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Recent data on lepton deep inelasti0 scattering (DIS) on 
nuclei/1•2/ have turned out to be in disagreement wi th theoreti ­
cal expectations ~.4/ based on the tráditional idea that a nuc­
leus is a system of almost free nucleons (EMC-effect). This 
attracts attention to theoretical investigations of the quark 
structure of nuclei (for latest reviews, see, e.g.,~16/ ). Yet 
it was shown n / lately that earlier calculations.did not take 
into account the binding of nucleons, an important nuclear pro­
perty. The calculations indicated that th~ account of binding 
of nucieons as well as their Fermi motion can explain the EMC­
effect at x :;:: 0.3 (x =.Q2I 2mqo is t he s caLí.ng variable of a nuc­
leon). Though general ideas of the role of nucleon binding are 
doubtless, the model used in the earlier numerical calcula­
tions n/ (i.e., the Fermi-gas of nucleons moving in the attrac­
tive potential) needs further improvement*. That is why in this 
paper we present results of the calculations of structure-func­
t í.on ' (SF) ratio R (x) =2 FA(x)1 AFd(x) using a realistic model for 
the nuclear structure. 2 2 

As it has already been shown/7~ the single-nucleon contribu­
,tton to the nuclear SF can be written as follows 

4 
F A(N) (x) = f ~-:S (p) F N (x ), (1)

2 (2.71)4 2 P 

where x =Q2 12pq is the scaling variab le of a bound nucleon;Fr is the nucleon SF averaged over the spin and isospin: 

S(p) =.~ I cp (P)1 22 71 0 (m+f - :p )' (2)À oÀ X 

s (P) is the four-momentum distribution of nucleons in a nucleus 
(the spectral function); m+.f À =-Eo (A)- EÀ(A-l ) , E oCA) and 
EMA-i) are the g.s. energy and-energy of the residual-nucleus 
exc í t ed state I (A-i) X>..respectively. The de tec t on probabilityí 

of a given excited state is determined by _ 

CPÀ(p) = f dre.... iPr1>x(r ) ; cpx(r)=«A-i)Àltfi(f)IA:>, 

where t/J (F) í.s the nucleon field oper ator , The func t i ons cp X(r) 
obey the following normalization cond t i.on r f drl 1> À(f)I 2= A í 

* Results of harmontc oscillator wave functions are presented 
in the recent paper h8~ 

~tr1>ti16iittUl~~ mi~ I 
UevBf:.U! OtCse~og0d 

~~rnMRTt;twp.:.. . 
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and the Dyson equation~/ 

(fÀ+V 2/2rn)"epÀ([):: f dr;M(r;r;., fÀ)epÀ (r;);	 (3) 

where M is the nucleon mass operator in a nucleus. We emphasize 
that state~ I(A-~)A>have a complex many-particle structure. The 
contribution to the spectral function from rnany-particle states 
can'be effectively allowed for in the following way/9/ 

Let us consider the equation 
2/2rn)ep(-V cr,f)+fdr'M(r;r;.,f)ep (t~;-f) ='& (f)ep (r,f)n	 n n n (4) 

and assume that the whole orthonormalized set of functions 
{epncr,f) I wi th eigenvalues &n (f) (these are comp Lex values, 
&n(f) =E n(f) - i r n(f)/2 in the region f < 11 ,fl being the nucleus 
binding energy per nucleon) obeys this equation. Using eq.(4) 
and the ~epresentation of the nucleon propagator in terms of 
functions {epJr,f)1 one can obtain the following expression 

- 2 r. (f)
S· P ( ) =	 L I«; (p,f)! ---...:..D..--------·:I (5)
 

n (f -:En.(f)) 2+ r;(f)/ 4 f =·po-rn .
 

The physical meanirig of eq.(5) is obvious. Namely, it rneans 
that the hole excitation spectrum of nuclei is a set of reso­
nances; centres of the resonances correspond to one-particle 
leveIs of the shell modelo Note that such a p~ttern is clearly 
shown by the (ee'prdata, and these data enable us to determine 
S (P), in p r í.nc í pLe , 

Via eq.(5), eq.(I) is transformed into 
.	 3 

A d .p 11 d 2 r n(f) N rnx 
F2 (x) =.L f-s f 2~'1 epn(p,f)1 ----...- ........------:F2 (----------::.....:"'). (6) 

n (277)-00 77 (f-En(f))2+r~(f)/4 Il}+f-:pn 

The same expressión was used when calculatingR(x) (see Fig.I). 
The rnass operator was chosen in the form 

M(r.r", e)=o(r-r ' -)[(1 +a (f)) V (r) ~ Vc (r)+V (r)+ i f3 (f) V (r)1V 0(0)] , (7)o	 o
~o. 

where	 Vo(r) ~V _ (r)+ V (r) is a shell-model potential,e.g.,s re, . ç	 f
the Saxon-Woods one w~th generally accepted parameters 11/ 

(V s.o , and Vc are the spin-orbit and Coulomb parts, respecti ­
vely). For a (f) and f3 (f) we use the following parametrízation 
(for details, see/9 / ) 

a (f) ==-.a (f-:fl ):IVO (O), a =0.525, 

- -1	 
o«, 

f3(f) = 16.6 [l-exp (y (f-Il))] MeV, -y=.0.Q27MeV. 

2 " 
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Fig.l. Th~ ratios of SF calculated with the set of pa­
»ametiere from eq, (7a) (--) with a =o. 525~ f3lo; 
(-0_) a = o. 525~ f3= o; (- -) a = O, f3= O for para­
metrization (8a) on the nucleon SF. The experimental 
data from o - EMC~ • - SLAC and o - BCDMS for 56 Fe. 

The calculations were performed for the range of nuclei with 
the following nucleon SF /12/' 

F :(X)=-O,59 y-:X (1- x )2.8 + 0.33(1-x )3.8 + 0.49(1_x)8	 ~8) 

and other parametrizations used in early papers 

N - 4
F2 (x)=./X (1-x)2 + 0.15(1-x) ,	 (8a) 

N
F2 (x) ee . 4.229 xO.52(1_x)3.08+ o.e (1_x)4..5.5 

(8b) 
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In Fdg ; I 'we'also present, for comparí son , quantities R shell (x) 
calculated with a=:{3.=:O* and the nucleon SF (Ba) . It s evJ.­í 

'dent that the curve R h 11 (x) lies abov~ the curves given by 
s e d 'd .eq. ( 6). This circumstance can be un erstood from consJ. erJ.ng 

-. 
the following expression 17:1 

.. 
RA(X) ::,FN(_~__ .) IFN(x). (9)m + <f> 2 

This equation is correct in the region x.«l (in fact, up to 
x-:;.,:0.6) and can be obtained by expandingFr in eq.(6) around t-
point f=: <f>, where .<f> is the aver age nucleon-separation energy 

~ 

d4 n I.l. df frn (f)<f,>= f -=.....r;. f S(p).= L f '-- ---------..----'. (lO)
/ (211)4 n -00 211 (f -:E (f) 2+ r 2(f)/4' 

n Jl 

From the fact .that F: (x) dec.reases for x > 0.01 it follows that 
R(x) drops with increasing l'<f>I.From eq.(IO) it follows that 
the inclusion of the f -dep~ndence and of the imaginary part of 
the mass operator leads' to the increa~e of \<f>1 as compared 
wi th the she l.Le-model value l'<f>Sh I. For completeness, in the 
table we give values <f> andc, >sh . 

I 

Table 

The average excitation and kinetic energies (in MeV/A) 

Nucleus -:.<f> 

a = 

f3 = 

O 
O 

a = 
f3= 

0.525 
O 

14N 

56Fe 

20.1 

20.5 

26.1 

29.4 

a = 

f3= 
O 
O 

.<T> 

a= 
f3= 

0.525 
O 

16.4 

1&.4 

17.5 

19.5 

In this connection we would lik~ to emphasize that the shell­
model calculation gives a. toe small núclear binding energy, 
a~ the same time the consideration of the f-dependent complex 

(r­nucleon mass operator leads to a satisfactory description of I 

the nuclear binding energy (for details see/9 / ) . 

,J') 

*The shell-model calculations of the single-nucleon contri­
bution to tbe nuclear SF using the results of ref.4 ( were 
also made in ref.~3~ 

1.2 I 
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tO 
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FFe/E D 
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199 

<0.2 O.I.tI i' 0.6 0.8 X 
Fig.2. The ratio R(x) for different parametrization 
(8) (-. -)3 (Ba) (-) and (Bb) (- - -) of the nue­
leon SF with the set of parameters from eq. (7a) for 56Fe. 

The figures show satisfactory agreement with the data in 
the regionx >_,0.3. Note, however, that in thé region X-+ 1 
the ratio R~) is dependent on the choice of nucleon SF (see. 
Figs.2,3). 

Let us discuss the validity of eq.(I) and possible correc­
tions to it. First of alI, from comparison of the virtual-pho­
ton interaction time (T. t .... (mx)1) wi th the 'mean internucleon 

• 1 In
d i s t ancaf.... m-1T ) one can expect that the corrections to .eq. (l) 
are negligible in the region Tint «m;;1 or xx- m1Tl m ::!O.t5.1'his 
expectation is confi~ed a posteriori by the calculations that 
agree with data in the region x~.0.3. However, in the region 
x~:O.15 (and for x >1 ) some significant correct~ons to eq.(I) 
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Fig.3. Same as in fig.2~ but for 1~. 

are possible. To estimate their total value, let us write the 
nucleon SF as follows 

FA ='FA(N) ôF A 
2 2 + 2'	 (I 1) 

The value ôF~ is restricted by the QCD energy sum rule stating 
that in the limit Q2-+ DO the first moments of F2 (x) of different 
targets I 

/lt m 
<x > == f dx F (x)2target O 

behave
'\ 

like masses of the corresponding targets~4: namely 

MA<x> I <x> ==--:==A (1 +/l Im). (I2)A N m 

6 

The nucleon contribution to <X> is obtained by the integration 
over x of both sides of eq.(l)~ and the result can be found 
from eq.(12) by the substitution /l~<f>. Thus, we have 

MJm ,<ô:~> 11-'<f> A(x).<ôx>	 == J dx ôF (I3)---~ =-<------.m	 O 2<x>	 A, 
N 

I
f 

~ ~. 
I, We note that both quantities /l and <f>, can be obtained from
 

L experiments.
 
Among different types of contributions to ôF~~) at small
,I x one should specify the reaction on exchanged mesons. The 

'I contribution to the nuclear SF from pion exchange diagram 
(Fig.4a) was caLcu-l ated in refs{15,.16/; in papers / 17 1 t he mesonic 
contribution to SF is constructed in accordance with the cor­
responding contribution to the nuclear binding energy. 

~	 j~[=y>
 
l j------"':> 1 

~A{, • tA A {: , ,}(A-Z)" 

a)	 b) 
Fig.4. a) An example of DIS off the exchanged meson. 
b) DIS off the virtual 6q-configuration. 

In the region x » 1, one can expect, for example, the contri ­
bution from the DIS off virtual muLtiquark configurations (see, 
e.g., ref. / 17 1 ). We note that the calculation of such contri ­
butions is difficult due to the absence of informaÊion on the 
probability to detect such configurations in a nuc Leus (the 
vertex ~6q in Fig.4b). From this point of view the nuclear 
DIS-exper1ment is an ideal tool for obtaining such an informa­
tion. We should also emphasize that the nucleon momentum dis-

t r í.but í on- in a nuc Leus N (p) == f~PoS(p) has a "long tail", this is 
110 I 27T

proved by (ee "p) -data '. Its existence Le ad s to the fact that 
~(N{x>l)#O in the ~·egionx-1»I<f>l/m"asit follows from 
eij.(l). Thus; the extraction of the information on possible 

"

. 
~	 

exotic configurations from the data must be accompanied by an
 
accurate subtracti9n of a high-momentum-nucleon contribution.
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In conclusion, we would like to point out that the use of 

a more realistic model for the nuclear structure within the 

approach of ref.nl made the EMC-effect description better. 
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AKynHHH'IeB C. B. u p;p. E2-86-61 
EMC-3~eKT H CTpYKTypa aAep 

MbJ npep;CTaBJUleM pe3ynbTaTbJ HOBblX paC'leTOB OP;HO'lCl.CTH'IHOrO 
BKna,Qa B flp;epHYIO CTpyKTypHYIO cPYHKU;HI1 npH KoppeKTHOM Y'leTe 
flp;epHoH CTPYKTypbJ. PaC'leTbJ nOKa3aJIH, 'ITO Y'IeT CBfl3H HYKnoHoB, 
a TaK~e HX $epMH-p;BH~eHHfl, Mo~eT 06bflCHHTb EMC-3cbcbeKT npH x ~ 

~ 0,3. 06cY£AaeTcfl TaK~e 06naCTb npHMeHHMOCTH Op;HOHYKnOHHoro 
npJ16n~eHHfl H B03MO~HbJe IICmpaBKH K 3T'OMY npH6n.H~eHHII). Cpe;P;H 
pa3nH'IHblX BH,[IOB BKna,Qa B EMC-3qxpeKT npH ManblX x I'fO~HO Bbl,D;e­
JIHTb peaKU;HH Ha 06MeHHb[~ Me30Hax. II o6naCTH x > I MO~HO o~w­
,I:\aTb, 'ITO oKa~eTCH cymecTneHHblM BKJla,D; OT rny60KoHeynpyrorp 
pacceflHHfl Ha M~iOroKBapKPB!.•1X KOHcPHrypa,U;HHX. 

Pa60Ta BbJ)10nHeHa B JJa6opaTopml T'eOpeTH'IeCKoji cPH3HKH mum 

Coo61lleHHe 06beAHHelUforo HHcmTyra IIAepHblX tlCCneAoBaHHii. .uy6Ha 1986 

Aculinichev S.V. et ale E2-86-61 
The EMC-Effect and Structure of Nuclei 

We present the results of new calculations of a single­
nucleon contribution to the nuclear structure functions with 
a correct account of the nuclear structure. The calculations 
indicate that the account of binding of nucleons as well as 
their Fermi motion can explain the EMC-effect at x ~ 0.3. We 
also discuss applicability of the single-nucleon approxima­
tion and possible corrections to it. Among different types 
of contributions to EMC-effect at small x one should specify 
the reaction on exchanged mesons. In the region x > lone can 
expect the contribution from the virtual multiquark configu­
rations. 

The investigation h8s been performed at the Laboratory 
of Theoretical Physics, JINR. 
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