

OбちEANHEHHAM
 ИHCTVTYT
 Ядерных
 исследований
 Aубна

E2-86-595

A.A.Belkov*, B.Z.Kopeliovich

ADLER RELATION

AND NEUTRINO-PRODUCTION
OF SINGLE HADRONS

Submitted to " $9 \Phi^{\prime \prime}$

* The Institute for High Energy Physics (Serpukhov)

1986

1. Introduction

A partial conservation of axial-vector current (PCAC) /1/ is a very profound principle reflecting a non-trivial structure of vacuum. In contrast to conservation of vector current which is ensured by the equality of nucleon masses, special requirements are needed in the case of axial current even in the chiral limit when quark masses are equal to zero. Existence of a massless Goldstone meson (pion) and fulfilment of definite relations between axial meson and pion contributions to the weak hadron current are required. Therefore, within the 4 -momentum transfer $Q^{2} \rightarrow 0$ PCAC makes it possible to express couplins constants or amplitudes of the axial meson interaction with hadron via analogous values for a pion. One example 1 a the Goldberger-Treiman $/ 2 /$ relation, another one is the Adier relation $/ 3 /$, which connects the amplitude of the neutrino-hadron inelastic interaction (e.g. $V N-\mu F$, where $F \neq N$) at $Q^{2}=0$ with the pion interaction ampintude ($\pi N \rightarrow F$).

In the paper by Piketty-Stodolaky $/ 4 /$ one finds a detailed analysis of hadron neutrino-production (π, A_{1}, ρ, \ldots). The matn problem is the Q^{2} extrapolation from the region of PCAC applicability to the values of $Q^{2} \approx 1(\mathrm{GeV} / \mathrm{c})^{2}$. When the Adler relation was "matched" with the contribution of the intermediate A_{1}-meson state in paper $/ 4 /$, a peculiar result was obtained, namely the cross-section of elaatic pion scattering was equal to the crose section of diffractive dissociation ($\pi-A_{1}$), while experimentally these cross-sections differ by more than an order of magnitude. The reason for this paradox and the problem of extrapolation over Q^{2} are considered in section 2 of thia paper.

In Lackner's paper $/ 5 /$ the process of coherent aingle pion neutri-no-production off nuclei is considered. However, the dependence on Q^{2} was taken into account only in the form of the nuclear formisctor dependence on the longitudinal momentum transfer. The absence in $/ 5 /$ of Q^{2}-dependence of the amplitude of neutrino-production of nucleon results in the incorrect dependences of neutrino-production crose-sections on the neutrino energy ($\propto E$) and on the nucleus atomic number $\left(\propto A^{1 / 3}\right.$). These problems are considered in Sec. 3 .

The coherent single pion neutrino-production was alao regarded in Reln-Sehgal's paper 16\%. The amplitude of neutrino-production off a nucleon as a function of Q^{2} was taken in the pole form $w 1$ th the axial mass $M_{A} \approx 1 \mathrm{GeV}$. However, this approximation wes not grounded and the problem $/ 4 /$ of extrapolation over Q^{2} was not discussed at all. Besides, a completely incorreot formula contradicting Quantum Mechanics was used for the amplitude of elastic $\mathbb{R} A-s c a t t e r i n g$. These problems are diacussed in Sec. 3.

In the present paper the dispersion analysis of the single pion neutrino-production amplitude is performed (Sec. 2). Results of the analysia are used to obtain the cross-sections of coherent (Sec. 3) and incoherent (Sec. 4) single pion neutrino-production off nuclei. In sec. 5 the resulta of calculations are compared with the extating experimental data. The experimental aelection of coherent events ia also discussed. Sec. 6 deals with the process of aingle A_{1}-meson neut-rino-production.
2. Disperaion Generalization of the Adler Relation

Let us consider pion production in the charged current:

$$
\begin{equation*}
\nu N \rightarrow \mu^{-} \pi^{+} N \tag{1}
\end{equation*}
$$

The process will be characterized by the following kinemetic variables: E is the incident neutrino energy; E^{\prime} is the muon energy; $\nu=E-E^{\prime}$; $q^{2} \equiv-Q^{2}$ is the square of the 4 -momentum transier from neutrino to the muon; $k_{r, L}$ are the trensversal or lonsitudinal (with respect to the \vec{q}-momentum momentum components of the recoil nucleon; $k_{I} \approx$ $\left(m_{T}^{2}+Q^{2}\right) / 2 \nu$. The variables k_{T} and k_{I} appear to be more convenient than the nucleon 4 -momentum transfer squared $t \approx-k_{T}^{2}-k_{L}^{2}$.

Let us conaider the contribution of axial current to the crosesection of reaction (1). At $Q^{2}=0$ the PCAC hypothesis gives a very simple expression known as the Ader relation $/ 3 \%$ for a oontribution of axial current to the crossmection of reaction (1):

$$
\begin{equation*}
\left.\frac{d \sigma(\nu N-\mu \pi N)}{d \nu d Q^{2} d k_{T}^{2}}\right|_{Q^{2}=0}=\frac{G^{2}}{2 \pi^{2}} \frac{E^{\prime}}{\nu E} f_{\pi}^{2} \frac{d \sigma_{e} Q^{N}}{d k_{T}^{2}} \tag{2}
\end{equation*}
$$

Where $G=10^{-5} m_{N}^{-2}$ is the universal constant of the weak interaction; $f_{T}=0.93 m_{T}$ is the $\pi \rightarrow \mu \nu$ decay constant; $d G_{e l}^{K N} / d k_{T}^{2}$ is the differentitr crosg-section of elastic πN-scattering at the pion energy ν.

If one puts down the dispersion relation over Q^{2} for the axisl part of the proceas (1) amplitude, then one could naively expect at small valuea of Q^{2} the dominance of the pion pole. However, it is not true, since the pion pole contribution is suppressed by the pion not true, since the pion pole contribution is suppressed by the pion
mase squared $/ 3,4 /$. A contribution of the aame order appears from more diatant aingularities, i.e. poles (A_{1}, A_{3}, \ldots) and a cut at $M^{2}=9 \mathrm{~m}_{\pi}^{2}$. Thia contribution is comected with the pion pole by the Ader relation.

It has been shown in ref. $/ 4 /$ that if one takes into account only the contribution of A_{1}-meson to the oross-aection of aingle pion neutri-no-produotion

$$
\frac{d \sigma(\nu N \rightarrow \mu \pi N)}{d \nu d Q^{2} d k_{T}^{2}}=\frac{G^{2}}{\pi^{2}} \frac{1}{4 E^{2}} f_{A}^{2} \frac{Q^{2}}{\left(Q^{2}+m_{A}^{2}\right)^{2}} \frac{4 E E^{\prime}-Q^{2}}{2|\vec{q}|} \frac{d G(\pi N \rightarrow A N),(3)}{d k_{T}^{2}}
$$

then at $Q^{2} \rightarrow 0$ it follows from PCAC that

$$
\begin{equation*}
\frac{f_{A}^{2}}{m_{A}^{4}} \lim _{Q^{2} \rightarrow 0} Q^{2} \frac{d \sigma\left(\pi N^{2} A_{1} N\right)}{d k_{T}^{2}}=f_{\pi}^{2} \frac{d \sigma_{Q}^{\pi N}}{d k_{T}^{2}} \tag{4}
\end{equation*}
$$

Where $d \sigma\left(\pi N \rightarrow A_{1} N\right) / d k_{T}^{2}$ is the reaction $T N \rightarrow A_{1} N$ crose-section dependent on the pion virtuality $Q^{2} ; f_{A}$ is the $A_{1} \rightarrow \mu \nu$ decay conotant connocted with the $\rho \rho^{\circ} \rightarrow e^{+} e^{-}$decay constant $f \rho$ by the second Weinberg sum rule $/ 7 / f_{A}=f_{p}$.

Relation (4) ensures tranaition to Adier relation (2) at $Q^{2} \rightarrow 0$. However, a problem appears how to extrapolate relation (2) to the region of large Q^{2}. If, one substitutes the experimental value $G(T N \rightarrow A, N)$ to (3), then at large $Q^{2} \approx m_{A}^{2}$ one finds the neutrino production crose section to be an order of magnitude amaller than the result of extrapolation of the Adler relation (2) with the axial formfactor

$$
\begin{equation*}
F_{N}^{\text {pole }}\left(Q^{2}\right)=\left(1+Q^{2} / m_{A}^{2}\right)^{-1} \tag{5}
\end{equation*}
$$

The paradox is caused by the fact that in contrast to the vector current, for which the dowinance of vector mesons takes place, a contribution from the A_{1}-meson to the axial current is not dominant. It is known that the cross-section $\sigma\left(\pi N \rightarrow A_{1} N\right)$ is only about 10% of the total cross-section of pion diffractive dissociation. Therefore, in the diaperaion relation for the amplitude of reaction (1) one should expect a dominance of the cut comected with multiparticle final atates in the diffractive diagociation reaction $\pi N \rightarrow X N$. As is well-known (see, for instance $/ 8 /$), the main contribution to the non-resonant beakground in this reaction is connected with the $\rho-\pi$ pair production, which is well described by the Deok model /9/. In this oase the dependence of the apectral function of the dispersion relation on u^{2} (p^{π}-system effective mass aquared) is defined by the factor $\left(\mu^{2}-m_{n}^{2}\right)^{-1}$. Thus the cut contribution to the axial formiactor (normalized per unity at $Q^{2}=0$) is presented by the following expression:

$$
\begin{align*}
& E_{N}^{c u t}\left(Q^{2}\right)=\left(m_{\rho}+m_{\pi}\right)^{2} \int_{\left(m_{\rho}+m_{\pi}\right)^{2}}^{\infty} \frac{d M^{2}}{\left(Q^{2}+M^{2} X M^{2}-m_{\pi}^{2}\right)}= \\
& =\frac{\left(m_{\rho}+m_{\pi}\right)^{2}}{Q^{2}+m_{\pi}^{2}} \ln \left[1+\frac{Q^{2}+m_{\pi}^{2}}{\left(m_{\rho}+m_{\pi}\right)^{2}}\right] . \tag{6}
\end{align*}
$$

Power geriea expansion of this expression at amall Q^{2}, has a form: $P_{N}^{\text {cut }}\left(q^{2}\right) \approx 1-Q^{2} / 2\left(m_{\rho}+m_{\pi}\right)^{2}$. It follows from the first Weinberg sum rule $/ 7 /$ derived in the chiral limits $m_{T}=0$ that $2 \mathrm{~m}_{\rho}^{2}=\mathrm{m}_{\mathrm{A}}^{2}$ (note that relation $2\left(m_{\rho}+m_{5}\right)^{2}=m_{A}^{2}$ is fulfilled numericalis much better).

Thus Q^{2}-dependences of A_{1}-pole and $\rho \pi$-cut contributions in the axial formfactor of reaction (1) coincide at amsil Q^{2}. From comparison of (5) and (6) one can easily aee that numerical aimilarity of these expressions at $Q^{2} \geqslant m_{A}^{2}$ is also beld with a high accuracy. The fact that the $\rho \sqrt{11}$-cutncenter of mass" coincides with the A_{1}-pole position seems quite non-trivial. Similarity of the $\rho \pi$-system mass apectrum in the reaction $\pi N \rightarrow \rho \pi N$ and the Brett-Wigner curve describing A_{1}-meson, resulte from the superposition of a decrease of the Deck amplitude with x^{2} and a threshold increase of the $\rho \pi-$-system phase space volume. The phase apace volume is not included in integral (6), therefore the iuitation of the pole contribution by the non-resonant background in these two cases seems to be caused by different reasons.

Since Q^{2}-dependences of formfactors (5) and (6) are close and the oross-section normalization at $Q^{2}=0$ is fixed by Adler relation (2), the relative valuea of pole and cut contributiona are irrelevant. The cross-section is extrapolated to the region of $Q^{2} \propto 0$ by multiplying expression (2) by $F_{N}^{2}\left(Q^{2}\right)$, where the formfactor $F_{N}\left(Q^{2}\right)$ is taken further on in form (5).
3. Coherent Neutrino-Production of Pions off Fuclei

Let us consider the process $\nu A \rightarrow \mu \pi A$, where a nucleus remains in the initial atate. The process is of interest, since here the diffractive mechaniam contribution is enhanced. Indeed, the vector current contribution in this case is not only suppressed by the factor $1 / \nu$, but also forbiden by the quantum number selection rulea in the coherent process. The axial current contribution in the coherent neutrino production cross-section can be calculated using the Adler relation:

$$
\begin{equation*}
\frac{d \sigma(\nu A-\mu \pi A)}{d Q^{2} d \nu d k_{T}^{2}}=\frac{G^{2}}{2 \pi^{2}} \frac{E^{\prime}}{\nu E} f_{\pi}^{2} \frac{d \sigma_{\ell}^{\pi A}}{d k_{T}^{2}}\left|F_{A}\left(Q^{2}\right)\right|^{2} \tag{7}
\end{equation*}
$$

Here

$$
\begin{equation*}
\frac{d \sigma_{l}^{\pi A}}{d k_{T}^{2}}=\frac{1}{4 \pi}\left|f_{R l}^{\pi A}\left(k_{T}\right)\right|^{2} \tag{8}
\end{equation*}
$$

$f_{e l}^{\pi A}\left(k_{T}\right)=i \int d^{2} b \exp (i \vec{k} \vec{b})\left\{1-\exp \left[i f_{e l}^{(0)} T(b)\right]\right\}$,
Where $T(b)=\int_{-\infty}^{\infty} d z \tilde{\rho}_{A}(z, b) \quad$ is the nuclear profile function;
$\tilde{\rho}_{A}(z, b)=\int d^{2} b^{\prime} \rho_{A}\left(z, b^{\prime}\right) \frac{1}{2 \pi B_{\pi N}} \exp \left[-\frac{\left(\vec{b}-\vec{b}^{\prime}\right)^{2}}{2 B_{\pi N}}\right]$,
$\int_{A}(z, b)$ is the single particle nuclear density dependent on the longitudinal coordinate z and the impact parameter $b ; B_{n N}$ is the slope parameter of elastic πN-scattering. All formiae in this gection are written in the form of optical approximation for the aske of visual proof. More accurate formulae obtained with the aubstitution of the following type exp $(-B T) \rightarrow\left[1-\frac{\sigma T}{A}\right]^{A}$ are used for numerical calculations in section 5 , which allows introducing essential corrections for light nuclei.

For heavy nuclei $T(b)$ in the $B_{T N} \ll R_{A}^{2} / 2$ approximation has a aimpler form: $T(b) \approx \int_{-\infty}^{\infty} d z \rho_{A}(b, z)$. The ampiitude $f e l\left(k_{q}\right)$ in (9) is normalized by the requirement $f_{e l}^{T N}(0)=i / 2(1-\rho) \sigma_{t o t}^{\pi N}$, where $\rho=\operatorname{Ref}_{e}^{T N}(0) / \operatorname{Im} f_{e}^{T N}(0)$

At emall values of $k_{T}^{2} \ll 1 / R_{A}^{2}$ differential cross-section (8) can be presented in the following form:

$$
\begin{equation*}
\frac{d \sigma_{e l}^{\pi A}}{d k_{T}^{2}}=\frac{\left(\sigma_{1 \circ t}^{\pi A}\right)^{2}}{16 \pi} \exp \left(-B_{T} k_{T}^{2}\right) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{t_{0} t}^{\pi A}=2 \int d^{2} b \quad\left\{1-\exp \left[-\frac{1}{2} \sigma_{t_{0} t}^{\pi N} T(b)\right] \cos \left[\frac{1}{2} \rho \sigma_{t_{0} t}^{\pi N} T(b)\right]\right\}, \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
B_{T}=\frac{1}{2}\left\langle b^{2}\right\rangle=\frac{1}{\sigma_{t d t}^{\pi A}} \int d^{2} b b^{2}\left\{1-\exp \left[-\frac{1}{2} \sigma_{t_{o} t}^{\pi N} T(b)\right]\right\} . \tag{13}
\end{equation*}
$$

As in the case of the neutrino-production on a nucleon, the amplitude ia extrapolated to the region of values of $Q^{2} \neq 0$ in (7) using the formfactor $F_{A}\left(Q^{2}\right)$ determined from dispersion relations. Since the amplitude of neutrino-production on nucleus 18 proportional to the nucleon amplitude, it can be easily ahown that $F_{A}\left(Q^{2}\right)$ is factorized in the following form:

$$
\begin{equation*}
F_{A}\left(Q^{2}\right)=F_{N}\left(Q^{2}\right) \widetilde{F}_{A}\left(Q^{2}\right) \tag{14}
\end{equation*}
$$

The formfactor $F_{N}\left(Q^{2}\right)$ was introduced in the previous section and Q^{2} dependence of the nuclear formactor $\widetilde{F}_{A}\left(Q^{2}\right)$ is determined by the anomalous thresholds $/ 10 /$ close to $Q^{2}=0$ and causing a strong Q^{2}-dependence of the $\tilde{F}_{A}\left(Q^{2}\right)$. However, an accurate calculation of the anomalous cut contribution is a complicated problem even for light muclei $/ 11 /$. Let us use an adequate method of calculation by the Glauber formaliam:

$$
\begin{align*}
\tilde{F}_{A}\left(Q^{2}\right) & =\frac{\sigma_{t o t}^{\pi N}}{\sigma_{+o t}^{\pi A}} \int d^{2} b \int_{-\infty}^{\infty} d z \exp \left(i k_{L} z\right) \widetilde{\rho}(b, z) \times \tag{20}\\
& \times \exp \left[-\frac{1}{2} \sigma_{\operatorname{tot}}^{\pi N} \int_{z}^{\infty} d z^{\prime} \widetilde{\rho}\left(b, z^{\prime}\right)\right] \tag{15}
\end{align*}
$$

At $Q^{2} \ll 2 V / R_{A}$ this expression can be aimplified if \widetilde{F}_{A} is written in the following form:

$$
\begin{equation*}
\widetilde{F}_{A}\left(Q^{2}\right) \approx \exp \left(-\frac{1}{2} B_{L} k_{L}^{2}\right) \tag{16}
\end{equation*}
$$

Where, as follows from (15),

$$
\begin{equation*}
B_{L}=\left\langle z^{2}\right\rangle-\langle z\rangle^{2} \tag{17}
\end{equation*}
$$

The averaging is done by the formula

$$
\begin{aligned}
& \left\langle z^{n}\right\rangle=\frac{\sigma_{t a t}^{\pi N}}{\sigma_{t o t}^{\pi A}} \int d^{2} b \int_{-\infty}^{\infty} d z z^{n} \tilde{\rho}(b, z) x \\
& x \exp \left[-\frac{1}{2} \sigma_{t o t}^{\pi N} \int_{z}^{\infty} d z^{\prime} \tilde{\rho}\left(b, z^{\prime}\right)\right] .
\end{aligned}
$$

Though expreasions (11) and (16) are only valid for low values of k_{T} and k_{L}, we shall use calculationa in the total range to simplify them. Expressions (8) and (15) are more accurate.

One ahould also note that we have not taken into account the inelastic acreening $/ 12,13 /$ corrections to $\sigma_{\text {tot }}^{\pi A}$. At amall values of $\nu \leqslant 10 \mathrm{GeV}$, which give the main contribution to the cross-section in the existing neutrino experiments, these corrections are negligibly small. Theae corrections grew with \mathcal{V} up to the value of an order of 10%. Their contribution to the total croas-aection is negative and can be eatimated by the formula $13 /$:

$$
\begin{align*}
& \Delta_{\text {in }} \sigma_{t o t}^{\pi A}=\left.4 \pi \int d^{2} b \int d M^{2} \frac{d \sigma_{d d}^{\pi N}}{d M^{2} d q_{T}^{2}}\right|_{q_{T}=o} \exp \left[-\frac{1}{2} \sigma_{t o t}^{\pi^{N}} T(b)\right] \times \\
& \times\left|H\left(q_{L}, b\right)\right|^{2}
\end{align*}
$$

Here $d \sigma_{d d}^{T N} / d M^{2} d q_{T}^{2}$
is the differential orosa-section of reaction $\pi N \rightarrow X N$, where M is the effective masa of the X beam; $q_{L} \approx$ $\approx\left(M^{2}-m_{\pi}^{2}\right) / 2 v$ and q_{T} are longitudinal and tranaversal momentum tranaler components;

$$
F\left(q_{L}, b\right)=\int_{-\infty}^{\infty} d z \rho_{A}(b, z) \exp \left(i q_{L} z\right)
$$

is the longitudinal formfactor of a nucleus.
Finally, we amall calculate the k_{L}-dependence of croas-section (7).

$$
\begin{equation*}
\frac{d \sigma(\nu A-\mu \pi A)}{d k_{L}^{2}}=\int d \nu d Q^{2} d k_{T}^{2} \delta\left[k_{L}^{2}-\left(\frac{Q^{2}+m_{g}^{2}}{2 \nu}\right)^{2}\right] \frac{d \sigma(\nu A \rightarrow \mu \pi A)}{d Q^{2} d \nu d k_{T}^{2}}= \tag{21}
\end{equation*}
$$

$=\left(\frac{\sigma f \pi}{\pi m_{A}}\right)^{2} \frac{\sigma_{R} \ell E^{2} E^{2}}{\left(\tau_{A}+\gamma_{A}\right)^{3}}\left[\sigma_{A}-\ln \left(1+\tau_{A}\right)\right] \exp \left[-\frac{B_{L} m_{A}^{4}}{4 E^{2}}\left(\tau_{A}+\gamma_{A}\right)^{2}\right]$,
where $\tau_{A}=2 E k_{L} / m_{A}^{2}-\gamma ; \quad \gamma_{A}=m_{\pi}^{2} / m_{A}^{2}$.
At high energies, when $B_{L} m_{A}^{4} \gamma_{A}^{2} / E^{2} \ll 1$, expression (21) has its maximum at $k_{L} \approx \frac{3}{2} m_{\pi}^{2} / E$, which is equal to the value

$$
\left.\frac{d \sigma(v A-\mu \pi A)}{d k_{L}^{2}}\right|_{\max }=\left(\frac{G f \pi}{\pi m_{A}}\right)^{2} \frac{2}{27} \sigma_{e l}^{\pi A} E^{2}
$$

When k_{I} increases, cross-section (21) decreases as $1 / k_{I}$. Therefore, at a high neutrino energy the axial forafactor of a nucleon causea a maximum in the distribution of cross-section over k_{L}^{2}. The width of this maximum is much smaller than the value $\Delta k_{I_{1}}^{2} \approx 1 / B_{\mathrm{L}}$, which is determined by the nuclear formfactor (this phenomenon resembles the reaction of Coulomb hadron production off nuclei). However, one should not misidentify this peak as a contribution of the coherent events ${ }^{14 /}$ which forms a peak $\sim 1 / \mathrm{B}_{\mathrm{L}}$ wide.

It follows that at high energies the total cross-section for coherent neutrino-production of pions increases as $\ln \mathrm{E}$ and depends on the atomic number of a nucleus as $\sigma_{e \ell}^{\pi A} \approx \mathrm{~A}^{2 / 3}$. At the same time at low energiea the cross-aection grows linearly with E and inoreases as $A^{1 / 3}$ with the atomic number of a nucleus. The results of numerical calculations are presented in section 5.
4. Incoherent Neutrino-Production of Pions off Nuclei

A process followed by the nuclear destruction appears to be the background to the coherent neutrino-production of pions. This process is analogous to the quasielastic hadron scattering on nuclei. Ita cross-section denoted by $\sigma(\nu A \rightarrow \mu \bar{i} X)$ is equal to:
$\frac{d \sigma(\nu A \rightarrow \mu \pi X)}{d \nu d Q^{2} d k_{T}^{2}}=\frac{d \sigma(\nu N \rightarrow \mu \pi N)}{d \nu d Q^{2} d k_{T}^{2}} \frac{\sigma_{a b s}^{\pi A}}{\sigma_{i n}^{\pi N}}$,
where $\sigma_{a b s}^{\pi A}=\sigma_{\text {tot }}^{\pi A}-\sigma_{e l}^{\pi A}-\sigma_{\text {gel }}^{\pi A}$
is the absorption cross-section of pions on nuclet:

$$
\begin{equation*}
\sigma_{a b s}^{\pi A}=\int d^{2} b\left\{1-\exp \left[-\sigma_{i n}^{\pi N} T(b)\right]\right\} \tag{23}
\end{equation*}
$$

The cross-bection of neutrino-production of pions of f a nucleon included in (22) has contributions of axial current as well as of vector current, which cen be calculated in the ρ-dominance approximstion $/ 4 /$. As a result, the cross-section has the following form:

$$
\begin{aligned}
& \frac{d \sigma(\nu N \rightarrow \mu \pi N)}{d \nu d Q^{2} d k_{T}^{2}}=\frac{G^{2}}{2 \pi^{2}} \frac{E^{\prime}}{\nu E}\left\{f_{\pi}^{2}\left(1+Q^{2} / m_{A}^{2}\right)^{-2} \frac{d G_{R l}^{\pi N}}{d k_{T}^{2}}+\right. \\
& \left.\quad+f_{\rho}^{2} \frac{Q^{2}}{m_{\rho}^{4}}\left(1+Q^{2} / m_{\rho}^{2}\right)^{-2} \frac{d \sigma_{T}(\pi N \rightarrow \rho N)}{d k_{T}^{2}}\right\}
\end{aligned}
$$

where $f_{\rho}=\sqrt{2} m_{\rho}^{e} / g_{\rho} ; ~ g \rho$ is the dimensionless universal coupling constant ($\rho \pi \pi ; \rho N N_{1} \ldots$),$g_{\rho}^{2} / 4 \pi \approx 2.1$.

Only the transversal component of $\sigma_{T}(\mathbb{I} N \rightarrow \rho N)$ cross-section remaing in (24). Actually, the asta $/ 15 /$ fit on this reaction arosssection in the energy range $2 \mathrm{GeV}<\sqrt{5}<10 \mathrm{GeV}$ using expression

$$
\begin{equation*}
\left.\sigma_{T}(\pi N \rightarrow \rho N)=\sigma_{0} \sigma_{0}\right)^{\beta} \tag{25}
\end{equation*}
$$

where ν is the energy in the lab aystem in GeV, yields the values of $\sigma_{0}=8.27 \pm 0.5 \mathrm{mb}, \beta=-1.85 \pm 0.03$. The value β indicates that in this energy range the hellcity flip \mathbb{T}-exchange dominates.

Let us also calculate the k_{I} - diatribution of the cross-asction for incoherent neutrino-production. To elmplify the integration, let us fix $\beta=-2$.

$$
\begin{aligned}
& \frac{d \sigma(\nu A \rightarrow \mu \pi X)}{d k_{L}^{2}}=\frac{G^{2}}{\pi^{2}} \frac{\sigma_{a b s}^{\pi A}}{\sigma_{i n}^{\pi N}}\left\{f_{\pi}^{2} \sigma_{e}^{\pi N} \frac{E^{2}}{m_{A}^{2}}\left[\frac{c_{A}-\ln \left(1+\varepsilon_{A}\right)}{\left(\tau_{A}+\gamma_{A}\right)^{3}}\right]\right. \\
& \left.-\frac{f_{\rho}^{2}}{4 m_{\rho}^{2}} \sigma_{0}^{q_{\rho}} \frac{2 \tau_{\rho}\left(1-\gamma_{\rho}\right)+\left(\tau_{\rho}+2 \gamma_{\rho}+c_{\rho} \gamma_{\rho}\right) \ln }{\left(\tau_{\rho}+\gamma_{\rho}\right)\left(1-\gamma_{\rho}\right)^{3}}\left[\tau_{\rho}+1\right) /\left(\varepsilon_{\rho}+\gamma_{\rho}\right]\right\}
\end{aligned}
$$

where

$$
\gamma_{\rho}=m_{\pi}^{2} / m_{\rho}^{2} ; \quad \widetilde{c}_{\rho}=2 E k_{L} / m_{\rho}^{2}-\gamma_{\rho}
$$

5. Calculations

Calculating the $\sigma_{\text {tot }}^{\# A}$ cross-section by formala (12) and the slope paramaters B_{T} and B_{L} by formulas (13), (17) and (18) we uged the Woods-Sakson nuolear density distribution:

$$
\begin{align*}
& \rho(r)=\rho_{0}\left[1+\exp \left(\frac{r-R}{a}\right)\right]^{-1} \\
& \rho_{0}=\frac{3 A}{4 \pi R^{3}}\left(1+\frac{\pi^{2} a^{2}}{R^{2}}\right)^{-1} \tag{27}
\end{align*}
$$

The veluen of parameters A and a taken from ref. /17/ for different nuclei are listed in the Table. Tha Fadius of the nucleon oharge dimtribution was taken into accoumt $/ 18 \%$. The value of $\mathrm{B}_{\mathrm{T}}, \mathrm{B}_{\mathrm{L}}, \sigma_{\text {tot }}^{T A}$
calculated at $\sigma_{\text {tot }}^{\pi N^{\prime}}=24 \mathrm{mb}$ and the values of $\sigma_{a b}^{n \hat{A}}$ calculated at
$\sigma^{T N}=20 \mathrm{mb}$ are also presented in the Table. The value of ρ $\sigma_{i n}^{N}=20 \mathrm{mb}$ are also presented in the Table. The value of ρ for the t-channel isoscalar amplitude is approximately independent of the energy 19 / and was fixed by $\rho=0.2$.
It Forth noting that the expression for $\sigma_{f o t}^{\pi A} A$, which was used the $\pi-A$ scattering. When absorption of pions by nuclear matter increases the cross-section $\mathcal{O}_{\text {to }}^{\pi A}$ should alao increase. In the case of diffractive scattering on a "black disk" the total cross-section attains the maximum value $\sigma_{t o t}^{8} A=2 \pi R^{2}$, while the cross-section calculated in ref. $/ 6 /$ tends to zero. The use of this erroneous formula leads to some uncontrolled errors in calculations and makes the comparison with gxperimental data senseless. Note that results of csiculation of $\sigma_{\text {tot }}^{\pi / 4}$ adduced in the Table have uncertainty only about 1% /18/.
Table. Parameters of Woods-Sakaon density (27) and the results of calculation of $\sigma_{\text {tot }}^{\pi A}, \sigma_{a b s}^{\pi a}, B_{f}$ and B_{L}.

A	$\begin{aligned} & \mathrm{R} \\ & \mathrm{fm} \end{aligned}$	$\begin{aligned} & a \\ & \text { fm } \end{aligned}$	$\begin{gathered} \sigma_{t o t}^{\pi_{A}} \\ \operatorname{sm}^{2} \end{gathered}$		$\begin{aligned} & \mathrm{B}_{\mathrm{T}} \\ & \mathrm{f} \mathrm{~m}^{2} \end{aligned}$	$\begin{aligned} & \mathrm{B}_{\mathrm{L}} \\ & \mathrm{fm}^{2} \end{aligned}$
20	2.80	0.571	38.1	25.5	3.49	2.85
27	2.84	0.569	49.3	29.8	3.68	2.85
40	3.39	0.612	65.6	42.1	4.87	3.76
64	4.20	0.569	91.5	57.0	5.96	4.31
110	5.33	0.535	138.2	87.7	8.39	6.01
150	5.72	0.650	181.3	111.8	10.6	7.24
184	6.51	0.535	230.8	135.0	12.0	8.09
207	6.62	0.546	250.2	150.7	12.6	8. 15
238	6.80	0.605	284.3	168.2	13.5	8.98

As at a low onergy ν the crosg-section $\sigma_{\text {tot }}^{\pi i N}(\nu)$ increases, we also calculate the values of $\sigma_{\text {tot }}^{T A A}, \mathrm{~B}_{1}$ and B_{L} for different values of $\sigma_{\text {tot }}^{\pi N,}$. It turns out that the effects of aimultaneous growth of $G_{\text {fot }}^{\text {fot }}$ and $\mathrm{B}_{\mathrm{T}}, \mathrm{B}_{\mathrm{L}}$ cancell each other. This Justifies the above-adopted approximation with $\sigma_{\text {tot }}^{N^{\prime}}$ independent of ν. Nevertheless it is desirable to exclude in the experiment the region of amall ν, which gives a negligible contribution to the coharent neutrino-production oross-section.

The k_{L}^{2} distributions of coherent and incoherent contributions to the cross-bection of single pion neutrino-production off a neon nucleus at $\mathrm{B}=40 \mathrm{GeV}$ is given in Fig. 1. One can see that the inco-

Fig. 1. The $k \frac{2}{2}$ diatribution of the coherent (the daahed inne) and line) contributions to the gingle pion neutrino-production off neon. The experimental histogram Irom/14/ia normalized for the theoretical crgas-section at $k<0.015 \mathrm{GeV}{ }^{2}<$ The solid line ia a sum of the coherent and incoherent contributions.

Fig. 3. The total cross-asetion of the reaction V ve $\rightarrow \mu^{+} \pi$ Ne. Experimental pointa o-are from /1 -are from $/ 20 /$. The theoretical curve is calculated with allowano for the cuts ued in the experi-
ment.

Fig. 2. The k_{r}^{2}-distribution of the coherent (the dashed ine) and incoherrent (the dashed-dotted line) contributions to the gingle pion neutrino-production off neon for the events with $\mathrm{k}^{2}<$ $0.015 \mathrm{GeV}^{2}$. Experimental data are taken from /14/. The solid line is a sum of the coherent and incoherent contributions.

Fig. 4. The orosesaection of single pion ooherent neutrinoproduction ve the atomic number neutringet nucleus at different neutrino energies.
herent contribution, as the coherent one has a marimum at amall x_{1}^{2}. As mentioned above, this is connected with the nucleon formfactor behariour in the axial current (see formula (26)). The vector current contribution at amall values of k_{L}^{2} is suppressed due to the factor Q^{2} in formila (24). As is seen in Fis. 1, the contribution of incoherent events under the peak is large and cannot be separated by aimple extrapolation from the region of large $k_{\text {L }}^{2}$.

To select coherent events, it is necessary to fit the experimental distribution over k_{T}^{2} with two Gausaian exponenta, one of them corresponds to the coherent contribution, another to the incoherent $/$ one. Their relative values are determined by the $\mathbb{K}_{\mathrm{I}}^{2}$ cut. Thus in $/ 14 /$ events with $k_{L}^{2}<0.015 \mathrm{GeV}^{2}$ were selected. The correaponding data are shown in Pig. 2. If one describes this distribution by one exponent /14/, a considerable contribution of the incoherent events will result in a too smooth distribution with the $\mathrm{B}_{\mathrm{p}}=28_{-6}^{+7} \mathrm{Ge} \mathrm{V}^{-2}$ slope for
 sults of our calculations for the coherent and incohorent contributions to the cross-section integrated over x_{L}^{2} in the region of $r_{L}^{2}<$ $0.015 \mathrm{GeV}^{2}$. Compariaon of data and calculations proves that events with $k_{T}^{2}>0.05 \mathrm{GeF}^{2}$ are incoherent.

In Pig. 3 the results of calculations of the total cross-section of coherent aingle pion neutrino-production are compared with the experimental data. In Fig. 4 the cross-section of coherent neutrinoproduction of pions is shown as a function of the atomic number at varioua neutrino energies.

6. Single A_{1}-Meson Weutrino-Production

The Adler relation connecte the cross-section for neutrino-production of aingle A_{1}-mesons at $Q^{2} \approx 0$ with the cross-section $\sigma\left(\pi N \rightarrow A_{1} N\right)$. whioh, as mentioned above, is very small at high energies ν. Therefore, a noticeable contribution to the crosg-section of the coherent process arises only from the large $Q^{2} \sim m_{A}^{2}$. It is described by the expression $/ 4 /$:

$$
\frac{d \sigma\left(\nu A \rightarrow \mu A_{1} A\right)}{d Q^{2} d \nu d k_{T}^{2}}=\frac{G^{2}}{4 \pi^{2}} f_{A}^{2} \frac{Q^{2}}{\left(Q^{2}+m_{A}^{2}\right)^{2}}
$$

$$
\begin{equation*}
\times\left(\frac{\nu}{E^{2}}+\frac{4 E^{\prime}}{\nu E}\right){\widetilde{F_{A}}}^{2}\left(Q^{2}\right) \frac{d \sigma_{e l}^{A_{1} A}}{d k_{T}^{2}} \tag{28}
\end{equation*}
$$

$\widetilde{F}_{A}\left(Q^{2}\right)$ is given by expression (16), where $k_{L} \approx\left(m_{A}^{2}+Q^{2}\right) / 2 \nu$. In this expression the cross-section of elastic scattering for transversally and longitudinally polarized A_{1}-mesons were for simplicity supposed to be equal. The distribution of the cross-section over k_{L}^{2} has the following form:

$$
\begin{equation*}
\frac{d \sigma\left(\nu A \rightarrow \mu A_{1} A\right)}{d k_{L}^{2}}=\frac{2 E^{2}}{m_{A}^{4}}\left(\frac{G f_{A}}{2 \pi}\right)^{2} \frac{\left(\sigma_{t o t}^{\pi A}\right)^{2}}{16 \pi B_{T}} \exp \left(-B_{L} k_{L}^{2}\right) I_{3} \tag{29}
\end{equation*}
$$

$I_{3}=-\left(r_{A}+\gamma_{A}\right)^{-2}\left[\left(1-\frac{1}{\tau_{A}+\gamma_{A}}\right)\left(15+\frac{1}{\tau_{A}+\gamma_{A}}\right)+8\left(1+\frac{1}{\tau_{A}+\gamma_{A}}\right) \ln \left(\tau_{A}+\gamma_{A}\right)\right]$,
where for numerical calculations it is assumed that $\sigma_{\text {tot }}^{A_{1} N}=$ $=\sigma_{\text {tot }}^{T N N}$. The constant of A_{1}-meson coupling to the weak lepton charged current is found from the second Weinberg sum rule $f_{A}=f_{p}=\sqrt{2} m_{\rho}^{2} / g_{p}$. The results of calculations of the differential Fig. 5.

In the same figure the distribution over k_{L}^{2} for the incoherent A_{1}-meson production is presented. The distribution was calculated using the formula:

$$
\begin{aligned}
& \frac{d \sigma\left(\nu A-\mu A_{1} X\right)}{d k_{L}^{2}}=\left(\frac{G}{2 \pi}\right)^{2}\left[f_{A}^{2} \frac{\left(\sigma_{t o t}^{\pi N}\right)^{2}}{16 \pi B_{T}^{\pi N}} \frac{2 E^{2}}{m_{A}^{4}} I_{3}+\frac{f_{\rho}^{2}}{4 m_{\rho}^{2}} \sigma_{0}^{\rho_{\rightarrow} A_{1}} I_{4}\right] \frac{\sigma_{a b s}^{\pi A}}{\sigma_{i n}^{\pi N}} ; \\
& \left.I_{4}=4\left(\tilde{\tau}_{A}+\tilde{\gamma}_{\rho}\right)^{-2} \tilde{\gamma}_{p}-1\right)^{-3}\left\{\left(\gamma_{p}-1\right)^{3} \ln \left(\tilde{\tau}_{p}+1\right)-\right. \\
& -4\left(\tilde{\tau}_{\rho}+\tilde{\gamma}_{\rho}\right)\left(3 \tilde{\gamma}_{\rho}+2 \widetilde{\tau}_{\rho}-1\right) \tilde{\gamma}_{\rho} \ln \left|\frac{\tilde{\gamma}_{\rho}\left(\tilde{\tau}_{\rho}+1\right)}{\tilde{\tau}_{\rho}+\tilde{\gamma}_{\rho}}\right|- \\
& -\frac{\tilde{\tau}_{\rho}\left(1-\tilde{\gamma}_{\rho}\right)}{\tilde{\tau}_{\rho}+1}\left[4\left(\tilde{\tau}_{p}+\tilde{\gamma}_{\rho}\right)\left(\tilde{\gamma}_{\rho}\left(\tilde{\tau}_{p}+2 \tilde{\gamma}_{\rho}-1\right)+\tilde{\tau}_{\rho}+1\right)-\right. \\
& \left.\left.-\left(1-\tilde{\gamma}_{\rho}\right)^{2}\left(4 \tilde{\tau}_{p}+6 \tilde{\partial}_{\rho}-1\right)\right]\right\}
\end{aligned}
$$

Fig. 5. Distributions over k_{1}^{2} for different contributions to for different contributions to
the single A1-meson neutrino-production crosa-section. The daghed line 18 a coherent cross-section. The dot-dashed line is a contribution of axial current to the inc
herent process; the dotted line is a contribution of vector current to the incoherent neutrino-production; the solid line is a sum of all contributions. Calculations have been performed for a neon nucleus at the neutrino energy $\mathrm{E}=40 \mathrm{GeV}$.
where $\quad \widetilde{C}_{\rho}=\left(2 k_{L} E-m_{A}^{2}\right) / m_{\rho}^{2} ; \tilde{\gamma}_{\rho}=m_{A}^{2} / m_{\rho}^{2}$. The second term in (30) presenta the contribution of vector current, which is large at amall energies of ν. The cross-section $\sigma(\rho N \rightarrow A, N)$ is described by the diagram of a aingle pion exchange and is parametrized in the following form:

$$
\begin{equation*}
\sigma(\rho N \rightarrow A, N)=\sigma_{0}^{\rho} A_{1} \sim^{2} \tag{31}
\end{equation*}
$$

To estimate the parameter $\quad G_{0}^{\rho \rightarrow A_{1}}$ one can use a generalization of the effective chiral Lagrangian method in the case of vector and axial-vector currenta $/ 22 /$. Uaing chiral-invariant Lagrangians of $A_{1} p \pi$ and πN interactions in the minimal form and taking into account the formfactor of $\pi^{N} N$-vertex in the exponential form with the slope parameter of $B_{\pi}^{\cdot}=5 \mathrm{GeV}^{-2}$, تe obtain for $\sigma(\rho N \rightarrow A, N)$:

$$
\begin{align*}
& \sigma\left(\rho N \rightarrow A_{1} N\right) \approx \frac{1}{96 \pi m_{N}^{2}} \frac{g^{2} N g^{2} A \rho}{\nu^{2}}\left[1+\frac{\left(m_{A}^{2}+m_{\rho}^{2}\right)^{2}}{2 m_{p}^{2} m_{A}^{2}}\right] \times \\
& \times\left\{\left(1-2 m_{\pi}^{2} B_{\pi}\right)\left[m_{\pi}^{2} B_{\pi}-C-\ln \left(2 m_{\pi}^{2} B_{\pi}\right)\right]+1\right\} \approx \frac{30}{\nu^{2}} m b \tag{32}
\end{align*}
$$

where ν is in GeV; $G \pi N=13.6$ is the πN-coupling constant; the constant of minimal $A_{1} \rho T$-interaction is comected with the decay $A_{1} \rightarrow \rho \pi$ width by the relation:

$$
\Gamma_{A \rho \pi}=\frac{g_{A \rho \pi}^{2}}{4 \pi} R_{2}, \quad R_{2}=0226 \mathrm{GeV}^{-1}
$$

Since the amplitude of elastic A_{1} N-scattering is almost imaginary and the T-exchenge ariplitude is real, the interference of the exial end vector current contributions to the differelutial crosssection $\sigma\left(\nu \mathbb{A} \rightarrow \mu_{1} X\right)$ can be neglected. The contributions of the first and second terms to the cross-section on the neon-target and their sum are shown separately in Fig.5.

It is seen that the axial current contribution is dominant. It follows from the expressions (29), (30) and (21), (26) that relation of the coherent cross section to the incoherent one in the case of A_{1} production is the same as in the ceseof pion production. But A_{1} incoherent production cross section is not enhanced at small values of k_{L}. The observed peak in the differeptial coherent cross section is determined mainly by the formfactor $\exp \left(-\mathrm{B} \quad k_{l}^{2}\right)$. Thus one can extract the coherent ivents by the fitting procedure analogously to the one done above in K_{T} distribution.

Fig. 6. Total cross section of cohorent A, -meson neu-trino-production on neon nucleus.

It should be noted that neu-trino-production of single A_{1}-mesons is not sensitive to the PCAC predictions, since the region of small Q^{2}, determined by the Adler relation, gives a negligible contribution to the total cross-section. The interest to this process seems to be connected with the possiblity to study A_{1}-interactions with nucleons. It turned to be impossible to obtain similar information in the process of diffractive A_{1}-meson production by pions off nuclei $/ 23$ due to necessity of model allowance for in elastic corrections, making a contribution of an order of 100% to this process. On the other hand, as noted in section 3, a contribution of inelastic corrections to the A_{1}-meson elastic scattering cross-section is negligibly small. Therefore, the value of $\mathcal{O}_{\text {tot }}^{A, N}$ can be reliably obtained from the analysia of experimental data using expressions (29) and (30).

Total cross section of coherent A_{1} neutrino-production on neon nucleus calculated at different energies using (29) is shown in fig. 6 . It is seen that the cross section rises with the energy faster than the pion neutrino-production cross-section and exeeds it at the energies above 40 GeV .

7. Discussion of Resulta

A study of single pion neutrino-production in the coherent prom cess on nuclei allows separating the contribution of axial current, which is generally determined by the PCAC requirement. Nevertheless, the accurate and carefull calculation of this proceas gives a posaibility for the experimental verification of the PCAC effects.

Let us sumarize the main results of the present paper.

1. The extrapolation of the Adler relation to the region of Q^{2}, 0 has been obtained. It has been shown that the main contribution to the dispersion integral for the axial current is made by a cut connected with the $\rho \pi$-production in the intermediate state and not by the A_{1}-pole. Nevertheless, it turned out that the $\rho \pi$-cut, center of mass"coincides with the A_{1}-mes on mass $m_{A}=1.3$ GeV. Therefore, the formfactor in the pole form (5) can be used, though at high energies, when the large valuea of Q^{2} give a noticeable contribution, expreaelon (6) Is more exact.
2. With the coherent neutrino-production of pions off nuclei an additional dependence on Q^{2} appears. It ia related to the complex structure of a nucleus. Simple expression (16) has been obtained for $1 t$.
3. Expression (21) for the dependence of the cross-section of single pion neutrino-production on longitudinal momentum transfer has been obtained. It has been shown that at small k_{I}^{2} the experimentally observed peak is mainly due to the arial formfactor of a nucleon, but not of a nucleus. Therefore, small $\mathrm{k}_{\mathrm{I}}^{2}$ cannot be the only criterion for selection of coherent events.
4. The cross-section of incoherent neutrino-production of pions off nuclei has been calculated with allowence for the contribution of vector current. It has been ahown that this proceas is also characterized by the narrow peak in the distribution over k_{L}^{2}.
5. The crossmection for the coherent and incoherent neutrinoproduction of A_{1}-meano has been calculated. It is show that these processes are insensitive to the PCAC effecta. However, they allow obtaining unique information on the A_{1}-meson interaction with nucleon.

Finally, we would like to emphasize once more the necessity of more accurate selection of coherent events from the experimental data. The selected events with small values of $k_{L}^{2} \leqslant 1 / B_{L}$ should be distributed over the variable $k_{T}^{2} \approx\left|t-t_{\min }\right|$ (not over t, as is done in $/ 20 /$). The next fit of k_{T}^{2}-dependence of the croas-aection by two Gaussian exponents should lead to the $B \approx B_{T}$, values of slopes for the coherent peak and $B \approx B_{e}^{\pi} \mathcal{N}$ values for the incoherent substrate. This is the usual procedure in the hadronic experiments. Comparison of the resulta of fitting of the incoherent background with the diatribution over k_{T}^{2} for the eventa with viaible protons appears to be an additional teat of the calculations.

An independent selection of coherent events is also possible in the distribution over k_{j}^{2}. In this sase it is necessary to edd the weight factor $\left(1+Q^{2} / m_{A}^{2}\right)^{2}$, neutralizing the influence of the nucleon axial formfactor to each event. After that the coherent peak should have a nuclear slope $B \approx B_{L}$ and the incoherent background should become almost k_{L}-independent.

In conclusion the authors would like to express their gratitude to V.V.Ammosov and V.S. Burtovoy for useful discussions of the experimental data.

Referencea

1. Gell-Mann M., Levy M. Nuovo Cimento, 1960, 16, p. 705. Nambu Y. Phys.Rev. Lett., 1960, 4, p. 380.
2. Goldberger M., Treiman S. Phys.Rev., 1958, 110, p. 1178.
3. Adler S.L. Phys.Rev., 1964, B135, p. 963.
4. Piketty C.A., Stodolsky L. Nucl. Phys., 1970, B15, p. 571.
5. Lackner K. Nucl. Phys., 1979, B153, p. 526.
6. Rein D., Sehgal L. M. Nucl. Phye., 1983, B223, p. 29.
7. Weinberg S. Phys.Rev.Lett., 1968, 18, p. 507.
8. Doum V. et al. Nucl. Fhys., 1981, 182, p. 269.
9. Deck M. Fhys.Rev.Lett., 1964, 13, p. 169.
10. Karplus R., Sommerfield C.M., Wichmenn E.H. Phys.Rev., 1958, 111, p. 1118.
11. Kopeliovich B. Z. Yad.Fiz., 1973, 18, p. 1157.
12. Gribov V. स. JETP., 1969, 56, p. 892.

Pumplin J., Hose M. Phys.Rev.Lett., 1968, 21, p. 1778.
13. Karmanov V.A., Kondratyuk L. A. JBFP Lett., 1973, 18, p. 266.
14. Ammosov B. B. ot al. IHEP B6-203, Serpukhov, 1986.
15. Flaminio V. et al. Compilation of Croas-Section $I: \pi^{+}$and
7^{-1} induced reactiona, CEFW-HERA 83-01, 1983.
16. De Yaeger C.W., De Vriea H., De Vries C. Atomic Data and Fuclear Data Tablea, 1974, 14, 479.
17. Barret R.C., Jackson D.F. Nuclear Sizee and Structure, Clarendion Press, Oxford, 1977.
18. Hikolaev N.N. Preprint INS-Rep.-538, Tokyo, 1985.
19. Hôhler G. et al. Handbook of Plon-Nucleon Seattering, Karlaruhe, 1979
20. Maraye P. et al. Phys. Iett., 1984, 140B, p. 137.
21. Ting S.C.C. Proc. 14th Int.Conf. on High Fnergy Fhyaice, Vieana, 1968, p. 55.
22. Gasiorowicz S., Geffen D.A. Rev.Mod. Phys., 1969, 41, p. 531.
23. Zamolodchikov A.B., Kopeliovich B. Z., Lapidus L. I. JEPP, 1979, 77, p. 451.
fill you fill blank spaces in your library:
You can receive hy post the books listed below. Prices - in US 8. including the packing and registered postage

D3, 4-82-704 P	Proceedings of the IV International School on Neutron Physics. Dubna, 1982	12.00
D11-83-511	Proceedings of the Conference on Systems and Techniques of Analitical Computing and Their Applications in Theoretical Physics. Dubna, 1982.	9.50
D7-83-644	Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta. 1983.	11.30
D2, 13-83-689	Proceedings of the Workshop on Radiation Problems and Gravitational Wave Detection. Dubna, 1983.	56.00
D13-84-63	Proceedings of the XI International Symposium on Nuclear Electronics. Bratislava, Czechoslovakia. 1983.	12.00
E1, 2-84-160	Froceedings of the 1983 JINR-CERN School of Physics. Tabor, Czechoslovakia, 1983.	6.50
D2-84-366	Proceedings of the VII International conference on the problems of Quantun Field Theory. Alushta, 1984.	11.00
D1, 2-84-599	Proceedings of the VII International Seminar on High Energy physics Problems. Dubna, 1984.	12.00
017-84-850	Proceedings of the Ill International Symposium on Selected Topics in Statistical Mechanics. Dubna, 1984. /2 volumes/.	22.50
D10.11-84-818	Proceedings of the V International Meeting on Problems of Mathematical Simulation, Programming and Mathematical Methods for Solving the physical Problems, Dubna, 1983	7.50
	Proceedings of the IX All-Union Conference on Charged particle Accelerators. Dubna, 1984. 2 volumes.	25.00
D4-85-851	Proceedings on the International Schoal on Nuclear Structure. Alushta, 1985.	11.00
D11-85-791	Proceedings of the International Conference on Computer Algebra and Its Applications in Theoretical Physics. Dubna, 1985.	12.00
013-85-793	Proceedings of the xill International Symposium on Nuclear Electronics. Dubna, 1985.	14.00

Received by Publishing Department
on September 3. 1986.

Orders for the above-mentioned books can be sent at the address: Publishing Department, JINR Head Post Office, P.O.Box 79 101000 Moscow, USSR

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Index
1. High energy experimental physics
2. High energy theoretical physics
3. Low energy experimental physics
4. Low energy theoretical physics
5. Mathematics
6. Nuclear spectroscopy and radiochemistry
7. Heavy ion physics
o. iryogenics
9. Accelerators
10. Automatization of data processing
11. Computing mathematics and technique
12. Chemistry
13. Experimental techniques and methods
14. Solid state physics. Liquids
15. Experimental physics of nuclear reactions
at low energies
16. Health physics. Shieldings
17. Theory of condenced matter
18. Applied researches
19. Biophysics

одиночных адронов

Рассмотрены процессы нейтринорождения одиночных адронов

 /реакция $\nu \mathrm{A} \rightarrow \mu \mathrm{A} \mathrm{A}^{\prime}$, где $\mathrm{h}=\pi$, $\mathrm{A}_{1} \ldots / \mathrm{c}$ точки зрения эксперимен тальной проверки следствий РСАС. Получено дисперсионное обобщение соотношения Адпера для нейтринных реакций в области физических значений переданного 4 -импульса $Q^{2} \neq 0$, которое затем используется для вычислений сечений нейтринорождения одиночных пионов в когерентных и некогерентных процессах на ядрах Результаты расчетов сравниваются с экспериментальными данными по реакции $\bar{\nu} \mathrm{Ne} \rightarrow \mu^{+} \pi^{-} \mathrm{Ne}$. Обсуждается процедура выделения когерентных событий в эксперименте. Рассмотрен процесс нейтринорождения одиночных A_{1}-мезонов на ядрах.Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного институга ядерных исследований. Дубна 1986

Belkov A.A., Kopeliovich B.Z
E2-86-595
Adler Relation and Neutrino-Production of Single Hadrons

The processes of single hadron neutrino-production (reaction $\nu A \rightarrow \mu A^{\prime}$, where $h=\pi, A_{1}, \ldots$) are considered from the viewpoint of experimental verification of PCAC predictions. Dispersion generalization of the Adler relation for neutrino reactions in the range of physical values of 4 -momentum transfer $Q^{2} \neq 0$ is obtained. This generalization is used to calculate the cross-sections for neutrino-production of single pions in coherent and incoherent processes on nuclei. The results of calculations are compared with experimental data on the reaction $\bar{\nu} \mathrm{Ne} \rightarrow \mu^{+} \pi^{-} \mathrm{Ne}$. A procedure of the coherent event selection in the experiment is discussed. A process of single Al-meson neutrino-production is considered.

The investigation has been performed at the Laboratory of Nuclear Problems, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986

