tend to
ZeXroe

4. Cooling the gauge and Higgs fields

Having at our disposal generic Monte-Carlo generated equili-
brium field configurations, our aim is to smooth the quantum fluc~
tuations by minimizing the action SL . Approximate solutions of
the classical equations of motion should become gradually dis-
cernible before one runs into relatively long~living field confi-
gurations, being quasi-stable under the cooling iterations.



The first procedure which comes in mind is the Metropolis
Monte-Carlo algorithm modified as to accept only those (small)
stochastic changes that lower the action. But, whenever we applied
this method we found the fields trapped in artificial "stationary"
points with action large compared to few multiples of T we ex~—
pect according to Eq. (2.8).

One does not encounter this problem using the following
method, that we call "deterministic" cooling in contradistinction
to the previous one. This ‘procedure has been succesafully applied
in the Yang-Mills case before /3,4/. It is a local process, toc,
in so far one tries to solve the coupled system of the four equa=-
tions of motion

S,

XX
leaving the other degrees of freedom ( j{;’, m$ n ) untouched.
The Eqs. (4.1) have to be supplemented with the second derivative
constraints (975, /DAY AP positive definite). It ‘is diffi-~
cult to solve the equations (4.1) simultaneously. Therefore, we
decided to replace successively the old variables 9n,1’ 9n,2’

Rn, (pn by the solutions of the corresponding equation-out of
(4.1), before stepping to the next site in a standard sequence.
The dependence on the particular succession of exposing the diffe-
rent degrees of freedom to relaxation is certainly a disadvantage
of this cooling procedure. The equation containing OSL /QDRn
leads to a cubic equation . From its coefficients one can infer
that the existence of a zero solution, for instance in the vor-
tex soul, presupposes that

Zﬁz
s

Indeed, this can be assumed to be the case in the continuum 1li-
mit ( 83 — 0). The deterministic cooling changes the action

=0 with Xy = (Ong  Onz s R, ‘f’") (4.1)

- Fz z O. (4.2)

drastically and, actually, drives the configuration rapidly into
the trivial one.

Therefore, we have applied, instead, the smooth "relaxation"
procedure, which accomplicshes an evolution of the field configu-

~

ration in "time" T according to the relaxation equations

dXn, _ _ 95 (4.3)
dv DAY

which one can imagine as Langevin equationa (widely applied in
simulating quantum systems) having the noise switched off.
Actually, the fields evolve according to successive replacements

x S,
%:L _’(xn)new —(x")old - A 2Tk A /o{d

(4.4)
for all degrees of freedom 7(: = ( 6n,1’ 0n,2’ R, ?n ) simul-
taneously, The time step AT can be chosen appropriately to
ensure a gentle relaxation.

The practical experience with this method showed, however,
that all configurations stabilized intermediately with uniform-
ly almost vanishing Higgs field, such that

% St = 2 Paft (4:5)
and the small actual difference is accounted for by the gauge
field action alone. It was interesting to notice that the topo-
logical charge (3.5) remains constant through the whole criti-
cal region. In order to accelerate the adjustment of the Higgs
field to the frozen topology of the gauge field, we applied
deterministic cooling within the region .

425 S > S, > S, (4.6)

crit cet

whers it changes the configuration still gently. Afterwards,
the cooling procedure switches back to relaxation.

The driving "forces" in Eq. (4.3) can be used at the same
time to quantify the degree of violation of the equations of
motion by the actual lattice configuration. We define the
quantity

a3 () (R e (B2 (32))

as a measure of "classicality" of a given configuration.

5. Results

For couplings B1 = 0,5 and 1.0 we have generéted
equilibrium gamples of 50 and 100 configurations, respec-—
tively, by the Metropolis method. The hot start we began
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Fig. 1. Typical relaxation hisiories exhibiting quasi~-stable
background configurations ( B1 a 0,5).
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from obtained angle variables uniformly distributed over (-gj,+7)
and the radial modes chosen according to an ultralocal distribu~
tion (depending on the Higgs potential alone), The standard
Metropolis Monte-~Carlo was performed with maximally 20 hits per
degree of freedom. 50 sweeps have been discarded for "equilibra-
tion" and the samples above were formed by configurations drawn
succesgively after each 10 aweeps in between. Each configuration
from the respective sample has been subject to relaxation accor-
ding to (4.4) with AT = 0.1 (except for the intermediate de-
terministic cooling). After each relaxation step the total action
.{(3.1), the topological charge (3.5) and the "classicality" A
(4.7) were monitored globally and locally.
Typical relaxation histories are shown in PFig. 1. We see
cascading plateaus with quantized action values and with (integer)
topological charges related one to another as

SL = ‘ QLI ' ’I\(‘L(ﬂ") (5¢1)
The quantum of action,ﬂi, has been measured to be
T.(05) ~2.96 T (1.0) = 3.06

From a very few configurations generated at higher ﬂ1 values
we have found by the same cooling procedure

T (20) = 340 T (10.0) = 3.4

This suffices to see that ﬁTL tends to T in the continuum
limit 61 — & . To be more precise, we determined the ra-
tio SL / |QL| always for those pleteau configurations (marked
by arrows in PFig. 1) which minimally violate the equations of
motion (4.1). The corresponding values of A for long-living
plateaus (several hundred iterations) are of the respective or-
der of magnitude

Alp=05) = 0(107%) | Alp,=10) = OU0™9).

We also observe that the average life~time (plateau length) in=-
creases with ;.

If we ke€p always the first (highest) shoulder, we are able
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t¥o assign a'“baokground topological charge* to any of the Monte
Carlo equilibrium configurations (not to be confused with defini-
tion (3.7)). In this way we have found the "background charge"
distributions of Pigs. 2a,b, Of course, reélaxation histories,
which do not pass through any plateau at all, are the most pro-
bable ones, Digtributions of this. kind can serve in principle to
determine a "bamektground topologica1 auaceptibility", similar to
what has been doné in Refa. /4,5,9/.

" For the sample of configurations generated at By = 0.5 we
have tented also the réliabiiity of the background charge operator
QB (Acoopding to Bqe (3.7)}, that had the purpose to circumvent
11l-defined topologies for configurations containing excessively
excited plaquettes, Already for €= 0.5 0.65 we realized on
the plateaus alwaya '

£ B
Qg = Q.- (5.2)

l.¢s, the quasi-stable plateau éonfigurations possess an unambi-
guously defined topologys ’ :

We show in Pig, 3 the densities of the action (a) end of
the tepological charge Q (b) for a Q, = ~1 configuration
(generated and cooled at ﬁ1 = 2,0 ), which turns out to be a
olearly localized, voriex-like object. It is interenting to see
how this structure is reflected by the modulus of the Higgs
field l¢u| = R, - In Pig.4a we ‘have plotted £2 ;Rg as a func-
tion of x, and X, o Pige 4b presents the same quantity loga-
rithmioally versus distance from the assumed vortex center. This
plot shows a high degree of rotational invariance. Tha straight
1ine corresponds to an exponential decay (2.9) with a slope

-V2E L (5.3)

‘An analogous behaviour has besen found for configurations generated

and cooled at ﬂ1 = 1,0 . We feol justified to call the quasi-
stable field configurations "lattice (anti-) vortices”. We should
mention that the clear pattern of rotational symmetry is visible
only in the Higgs field modulus, The phases. ¢11 generically fluc~
tuate strongly from lattice site to site] We did not try to use
gauge freedom to smooth this behaviour to be left with a pure,
monotonic rise of the phases along pathes circumfering the vortex

soul.

11
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Pig. 3. Spatial distributions of the
a) action density acc. to Eqe. (3.1),
b) topological charge density acc. to Eqe (3.5)
for a plateau configuration with Qp = -1 at B1 = 2,0,
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both of them for the event shown in Fig. 3 .
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For comparison, we show in Flg. 5 the densities of action
and topological charge and the deviation f2 - RE for a
Q, = -2 configuration obtained at B1 = 2,0, One sees it clear-
ly consisting of two separated lumps. It is only for the case
b = 1 that two vortices do not have an interaction potential
( cf. Eq. (2.8)).

A dilute gas picture within the semi~classical approach to
the quantized 1+1 D Abelian Higgs model takes for granted the
statistical significance of vortex-antivortex configurations,
too. In our relaxation studies we have, actually, observed a
few cases where a clear plateau was found at values

~

S, =(1Qd +2K) W . (5.4)

The investigation of their topological charge density showed
that K can be read as the number of (well separated) vortex-—
antivortex pairs, less well separated lumps of oppositely
signed topology revealed themselves by characteristic cooling
histories, which lower action with roughly linear slope versus
"time" T , without developing a quasi-stable shoulder.

Finally, we want to comment on the instabllity of the
lattice vortices. It is common that along a plateau at least
one of the vortices shrinks, turning finally into a disloca-
tion. This is a maximally localized excitation which, accor-
ding to the topological charge definition adopted, still carries
one unit of charge. In Fige. 1 the step is marked by bars where
this unit finally disappears. One generic dislocation is por-
trayed in Fig. 6. It lives approximately on a single plaquette
and violates strongly the equations if motion (Zﬁdisloctk 1o4)e
The action of this kind of dislocation can be estimated to be

~

S ~ 236 < Wy (5.5)

disloc

at B1 = 0.5. In contrast to this, narrow excitations which are
still appreciated by the background charge prescription Q%
(Eqe (3.7) with € values in the yet conservative range
€ = 0.25 = 0,32 ) have a minimal action distinctly higher,
SL ~ 2,9, already close to that of maximally classical lattice
vortices,

The lesson to be drawn from this observation is that the

~
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b)

c)

Jo2

Fige 6. Dislocation ( f; = 0.5)

.

a) action density, b) topological charge density,
¢) local violation of the equations of motion, i.e. the
A density ( cf. Eqe (4.7)).
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background topological charge opserator Qg is a suitable
means to avoid counting of artificial lattice configurations
whogse aotion is considerably less than that of classical vor-
tex configurations. One expects therefore that an immediate
topological characterization of equilibrium Monte-Carlo con-
figurations by means of the background charge operator Qg
should give a topological susceptibility less affected by sca-
ling violations. This has, been shown to be a remedy in the
case of the non-linear O0(3) G -model /22/.

6, Discussion and conclusions

In the present paper we have, inspired by the success in
case of the pure non-Abelian gauge theory /3 - 6/, searched
for classical topological excitations in the lattice 2D
Abelian Higgs model. We have considered the particular case
b=1, i.e., the border case between type 1 and type II in the
language of phenomenological superconductivity, which is
distinguished by the fact that multivortices can exist non-
interacting, similarly to the Yang-Mills multiinstantons.

Starting from a lattice transcription of (compact U(1))
gauge and charged matter fields and from a Wilson-like action
we have tried- to solve the lattice field equations (4.1) in an
iterative way. The presence of matter fields makes the appro-
priate procedure not easy to find., The most suitable "cooling"
algorithm seems to be a gentle relaxation with controllable
global steps. While the topology encoded in the gauge field
is exposed relatively early, the development of the correspon-
ding Higgs field pattern needs some acceleration in order to
escape trapping in a local minimum near @ = O.

The structure of the fully developed, maximally classical
field configurations conforms well with expectations based on
general properties known for classical continuum fields:
quantization of action according to the topological charge, ro-
tational symmetry and exponential approach to the classical
vacuum l¢lz = £2 for single vortices according to the scalar
mass m.

In order eventually té learn about the vacuum of the quan-
tized theory by this technique, the configurations to be cooled

17



are to be taken from a Monte-Carlo generated equilibrium
sample. This has been done, actually, with reasonable sta-
tistics for B1 = 0.5 and 51 = 1,0 o Unlike the Yang-Mills
cage, where the coupling constant resides only in the sample

to start with, the relaxation procedure and its results in the
present case are explicitly dependent on B1 due to the ba-
lance of the gauge field kinetic term and the Higgs potential
in the action (Eq. (3.4)). Thus, increasing [3, wakes the

unit of action approach T, improves the maximal classicality
and the life-time of quasi-stable configurations, Finally, the
width of the vortices explicitly depends on 61. However, so
far the quantum continuum limit of this theory is not investi~
gated properly. In particular one does not know how the coup-
ling constant(a) is (are) to be tuned with the lattice spacinge
A Monte-Carlo renormalization study seems to be worthwhile.

The topological "background charge distribution™ ascribed to
the Monte-Carlo parent configurations by cooling into the nea~
rest quasl-stable plateau shows characteristic changes with ﬂ1.
For the above reasons, however, it is useless so far to define
a topological susceptibility and test it for scaling.

All the classical fields "frozen out" finally collapse in-
to narrow, highly non-classical excitations with somewhat
smaller action. They are called dislocations as long as they
contribute one unit to the respective topological charge defi~
nition. Thus, we are in the position to define & minimal action
of topologically active excitations which differs for different
charge operators. The local one (3.5) gives a minimal action
well below the action quantum WTL , while the use of the non-
local operator (3.7) brings the minimal action close to qTL .
Once it comes to a renormalization group study of the quantized
theory, the use of the background charge operator Q% for im~-
mediately analysing Mont-Carlo configurations is expected to
result in a considerably improved scaling of the topological
susceptibility. This experience one should have in mind con=-
templating on the lattice topology of gauge fields in general.

Vortex- antivortex superpositions do not solve the conti-
nuum equations of motion. In our data, however, there are a
few cooling histories corresponding to separated vortex-anti-
vortex pairs almost as quasi-stable as multi-vortices are,

Less well separated pairs give rise to a peculiar pattern of

18 *

glowed down relaxation probably due to collective motion and
annihilation, These findings support the semi-classical dilute
gas picture.

This work is meant as well as a step towards a lattice
gtudy of the quantized 2D Abelian Higgs model with emphasis
on the topological aspects as it should sharpen the attention
for the intrinsic problems of topological analyses on the lat-
tice in general. We consider as particular interesting any
evidence for the presence of a vortex-antivortex background
structure. Of coursé, methods like those employed here might
be useful, too, in a study of the real time flux-tube dynamics
in type II superconductors. :
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I'pynenannsy C,, Unnroudpury 3.-M.,
Miomnep-Iipofickap M.
Buxpu I anyxMmopiiofl aSceneeo#t XMIrcoBCKoM MOAENIM Ha pemeTke

E2-86-615

YucnioMilo 1tapneHel BHXpeBble KOHOUI'ypanuu B YIOMAHYTOM MOMOeNH
C noMoludlo pCﬂ&KCBuHH Ha OCHOBe pemeTOYHbIX noneﬁ, I'€HepUpoOBaH—
HbIX MceTonoM MouTe-Kapmo. IlostlyueHHbIe BUXPU ABIAWTCHA NPUGIIXEH—
HbIMK DEWEeHHAMH pemeTOUHHX ypaBHEHHI [BMXEHHA, O6namanT LeitcT-—
BHEM SI::"|QLJ H OOHO3HAYHO OMNpeleSyIeHHbIM TOIOJIOHYeCKUM 3apsi-—
OOM QL' Oxu SKCIIOHEHUHAJIBbHO CnadawT K BAaKYYMHBIM 3HaueHHaM I10—
neti. HafimeHnl Takxe BHXpeBble—aHTHBHXpeBble CYINEepPHNOsSHIHMH B COOT—
BEeTCTBHH C KapTHHOH paspexeHHoOI'o rasa. OTOenbHele BHXpH, Tpe-—
Bpamasach B "nncnoxaunﬂ", B XOHOe peJlakcauuu HucuesawoT, Hemokanb-—
HO€& olpefelJIeHHE TONOJOI'HYEeCKOoI'o 3apsga, B OTIIHUHE OT JIOKallb—
HOI'0, OKashHBaeTCsag HEUYBCTBUTEJIbHHIM OTHOCHTEIbHO HOHCJIOKALHH,

Pa6oTa BhmiosiHEHa B JlaGopaToOpUM BHIUHMCIIMTEJIBHOH TeXHHKH
U aBToMaTusauuu OUAU.

[Ipenpunt ObveaMHEHHOro MHCTUTYTa SINEPHBIX MccnenoBaHui. lyGHa 1986
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Grunewald S., Ilgenfritz E.-M.,
Miller-Preussker M.

Lattice Vortices in the Two-Dimensional
Abelian Higgs Model ’

E2-86-615

We generate and identify multi-vortices of the 2D Abelian
Higgs model on a finite lattice by relaxation of Monte-Carlo
equilibrium configurations. The lattice vortices have action
and a uniquely defined topological charge corresponding to
the continuum ones. They exhibit the expected exponential de-
cay behaviour and satisfy approximately the classical equa-
tions of motion. Vortex—antivortex superpositions are seen as
well, supporting the dilute gas picture. Single vortices fi-
nally relax into "dislocations'" and dissappear. A background
charge construction turns out nearly insensitive with respect
to dislocations.

The investigation has been performed at the Laboratory
of Computing Techniques and Automation, JINR.
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