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1. Ag is known, at sufficiently high temperatures gauge systems
undergo phase transition (£T) from the low-temperature confined
phase to high-temperature quark-gluon phasef1’ex. The matter state
with high temperature may be realized in relativistic nucleus-aucleus

head-on collisions at an energy accessible at present accelerators.

As for as the P1 temperature 6% hus a nonperturbative origin,
it is natural to use the luttice formulation. From a point of view of
lattice gauge theories the study of temperature transitions is very
essential for investigating a continuum limit. The reason is that

e 1is a physical observapble independent of the cut-off and i}V

~divergences, and the determination of the e glves & good possi-
pility to find the onset of the scaling behaviour., lMotivated by these
arguments, several numerical studies deal with SU(2)-gauge theory
(aee, e.g., papersf3_11/}. )

In this paper we study the S8U(2) gauge theory and calculate
the temperature string (LJ> und susceptibility ;F uging digtribu-
tion functions of the order parameter.

Let us consider & nonsymmetiic lattice in % four~dimensional
Buclidedan spuce with the number of aites &Qﬁﬂé‘ and periodic bouu-
dary conditions.

The partition function ;Z ig defined in & standard manner
- ; =140, ,
Z- [l exp{-Sf, [4v]=]T )

where 5; is the Wilson action

NE Qéq“Z(i_t/zﬁUn). (2)

The temperature 9 ig defined as an inverse size of the lattice in
the "time" direction

0= 14n,

In the wemk coupling limit we can use the renormalization-group pre-
dictions. Then, we obtain for B
\

\StAet 1?2'*'
%, = 4 fg=t (G577 (1 O).
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As is known, in the SU(N)-gauge theory the temperature PP is
related with spontaneus breakdown of the global Eﬁv -symmnetry. Some
universality arguments/12/ and model considerations allow us to
conclude that a pure gauge SU(2) theory at nonzero temperature be-
longs to the class of universality that includes 3d-Ising mocdel., If
8o, all the critical exponents in the Ising model must coincide with
the critical exponents in the 8U(2)~gauge theory.

Some recent papers/3”10f have dealt with the study of the order
parameter ([,) (the temperature string):

M
LT MY
Ly =Gl U0 -
2 et p,t),/d‘l
In & vicinity of the critical point the order parameter <L> pehaves

as follows:
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In the 3d-Ising model the critical exponent f5 is known to be/14f;

‘ Pj‘”&,ua% 0.31, The values obtained for ﬂ in SU(2) theory are
in good agreement with this value.

Before expounding our results, we should make the following it
portant comments:

i} the thermodynamic liodt requires the validity of the condi~
tions
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So, the choice /% = ¢ seems8 to be not very good, and from this
point of view the choice /Ué = 4 looks better., At the same time the
choice M/A.*= 2 (as in our work) is reasonable. Indeed, though
M///":.— = 2 i8 not very large, the position of the critical point
may be corrected by the finite-size scaling procedure.

XS ;
ii) With increasing /Vt the critical value lf/gt increases
too. At A, = 2;3 values of ‘1/3’: are much less than those at which
the asymptotical scaling is expected to set in.

In other words, in this case the two-loop formula (3) is not
valid, and it is impossible to calculate e . This is another ar-
gument in favour of the usge of M?’ 4.

2. As it was noted above, the order parameter (LY must be zero
at ‘{/9"4 l{/éq‘”: , and nonzero at ll/g’7 11/9': . But the difficulty
in determination of the critical point is connected with the existen~
ce in the confinement phase two symmetric states: with (L\)>0 and
with (L><O . Due to a finite gize of the lattice the transitions
from one state to another may occur ("tunneling"). If averaging is
made over a large number of iterations, L owill change in sign se-
veral times, and positive and negative values of L in the course of
averaging will compensate each other so that the average value ([}
gets zero.

In practice this phenomenon is gignificant at Qm’” 9: » which
would lead to a wrong determination of ,:93, That is why very often the
critical point is determined with the use of <1U> for which the abo-
ve-described problem does not arise. But the usage of the (\L\) is
connected with another difficuliy. Indeed, very close to @C spuri-
ous nonzero estimates for magnetization result from finite lattices,
because <|L\> then differs from zero appreciably due to a broad
width of the distripution,

[
is based on sampling of the distribution functions of the order pa~

In this paper another method is used for determining gq which
rameter. These distriovution functions can be used to get improved es-
timates of guantities often obtained py a standard Monte-Carlo ana-
lysis in a different way, e.g., the order parameter, susceptibility,
etc.. This method turns ocut to be rather effective in studying pro-

perties of the Ising model 1

Let us define the current'magnetization"‘of the lattice as fol~-

— A; .
L:%BZL;' (4)

lows

Py

X

where summation runs over all ? . ow we can define the distrivution
function of the order parmmeter:

Py =2 [14] €°8(L- Z L)

By definition the order parameter {|.) equals
(s-(di T P(E).
Below Uk we can define the susceptibility in the following way:

](Q):éfof”s(g) )
B Y(6) = %s%<L?L§>E WS 4.

Like in the Ising model, for values of Ng wuch larger than the
correlation length ¥ { {VQ»S *) the difference between f and
ﬁ must be small /'S

(4

X = Y+ 0//1/5- :

In this phase the distribution function P(L) is even (P(L): P('L))

and hence {L) = 0. The knowledge of the distribution function

gives us the possibility to determine higher moments and cumulants of
the distribution. As expected, away from the critical point all cumu-

lants become negligible for large ,f\é , and E\g (L) is a gaussian/wl

[A)%([:)N eoc/{){—L-Z/tés/Z@},Sf ; 94@{. (@)

For temperatures avove 96 a spontaneous average magnetization
<L‘> = 1”#0 appears in the thermodynamic limit, and hence the sym~
metry property of P(l:) no longer takes place ( P(“[,) #Pﬂ-)).
Rather, we must distinguish the provability  P([)



(_ -
for positive magnetizatig? from t?e provability P (L) for n?gati-
" SPH + -
ve megnetization, and E:(;L)=if (L) . The distribution pe (P()

is sharply peaked at L::anq (L:-Z;“aJ)' The susceptibility j{
can be defined as follows

X~ lim Ly

W, e
0= 0207, - (L)) -

+

It must be noted that distributions p( ) are no longer gaussians,

Indeed, at IL]( L‘“dﬂ distributions will be dominated by configura-

tions corresponding to the two-phase coexistence ("tumnneling®) which

results in deviations from the gaussian. Certeinly with increasing

Aé the tunneling effect will be suppressed, and the distributions
FS:)EZ1) will approasch the Gaussian ones:

(9}

3

¥ E ;'leuq 2/%? 10
PAL) ~ expf- oo 1 o)

At the same time, at large values of magnetization ,L'> Lh“ww
tunneling effects are not large, and as s result the right wing of
the distrivution PUl(left wing of the distribution P()) shoula
agree with the gaussian behavior (10). This allows us to get rid of
the tunneling effects due to the lattice volume being finite: it is
sufficient to make the distribution P«? { Poﬂ ) symmetric with res-
pect 1o & vertical axis with L:me (L = 'Lwax }» Then formulsa
(10) permits us to determine the susceptibiiity ;ﬁ% . This procedu~
re of determining the order paremeter () (=l,..,) and susceptibi-
lity allows a more reliavle and accurate calculation for these quanti-
ties without enormous increasing the statistics.

3. In our Monte~Carlo calculations we have used a heat-bath me-
thod, and the sequence of renewing of variables on links and at sites
was chogen in a random way (stochagtic sweeps). Statistical errors
were determined by a standerd bunching~method/16/. A typical statis-
tica per point was 7000-8000 iterations. For thermalization first
1500~2000 iterations were employed, over others averaging was carried
out. A most part of the calculations was made on a lattice 4r83 mak-~
ing use of the periodic boundary conditiona,

In Fig.1 distributions FYL) are shown, obtained by the Monte-
Carlo method at various values of 4/92 . It is seen that at 4/91 =
= 2,25 the maximum of the distribution coincides with zero (Fig.1s),
and the distribution is with & good accuracy described by a guassian
distribution. At 4@?‘= 2.28 the distrivution maximum is shifted from
zero (Fig., 1b), the right wing of the distribution being well describ-
ed by & Gaugsian one, while at 3&9‘ = 2.26 the distribution is cer-
tainly non-gaussian though its meximum is close to zero (Fig. l1c).
The gtudy of such distributions gives for the phase transition point
the following value:
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Pig.1. Order parameter distribu-
tion P(L) for different values
of 4/32. o1 07 3 L
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47@& = 2.26 4 0.05.

The dependence of the average of temperature string ([,> (Etnuuwl)
an Q/Q‘ is snown by crosses in ¥ig. 2. The corresponding values of
(L;> are collected in Taple 1. The corresponding critical temperatu-

re equals
994\& = 38.2
and the critical exponent is
o 0,33,
Por comparison, in Fig.2 black points show the values obtained by the
Lonte-Carlo method for (L]} (see elso Table 1). Note that within
errors these values for ((Li) are in agreement with the values for
<lL’> drawn in the graph of ref. for the lattice size 4 x18°.
Note thet the use of these data much complicates the defermination
of the phase transition point.

A 8til} more siriking discrepancy results from calculating the
sugceptibility in different ways. In Fig.3 crosses stend for va-
lues of X (X ) obtained by analysing the width of distribution

p(L) . i.e.f%y formulas (8), (10), whereas black pointes denote
the values of ‘I (a}hQ found by & direct computation by the Monte-Car-
1o method (formulas {(7), {Y)). The corresponding values of suscepti-
bility are written in Teble 2. It is seen that the maximum position
for anc is to & great extent shifted to the right ( 47@172.3) and
does not coincide with the position of the critical point determined
by calculating P{L) . We suppose that & reliable determination of
the susceptibility by & direct Monte-Carloc computation of the averages
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Pig.3. Crosses stand for values

TABLE

1.

b

<L

L

<lui>

Pig.2. The dependence of <L)

on 4/32 is shown by crosses.
Black point show the values ob-
tained by the Monte Carlo method
for <iLi>

on}ﬁfobtained by mnalysing the
width of distribution P(L). Black
points denote the values of Q}hc
found by a computation by the
Monte Carlc method.

Moc X
2.2 (o} 0.046+0.03 2.32 0,20+0.005 0.168+0. 01
2.23 0 0,066+0.006 2,335  0.,22+0.003  0.192+0.01
2.25 0 0.08 +0.006  2.35 0424+0.003 0,217+0,005
2.26 0 0.104+0.006
2,27  0.11 +0.01 0.106+0.006 2,5 0.336+0.003  0.324+0C, 005
2,28  0.15 +0.005 0.126+0.01 2,55 0.363+0.003  0.344+0,005
3,0 0.48 +0.003  0.465+0,004
2.3 0.18 +0.005 0.14240.01 3.1 0.495+0.002  0.484+0,003
2.31 0.19530.003 0.154+0.01 3.2 0.50 +0,004
TABLE 2.
@gl. 9?%&{ gfzmc ?le 9*9%4 QVXQQ
2.2 1.9+0.15 0.61+0.1 2.32 1.5+0.2 2.9+0.25
2,23 4.140.4 1.1640.1 24335 1e1+0.1 2.46+0.2
2.25  5.640.3 1.58+0.2 2,35 0.88+0.08 2.1+0.25
2.26 - 2,05+0,15
2.27 2,7530.4 2.1340.15 2.5 0.6+0.05 1,140, 15
2.28  1.9¢ 0.3 2.3 0.5 2.55 0.4+0.03 1.2410.3
3.0 0.3+0.02 0.9110.25
2.3 1.45+0.2 2.7+ 0.2 3.1 0.3+0.02 0.76+0.15
2431 Te1 4041 2.8 +0.2 3.2 0.86+0.2
(;Z LYL?) requires an essential increase ian the statistics,

which signifies that the determination with the use

tions is more effective and reliavle.

of the distribue~
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We think that precisely this problem involved in the gtudy of
distribution functions }%QD allows the investigation of various cor-
relators and a correct calculation of critical exponente, in the first
place, X‘ (for susceptibility) and oL (for specific heat). This will
be published elsewhere.

In conclusion we would like to express our gratitude to Matve~
ev V.A., Meshcheryakov V,A., Mogilevsky O.A., Sissekian A.N., Shir-
kov D,V., Zinijev GuM. for useful discussions and interest in the
work.
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Bapopoxueiii A M., Murpromxus B.K. E2-86-575

TemrnepaTtypHbie Qa30Bble Nepexonbl
B SU (2)-xamubpoBouHoi Teopuu

Hcnonpsyerca Meron onpedeneHMA KPHTUYECKOH TemIepaTypbl
9 o @ TAKKe “"HamarHuueHHOCTH ' < L >, BOCIIPUUMUYHBOCTH X , OCHOBAHHBIMH
Ha omnpepeneHus GyHKUME pacripemeneHMda IapaMerpa ropsaxa. IToT
MEeTOH II03BOJIAET ZOOHThCA 6oJee BBICOKOH TOYHOCTH MPH BBIUMCIIEHUAX
BOm3n Touxky Gasoporo nepexona. C rnoMolubio STOr0 METOZa BbIYHCIIA-
1o1cA 8o, <L >wu x B SU(2)-xanubpoBouHON Teopud Ha pelleTxe pas-

Mepom 4°83,

Pabora BemonHeHa B JlaGoparopum reoperndeckoit ¢dusuxu OHAN.

Ipenpmir OGhenuHEHHOrO HHCTHTYTA HOEpHBIX HccnenoBaHuil. [ly6ra 1986

Mitrjushkin V.K., Zadorozhny A.M. E2-86-575
Temperature Phase Transitions in SU(2)-Gauge Theory

The distribution function P(L) of the order parameter is studied for
pure SU(2) gauge theory on the lattice 4+83. It is shown that the study
of P(L) gives a possibility of determining the thermal string < L >, criti-
cal temperature 8, susceptibility x , etc., with a good aceuracy.

The investigation has been performed at the Laboratory of Theore-
tical Physics, JINR.
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