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1. As is known, at sufficiently high temperatures beuge systl1ms 
undergo phase trwlsition (PT) from the low-temperature confined 
phase to high-temperatUI'e quark-gluon phase/ 1,2/. The luatter state 

with high temperature may be realized in relativistic nucleus-nucleus 

head-on collisions at an enelgy accessible at present accelerators. 

As for as the p'r temperature Be has a nonperturbative origin, 
it is natural to use the lattice formulation. From a point of view of 
lattice gauge theories the study of temperature transitions is very 
essential for investigating a continuum limit. The reason is that 

Be is a physical observable independent of the cut-off and UV 
-divergences, and the determination of the Il gives a good possi
uility to find the onset of the scaling behaviour. Motivated by these 

orguments, several numerical stUdies deal with SIJ(2)-gauge theory 
/3-11/(see, e.g., papel's ). 

In this paper we stully the SU(2) gauge theory and calcuLate 

the tempel'ature strill!,; <.L> and susceptibility j using distribu

tion functions of tho order parameter. 

Let us considur u nonsymmet':'ic lattice in a four-dimensional 
Euclidean spuce wi th the number of sites ~ ~Ns·l and periodic bouIl
dary cOlldi tions. 

The parti tiol! func tiOll 1. is defined ill a standard manner 

el.X!(l [- Sj ) [dUi:. ndut ' (1)1= l.-.J.~ 

where S is the I'/iison action 

(2 )S.:: 4<~ 'l. (i - '/27iUa) . 
Cl 

The temperature tJ is defined as an inverse size of the lattice in 
the "time" directioc 
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In the weak coupling limit we can use the renormalizaLion-group pre
dictions. we obtain for 8 

1. f -1 (HS'l. )5iA.'It. ~;.
%L t'4 (~) =:~ 2i!1"' • GiL, (i -I- O~"t)). 
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As is known, in the SU(N)-gauge theory the temperature PT is 
related with spontaneus breakdown of the global Z", -symmetry. Some 
universality arguments/ 12/ and model considerations 10/ allow us to 
conclude that a pure gauge SU(2) theory at nonzero temperature be
longs to the class of universali ty that includes 3d-Ising model. If 
so, all the critical exponents in the Ising model must coincide with 
the critical exponents in the theory. 

Some recent papera/3- 10/ have dealt with the stud,y of the order 
parameter (L) (the temperature string): 

,tit 

<L>:! (fItDi ~'.t)~f ~4) 
In a Vicinity of the critical point the order parameter <L) behaves 
as follows: 

G{ Gc (~l {, "~~.) 
(L>" f~OA _'L/f' "\ "\ 

~; ~ b:pK 

In the 3d-Ising model the critical exponent ~ is known to be/ 14/: 

A'JI~;"3-::::' 0.31. The values obtained for f in SU(2) theory ure 
in good agreement with this value. 

Before expounding our results, we should milke the following HIl
portsllt comments: 

i) the thermodynamic limit reqUires the validity of the condi
tions 

Nt» i A's» 1 , A'<./Alt »1 . 
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So, the choice Alt = 2 seems to be not very good, and from this 
point of view the choice Nt ~ 4 looks better. At the same time the 
choice ~!~c'= 2 (as in our work) is reasonable. Indeed, though 
M,/Wr: = 2 is not very lal'ge, the position of the critical point 
may be corrected by the finite-size scaling procedure. 

ii) l'Ii th increasing N", the cri tical value 41g~ increases 
LOO. At A~ = 2;3 values of 4/~: are much less than those at which 
the asymptotical scaling is expected to set in. 

In other words, in this case the two-loop formula (3) is not 
valid, and it is impossible to calculate ge . This is another ar
gument ill fa.vour of the use of Nt ~ 4. 

2. AS it was noted above, the order parameter (L) must be zero 

at 't/gt,(. 441~ ,and nonzero at ".1'1)' 4/~~ . But the difficulty 
in deie~nation of the critical point is connected with the existen
ce in the confinement phase two symmetric states: with <L'> '> 0 and 
wi th (L>.( O. Due to a finite size of the lattice the transitions 
from one state to another may occur ("tunneling"). If averaging is 
made over a large number of iterations, L will change in sign se
veral times, and positive and negative values of L in the course of 
averaging will compensate each other so that the average value <L) 
gets zero. 

'\. '1 
In practice this phenomenon is significant at 9'" gc ,which 

would lead to a wrong determination of 81:. That is why very often the 
critical point is determined with the use of <ILl) for which the abo
ve-described problem does not arise. But the usage of the ~\L\> is 
connected with another difficulty. Indeed, very close to 9c spuri
ous nonzero estimates for magnetization result from finite lattices, 
because (1L.1> then differs from zero appreciably due to a broad 
width of the distrioution. 

In this paper another method is used for determining g~ which 
is based on sampling of the distribution functions of the order pa
rameter. These distribution functions can be used to get improved es
timates of quantities often obtained oy a standard Monte-Carlo ana

lysis in a different way, e.g., the order parameter, susceptibility, 
etc.. This method turns out to be rather effective in studying pro
perties of the Ising model /15/ • 
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Let us define the current'magnetization" of the lattice as f01
lows 

- i .
L ~ J/~ I L~,

!V~.... >. (4) 
X 

where summation runs over all X • ,lOW we can define the distrilJution 
function of the order parameter: 

P([) ~Z-1fldUI eSJ([-A~f L;) (5) 

By definition the order parameter (L'> equals 

<L>;c~dL . [.. P(C). (6) 

Below i9~ we can define the susceptibility in the following w~: 
J (0):" e,'(r1 JNS(~) , 

~400 

Bj"M? ~:~<L,Ly> ~ 4'<C',> B<(}r . (7) 

Like in the Ising model, for values of Ns IQuch larger than the 
correlation length .:s (t1{.»..s .) the difference between f and 

-(' must be small 11$1 
/'i"~ 

J =J#s + alA's. . 
In this phase the distribution function P(L) is even (P(L)= P{-[)) 
and hence <L) = O. The knowledge of the distribution function 
gives us the possibility to determine higher moments and cumulants of 
the distribution. As expected, away from the critical point all cumu
lants become negligible for large ~ ,and ~ (L) is a gaussian/151 

-2. ~ 

(15)e/[) "- eocp [ - L AlYfoJNs f 
) 

BzO~ . 

For temperatures aDove Bt a spontaneous average magnetization 

<L'> = :!: MIO appears ~n the thermodynamic limit, and hence the sym
metry property of P(L) no longer takes place ( P(-L) "I P{L»). 
Rather, we must distinguish the probability pe'ri) 
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(-) -)
for positive magnetization from the prOllability P (L. for negati 

P(+l -) ,..,r.-) - P(')( (-)ve magnetization, and _ r-L = Y (L) • The distribution P ) 
is sharply peaked at L" [tn.:l-X ([~ -[~.). The susceptibility J 
can be defined us follows 

i",tmjl/I 
~ -,,>(>0 

_ 1.. (9) 

oj~ = A{' «L2~S (~) J 1 


In Fig.1 distributions P{f) are shown, obtained oy the NlOllte

Carlo method at various values' of 4/f- . It is seen that at 4/9"
= 2.25 the maximum of the distribution coincides with zero tl'ig.1a), 

and the distribution is with a good accuracy described by a guassirul 

distribution. At Ltlg.... = 2.28 the distrillution maximum is shifted from 

zero (Fig. lb), the right wing of the distribution being well describ

ed by a Gaussian one, while at lt~'2, 2.26 the distrioution is cer

tainly non-gaussian though its maximum is close to zero (Fig. 1c). 

The study of such distributions gives for the phase transition point 


(±) 
It must be noted th&t distributions P . are no longer gaussians. 
Indeed, at /LI <. L"-<1,c distributions will be dominated by configura
tions corresponding to the two-phase coexistenoe ("tunneling") which 
results in deviatioqs from the gaussian. Certainly with increasing 

AIs the tunneling effect will be suppressed, and the distributions
p:!) (L ) will approach the Gaussian ones: 

- 7. 3. 

(10)pe)UJ I'- eX'pi- (L +L~) tV~ l 
Z8J-Pr; J 

At the same time, at large values of magnetization ILl) L~ 
tunneling effects are not large, and as a result the ri~t wing of 
the distribution P(+~)(left wing of the distribution P(L) should 
agree with the gaussiwl behavior (10). This allows us to get rid of 
the tunneling effects due to the lattice volume being finite: it is 

Pf+) pHsufficient to make the distribution ( ) symmetric with res
pect to a vertical axis with [:. ilWtl< (L = - L"'-<4'1. ). Then formula 
(10) permits us to determine the susceptibility l",s . This procedu
re of determining the order parameter (L> (= L......u) and susceptibi
lity allows a more reliable and accurate calculation for these quwlti 
ties without enormous increasing the statistics. 

). In our Monte-Carlo calculations we have used a heat-bath me
thod, and the sequence of renewing of variables on links and at sites 
was chosen in a rWldom way (stocha~ic sweeps). Statistical errors 
were determined by a standard bunching-method/16/. A typical statis
tics per point was 7000-8000 iterations. For thermalization first 
1500-2000 iterations were employed, over others averaging was carried 

out. A most part of the calculations was made on a lattice 4~83 mak
ing use of the periodiC boundary conditions. 

the follOWing value: 
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4/~: = 2.26 ± 0.05. 

'l'he dependence of the uverage of temperature string .(L) L""",,,~) 
OIl 4/9,7. is "lilOwn by crosses in r'ig. 2. The corresponding values of 
<L '> ~e collected in Taole 1. The corresponding critical temperatu

re equals 
(}c/At. ~ 38.2 

and the critical exponent is 
f3 o. )).C::. 

For comparison. in Fig.2 black points show the values obtained by the 
Ll.onte-Garlo method for <'iLl> (see also Table 1). Note that within 
errors these values for <ILi> are in agreement with the values for 
<ILl> drawn in the graph of ref. /91 for the lattice size 4 ~1~3. 

Note that the use of these data much complicates the determination 
of the phase transition point. 

A still more striking discrepancy results from calculating the 
susceptibility J in different ways. In Fig.3 crosses stand for va
lues of J (aJ ) obtained by analysing the width of distribution 

peL) • i.e.,~y formulas (S), (10), whereas black pointes denote 
the values of J (~~ found by a direct computation by the Monte-Car
lo method (formulas (7), (~». The corresponding values of suscepti 
bility are written in Table 2. It is seen that the matimum position 
for ~~ is to a great extent shifted to the right ( 4Ig~72.3) and 
does not coincide with the position of the critical point determined 
by calculating P(C). We suppose that a reliable determination o~ 
the susceptibility by a direct Monte-Carlo computation of the averages 

t,:
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Pig.). Crosses stand for Talues 

~ig.2. fhe dependenoe of <L> of DfFi obtained by analysing the 

on 4/g2 is shown by orosses. width of distribution P(L). Blaok 

Blaok point show the Talues ob points denote the Talues of OJl1fC 
tained by the Konte Carlo method found by a oomputation by the 

for <ILl>. 	 Konte Carlo method. 
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TABLE 1 • 

,%1~~ L..~)( <ILl> 	 L~)( <{l.!I> 

2.2 0 0.046:0.03 	 2.32 0.20:0.005 0.168±0.01 

2.23 0.066+0.006 	 2.335 0.22:0.003 0. 192±0. 01° 
2.25 0.08 +0.006 	 2.35 0.24:0.003 0.21'1 +0.005° 
2.26 	 0.104:!:0.006° 
2.27 0.11 +0.01 0.106:!:0.006 	 2.5 0. 336:!;0. 003 0. 324±O, 005 

2.28 	 0.15 :!;:0.005 0.126+0.01 2,55 0. 363:!;:0. 003 0.344:°,005 

3,0 0.48 :0.003 0. 465±0. 004 

2.3 0.18 ±0.005 0. 142:!;:0.01 	 3.1 0.495:0.002 0.484±O,O03 

2.31 0. 195:!;:0.003 0.154:0.01 	 3.2 0.50 :0,004 

TABLE 2. 

%1- P}tfif e/f'K, %7- e;XN O;tNC. 

2.2 1.9:!:0.15 0.61+0.1 2.32 1 • 2 2.9:t 0• 25 

2.23 4.1:!:0.4 1.16+0.1 	 2.335 1.1+0.1 2. 46:t0•2 

2.25 5.6:0.3 1.5S:!:0.2 	 2.35 0.8S+0.08 2.1:!:0.25 

2.26 2.05:0.15 

2.2'7 2.75:0.4 2.13:t0.15 2.5 0.6+0.05 1.1:0.15 

2.28 1.9+ 0.3 2.3 :to. 15 	 2.55 0.4:°. 03 1.24:!;:0.3 

3.0 o.3:!:0.02 0.(;11:0.25 

2.3 1.45+0.2 2.7+ 0.2 	 3.1 0.3+0.02 0. '76:0.15 

2.31 1.1 +0.1 2.8 +0.2 	 3.2 0.86+0.2 

.(:2. Lx Li) requires an essential increase in the statistics, 
which signifies that the determination with the US8 of the distribu
tions is more effective and reliable. 
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We think tha.t precisely this problem involved in the study of 

distribution functions P(L) allows the investigation of var'ious cor

relators and a correct calculation of critical exponents, in the first 

place, ({ (for susceptibility) and ::J... (for specific heat). This will 
be published elsewhere. 

In 	conclusion we would like to express our gratitude to Matve

ev 	V.A., Meshcheryakov V.A., Mogilevsky O.A., Sissakian A.N., Shir

kov 	D.V., Zinovjev G.M. for uSlj!ful discussions and interest in the 
work. 
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3a.n.opmKHhIH A.M., MHTpIOWKHIiI B.K. 

TeMnepaTYpHble cpa30Bhle nepexOJJ;bI 
B SU (2)-KaJIH6pOB014HOH TeopHH 

E2-86-575 

I1cnoJIb3yeTcfI MeTOJJ; onpeJJ:eJIeHI1H KpHTH14eCKOH TeMnepaTypbI 
(Je' a TaK)Ke "HaMaf'HH'leHHOCTH" < L >. BOCnpHHM14HBOCTH X. OCHOBaHHbIH 
Ha onpeJJ;eJIeHHH CPYHKUHH pacnpeJJ;eneHI1H napaMeTpa nopflJJ;Ka. 3TOT 
MeTOJJ; n03BonfleT JJ;06HTbCfI 60JIee BbICOKOH T014HOCTH npH BbII4HCJIeHI1HX 
B6JIH3H TO\lKH cpa30BOf'O nepexoJJ;a. C nOMOlUbIO 3TOf'O MeTOJJ;8, BbNHCJIfI
IOTCfI (Je, < L > H X B SU (2) -KaJIH6pOB014HOH TeopHH Ha peweTKe' pa3
MepOM 4*83. 

Pa60TR BbInOJIHeHa B Jla6opaTopHH TeopeTH14ecKoH CPH3HKH OI1HI1. 

ITpenplnfT 06'beJJ,HHeHHoro HHcTHTyra .llAePHbiX HccneJJ,oBaHHH. lly6aa 1986 

Mitrjushkin V.K., Zadorozhny A.M. E2-86-575 

Temperature Phase Transitions in SU(2)-Gauge Theory 

The distribution function P(L) of the order parameter is studied for 
pure SU(2) gauge theory on the lattice 4-83 . It is shown that the study 
of P(L) gives a possibility of determining the thermal string < L >, criti
cal temperature (Je' susceptibility X • etc .• with a good accuracy. 

The investigation has been performed at the Laboratory of Theore
tical Physics, JINR. 
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