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I. Introduction

Invention of the harmonic superspace (SS) approach opened a way
to unconstrained superfield (SF) formulations of all N=2 theories
/1-3/ and of the N=3 Yang-Mills theory 4/. An urgent problem ahead
1s to construct an unconstrained off-shell formulation of N=3
Einstein supergravity. Hitherto it was known only on she11/5’6/ .

We are led by reasonings 7 that follow a general compensating
strategy (see /8/ and references therein),

According to these feasonings an off-shell interaction of N=3 confor-
mal supergravity/g/ with three Maxwell multiplets produces the off-
-shell Einstein supergravity. To perform this program one has to find
out N=3 conformal supergravity prepotentials and to establish how a
local superconformal group acts in the N=3 real analytic superspace
where the N=3 Yang-Mills action is written down. We shall see that
this procedure is rather analogous to that in N=2 cagg{lgf

We shall establish in the present paper the rigid superconfor-
mal properties of the real N=3 analytic SS and check the superconfor-
mal invariance of the off-shell N=3 Yang-Mills theory.

Moreover, in the present paper we reveal existence of an essen-
tially complex analytic SS having only three Weyl spinor coordinates
(instead of four in the real analytic SS), Possibilities are also
indicated to impose additional analyticity conditions with respect
to harmonic variables.

The paper is planned as follows; In section 2 we remind the rea-
der of basgsics of the N=3 harmonic SS introduced by S.Kalitzin, E.So-
katchev and the present authors/4/. This is made for the reader’s
convenience and because we have improved some conventions and nota-
tion., We use a modernized combined conjugation definition that is
easier to deal with and that relates wmore directly to the combined
conjugation in the N=2 case/1/.

The main section is the third one. Here we find such a realiza-
tion of the superconformal group in the hermonic SS that leaves inva-
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riant its analytic sub S5, In what follows we shall often use the
theorem of this section that the Berezianin (superdeterminant) of
superconformal transformations in real analytic S5 is unity. These
transformations for harmonics and harmonic derivatives are presented
in a oompact form. In subsections 3.6 and 3.7 we digress temporarily
_from the basic line of attaok and make some intriguing observations,
The latter concerns the existence. of complex analytic N=3 88 with
a smaller number of Grassmann or/and harmonic coordinates and reali-
zation of a superconformal group in these SS's .

Finally, section 4 treats superconformal invariance of the N=3
SYM theory. This becomes rather evident after establishing 311(27213>
transformation properties of the SYM prepotentials and field strengths.

Appendices contain the explicit form and algebra of harmonic:
derivatives, the N=3 superconformal transformations of analytic coor—
dinates and some details connected with the complex analytic SS ., In
partioular, we demonstrate that the latter contains the real analy-
tio S5 as a hypersurface.

2. The %\EB(l of N=3 harmonic 8S

In this section we give a brief review of basic conventions and
concepts concerning N=3 harmonic S8 4 . We adopt here a modernized
" combined conjugation operation, Being equivalent in essence to the
original one the new operation is more convenient to keep it
in ming and is in a direct ocorrespondence with that for the N=2
case .

2il. Central basis of harmonic N=3 88 contains the coordinates
of the usual N=3 88
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and, in addition, the harmonics U Up=U7 . The latter are
coordinates of the N=3 supersymmetry automorphism's group manifold
SU(3) . These harmonics obey the unitarity and unimodularity con-
ditions -
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dit =14 = 2:3kuaiu‘33u“k: s abc .

Differentiation with respect to harmonics is performed by harmonic
derivatives
ar ‘2
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The reader can easily check that 1)10 agree with the defining pro-
perties (2.2), that they form the SU (3) 3 algebra

(D% D4 = 86 D - 34D =

and that this SU(3) commutes with SU(3), that rotates indices
1,35k (but not a,b,0!). These SU(B)A and SU(32D groups are reali-
zed on harmonics [Lf’ by left and right multiplications, respecti-
vely.

The Cartan algebra of 8U(3)p 1s given by harmonic derivatives

D;ED; -5 , Dr=23 (Di»fD?‘z) (2.5)

that define two U(I)-charges. One can consider harmonics as eigen-—
vectors of these charges (see (2.3) )
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Correspondingly index & 1s represented by a pair of U(I)-indi-
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U(I) x U(I) notation for six remaining derivatives (2.3) does not
need special explanation
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Appendix A contains an explicit form for the rest of derivatives and
algebra (2.4) . The latter consists of commutators with the U(I)-char-
ge operators
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and of commutators of I) T'E between themselves.

2.2, A comment. The significance of U(I) x U(I) charges is de-
fined by our ultimate goal, 1.e. by the SF N=3 Yang-Mills theory -.
and the N=3 supergravity. Ag has been shown in 4 the first re-
quires SF's of definite U(I)-charges. The even part of the corres—
ponding SS includes the space-time FAA and’ » in fact, the
homogeneous space SA)@Q/UHJ®UU)( but not SU(3) itself). Indeed,
harmonics [({ . have (taking into account (2.2) ) 8 independent
real degrees of freedom describing the SU(3)-manifold. However, the
condition that SF £ {r.% has two definite U(I)—charges
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fixes dependence on two degrees of freedom. Evidently, in such a
framework one works in a manifestly su(3) invariant way.

2.3, We shall finish a review of harmonics properties by
discussion of the combined conjugation operation.

It includes the complex conjugation and one of the Weyl reflec-
tions of SU(3) algebra. The latter acts on indices 103 of
harmonics and can be chosen in several ways. Time has shown that the
original choice 4/ was not the best to deal with. The following
one<i§ better:
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The new rule is easier to memorize; the first U(I)—charge remains
unchanged while the second one changes its sign. The reader will
easily see that the combined conjugation (2.11) is compatible with
the conditions(2.2) and that the harmonic derivatives have the

following reality properties:
X pva *

e

BE0 = [yruo

13; = Iﬁ% ) I>?E:: __t>?ﬂ 3

' : 4,33 -1+3 1 F3
DV = 217 , D= =D (2.12)

2.4, The introduction of harmonics enlarges the number of even
dimensions. At the same time a wonderful possibility appears to single
out in the harmonic SS its analytio sub S8 4/ . The latter has a
smaller number of Grassmann coordinates and i1s closed with respect to
the N=3 supersymmetry. Indeed, in the ocentral basils {Xuf 9%‘§&L'L(E
the N=3 supersymmetry transformations have a form
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Now let us pass from central basis to analytic one . ,
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The S8 (2.16) ‘is real with respect to the combined conjugation (2.11):
*
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We shall refer to SF's defined on (2.16) as to analytic SF's. The
analytic SS and SF's on it are of great lmportance in N=3 theories.
Indeed; (1) Prepotentials and gauge parameters of the N=3 Yang-Mills
t



theory are described by the analytic SF's and the action of this
theory is given by an integral over analytic S8 /4 o

2.5, Analytic SF's obey automatically the analyticity conditions
1,4 iik
Dy dlgu)= UDib =0 Ty Ply=u Bub=0 (2.19)

because covariant spinor derivatives I)if andfsif; are reduced
in the analytic basis to the partial derivatives fa/ag“"i‘j -1ty

The reader will easily perform one more exercise. Action of which
harmonic derivatives preserves analyticity property of SF? Answer:

[e] o ~A.t 2 - -
DS ),DI) phEE DML D"-"’) D3] « Their explicit form
in the analytic basis is (in application to analytic SF)
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‘Additional terms with' (?%%Xv and (QkZG in (2,20) arise upon
the change of variables (2.15).

In this section we discussed the properties of the harmonic
N=3 S5 with respect to the N=3 Poincare supersymmetry established
in 4 « Now we turn to our main topic, to 1its superconformal pro-
perties,

3. Superconformal transformations and N=3 analytic superspace

This section is devoted to discussion of the realization of su-
peranformal group SUC2, 2| 3) in the N=3 harmonic SS. As we shall
show 1t can be defined from the requirement that the real analytio S8

1s closed under these transformations. Berezinian of SU(2,2]3) trans-
formations in the real analytic SS is proven to be unity, This fact
will be of great importance for the proof of conformal invariance of
the N=3 Yang-Mills theory (sect.4).

3.1, The SU(2, 2/3) realization in the standard N=3 88
(2.1) is known long ago (seey eoge s u ) (we omit supertransla-
tion given by (3.12) and the Poincaré transformations which are evi-
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where &, b \ ’}\;)<{>\;J:—A;)Allzo> , krs\x and Vf'“)ﬁ“fg V]dL
are the parameters of dilatations, ¢ transformations, of su(3)
conformal boosts and special supersymmetry, respectively.

To find a SU(2, 2/3 ) realization in the harmonic SS, we have to
add to (3.1) superconformal transformations of harmonics. We shall
find the latter from the requirement of preserving the analytic §SS$
(2.16). It suffices to find the confoimal boosts §, [{ of harmonics
because by commuting them with supertranslation we can recover all
superconformal transformations.

3.2, We begin with a conformal boost of the coordinate X ael
(2.15) . We require that this boost does not contain the Grassmann
coordinates @11 E)‘ii that do not enter into the real analytig
85 (2.16), After a simple algebra we find
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It follows from (3.1) and (3.3) (see also (2,15) ) that analytic
Grassmann coordinates are tzansformed according to
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where we have introduced the notation
™ o . (3.5)
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It is remarkable that conformal boosts act within the analytic S$3;
the right-hand parts of (3.2)-(3.4) involve only analytic coordina—
tes (2.16). We leave for the reader to check compatibility of the
transformations obtained with the defining conditions (2.2) and the
combined conjugation (2.11), (2.18).

3.3. As was said above, the remaining transformations can be
obtained by commuting (3.2) -~ (3.4) with (2,17) . For analytic coor—
dinates X and & they are given in Appendix B while for harmonics
we prefer to give them here in the following compact form (that will
be used often in what follows)
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Analytic parameters % :,% have the following properties?
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3.4, We suggest the reader proving the theorem that will be in-
tensively used in sect.4. The Berezinian of rigid N=3 superconformal
transformations in the real analytic SS is unity,

&mmMO - 4. (3.9)

 (3,u)
Hints. (1) The Berezinian of infinitesimal transformations has
the form
by @bzl gya {0 Ju-2 08, (3.10)
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where sum is implied over all analytic coordinates.
(11) Due to (3.6)
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The important equality (3.9) ocould be guessed on purely dimensio—
pal grounds. Indeed the analytic SS integration measure ol4x 426 duw
has zero dimensiomality ( [dxJ= m3 [de-] =pm*Ye 3 \:dﬂ—]‘—’O)
and, consequently, zero Weyl weilght.

3.5. To establish superconformgl properties of the N=3 Yang-Mills
prepotentials and to check superconformal invariance of the action, we
have to know a transformation law of harmonic derivatives (2.20) with
respect to S8U(2, 2 3) , First of all, variations of the U(I)-charge
operators (see (2.10) have to vanish because these charges are
respected by superconformal transformations?

O DT =8D%=0." (3.12)



This can be checked using theilr explicit form. Also
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To check these laws it is convenient to use the central basis
where harmonic derivatives do not contain?ﬂ@X,Qy@Q (A 1-A.3),(2,8).,
Note also that (3.13c) follows in fact from (3.13a,b)

2,0 _ E D»i,'b , Dd,—%‘),

3.6. Digression. When reading section 2 a careful reader could
notice the following. The real anelytic SS (2.16), being invariant
sub SS of the harmonic SS (2.14), itself contailns Sub 5SS

!
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which is closed under all N=3 Poincaré supersymmetry transformations.
The sub 5§ (3.14) does not contain the Grassman coordinate © q;f

(entering into (2.16) ) and variations of coordinates (3.14) do not
involve 90'0.('2 (see (2.17) ), e.ge.,

H 4d - —) \ ol . =18, -4
5K =4 (9 o U B

In N=1,2 theories,S5S's with the least number of spinor coordina-
‘tes played the important role /12-15/ . From this standpoint it is
rather interesting to investigate the superconformal properties of
the S8 (3.14) having in mind possible applications of the latter in
N=3 theories. It is not difficult to note that (3.14) 1s not closed
with respect to N=3 superconformal transformations in the form we
have discussed above. For example, the conformal hoost variations
(3.3), (3.4)

57{ ao;r? - l“é(‘r&]é 9’1)'1)6 50/’2)‘;) L(”éri
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involve 6)0)2 , l.e., they take us out of the S8 (3.14). The reason
is that (3.14) contains mutually conjugated coordinates E}Q:‘ and
Eiﬁg and also conjugated pairs of harmonics. Therefore, if a
transformation law includes @902, then it has necessarily to include
the conjugated coordinate G9 2 as well.
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One could conclude that a realization of SU(2, 2|3) group in
88 of the type (3.14) is impossible. However, such a conclusion would
be premature. We have postulated above that harmonics LLa‘b and

qu’b are mutually conjugated and so do also spinor variables
9“\‘0 and @‘1\’\9 This mutual conjugation property can be
avoided if one redefines harmonics starting from harmonics of the
complexification of SU(3), i.e., SL(3,C). Remarkably, one can reali-
ze the full SC group SU(2,2 /3 ) on such a complexified SS (3.14),
We discuss this realization in Appendix C.

There, we show that the real analytic SS (2,16) forms a real
hypersurface in the complexified SS (3.14). Thus, an intriguing
analogy arlses with the interpretation of the real N=1 8S as
a hypersurface in the chiral (or complex) N=1 SS /16/ . The
latter property 1is known to be crucial in construction of the geomet-
ric minimal formulatlon of the N=1 supergravity. Therefore, the
complex version of SS (3.14) deserves further study. At the same time
it 1s rather difficult to connect it with the N=3 Yang-Mills and
conformal supergravity theoriles (in contrast with the real version
(2.16) ). .

3,7. Digression continued. A possibility of a shift ,KA?*
on Q02 e 0~2 & ylelds some interesting consequences also in
the framework of the real analytic SS (2.16) itself. In the complex
parametrization of this S5

— —_ - 7
Y L8 s, 024 50728 it 002 /Y por?
{Xj+:)<A+219'29' n9'a,9&)9a,9d;“3 (3.16)
the harmonic derivative 1)475 does not involve fDXax

173 _ Ar3 oAt .
(«D )@,k?f,?mw @ o @90'20{ (3.27)

Therefore, for complex analytic SF's, one can define an extra ana-
lyticity in harmonics by means of the condition

D&’—s CP%\P('Q,L‘) =0. (3.18)

This analyticity is compatible with the superconformal group iff
the first U(I)—charge equals the second one X’, p=q (see (3.13b) )

) x)Notice an interesting analogy. External Lorentz indices of
N=1 chiral superfields agree with N=1 conformal syg%fsymmetry only
for special representations of the Lorentz group .
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Some possible consequences will be discussed elsewhere.
The following observation 1s also worth mentioning.There is one

—-1,3 -
more harmonic derivative ZJ ’” that takes a (3.17)-like form when
applied to an analytic superfield defined on (3.14)

_ - 0,8
D1,3:9 ’3~@J (%_1)40(. (3.20)
Z")i’g 02’0
This derivative together with N form the full set of
harmonic derivatives that makes up a closed algebra together with the
spinor derivatives 7.3;") A0 5 5;’2 . (The latter single out
the analytic SS (3.14) ). Equations (2.9) and (A.4) say that D_‘"’i
D03 ana-2°+ Aac: form an SU(2) algebra. In particular

o _ 1 o o (3.21)
[D :3)51,3] =7 (_4 '+Dﬂ‘)'
One can impose simultaneously condition (3.18) and the condition

D 3 (@ %9 =0 (3.22)

on SF*s defined on S8 (3.14) ( in agreement with (3.21) bvecause
‘il”‘izz ._% ). These conditions have the following simple group-
~theoretic ‘meaning. Among the functions defined on the homogeneous
space 3‘((3)/1,((‘7)@[((4), these conditions single out those functions
which are defined on its subspace S‘({@)/S‘(/{t)@a(»f). sU(2) contains
harmonic. derivatives (3.21), and the U(I)-generator is given by a
combination IJIQ-I*D,; . Correspondingly, 58 (3.14) for such functions
can be considered as an analytic sub SS of the N=3 harmonic S8, having

Mea SUBLSu@Ie )
(@1,—1(.‘ uO,Z t.')} (141'1", X (:_4"2 ) and, consequently spinor
coordinafes (g1 §.52) , (Gt Gy ?) will be SU(2) doublets while
all other coordidates (3.14) will be singlets of SU(2).
So much for digression. Now we return to the N=3 real analytic

as its even part. Then, harmonics

S8,
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4. Superconformal invariance of N=3 Yang-Mills theory

This section is devoted to the N=3 Yang-Mills theory. After
briefly reminding its basics we establish here superconformal proper-

ties of gauge prepotentials and prove the SU(2,2/3) invariance of
its action.

4.1, As has been shown in /4/, N=3 pgauge prepotentials are

connections entering into three covariant harmonio derivatives. In
new notation we have

@4,3: Dts + ¢ V1'3(§)’l4) 7
O LV (),
@2,0 - 20, . Vz,o C?qu)'

Prepotentials in (4.1) are the analytic Lie algebra valued SF's l
having definite U(I) charges

D: 99T _ 9 Viz,iﬁ) Ik VZME: 9 |/Bugi4+2)

and reality properties
d

(4.1)
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Their gauge transformation law i1s the standard one for connections
9r _giz ) (xq))
d(L V = . (3)1" ’ - (a.8)

where A(S}'I.{) is a real analytic Lie algebra valued superparameter
having zero U(I)- charges.

Commutators of harmonic derivatives (4.1) determine the corres—
ponding field strengths

3,3 _ | 2,0 43 2 ,3,,40. 1
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obeying the evident Bianchl identity

P%ereo, Q3R BY 3Lt g, (4.6)
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Their reality properties f follow from (2. 12) and (4.3) :
3 2 0 4 G
_Fu - 33 4:? 535 AR S N (4.7 '

4,2. The equations of motion of the N=3 Yang-Mills theor;A?re
obtained by equating to zero all three field strengths (4.5) . They
follow from the action principle in the analytic 88,

Synt=1, tlfafg WV Eh
+ B0 FAO VM[V” v g}

where g is the coupling constant. The integration measure
[

20/ 1040 Gbm15
2 J 2 ) 2 2 D/
14 1 c{ ) L// 6) ot (4.9 )
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has U(I) charges (4,0 ) because the Grassmann integration is equiva-
lent to the Grassman differentiation, €eger

- 92
{@ G 22)(‘ %94,1:1 %’_

"Action (4.8) 1s gauge invariant up to full derivatives in the
integrand and is as a whole the Chern-Simons—~type action. ¥

4.3, Now we shall demonstrate the superconformal invariance )
of the N=3 Yang-Mil1ls thecry. For oovariantized Yang-Mills derivatives
(4.1) we postulate the same SU(2,2/3) transformation law (3.13) as

)

(4.8 )

for simple ones

§9* =4 A3 (27 2 0r) (410
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Then, we find for prepotentials

»3 -3 -0 4
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and for. field strengths (taking into account 3.8b )
23 13420 - 4,-3
SFP NS S N8 r40_ 6

Due to the theorem (3.9) the 1n5egration measure in the analytic SS
is superconformally invariant

Qj-«,adu) = Bezgg:_’%) O{j'q‘co/u:ofg“‘ﬂao{a,“-l”

Using equations (4.11)-(4.13) the reader can easily demonstrate that
aotion (4.8) is invariant

Nz
J\(J(QZIZ») S = O (4.14)

5. Conclusion

Thus, we have shown that the real analytic N=3 S8 is closed
with respect to all rigid superconformal transformations. The Bere—
zinian of the latter is unity. Transformation laws obtained imply
.that the N=3 Yang-Mi1ls theory is superconformally invariant.
Establishing of these simple statements is not an end in itself,
Their generalization to the case of local transformations will bring
us to construction of the N=3 off-shell supergravity theory,

Appendix A, Explicit form and algebra of harmonic derivatives

°_ .4’1‘ _g_. =141 9 ~1-1¢ 9 1'_“.9 _ ]
DI - /L(‘_ fauz,-f - ’L(‘- 9&" 1*1( au_l'_“.-'f'w 87;" _—_(%J
= U i gl |

au“'f g

t

¢ 'Baf;

. o
—_ u"‘f; (tauf-‘u - u‘f f(.?l — +£ﬂ o) @%OJ££ = ﬂ 5 (-A’f)

- Nn-%0 - A _
bf'_a) = U wé‘})uf, "u{‘“a—uf_—,-yc'iagjo

f_q -13 - _
‘__%_‘0 U= /L(' ’1'?&0 =~ U 0,2¢2 = 9 n3

UL-1¢ =

*) In contradistinction witg the dimentionf

re in the full hammonic S8 (2.14 L integration measu-

J*XWY’zo o] = m?
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~4,~3 0,-2 - 1(. =1,- Z
D;:D U’ ,?ug(—ﬂ{ 55t = =9 -

Nonvanishing cammutators of U(I)-charged harmonic derivatives
Mf‘pgo __{3] D,,B LDZ)ODZ?]% Lmzoz—ff] ﬂ
[ 20 0 B0 HE )Y o

[ 5] = o, [B0¥ =ttoi ) (52" J=2"

Vel

o . s

Appendix B. N=3 superoonformal transformations of analytic coor-
dinates X, G (besides (2. 17), (3.2), (3.3) )

. . . — 'l G20, 0,80 o, By peed
JLX,;(O(: QX;M‘»?(7‘¢' Xﬁo_{ 0 U L_‘/rff;‘-)(,q e u
T KBty T0T
_2 °(f3 0, '£°( _ ¢ ¢ X 6 @{c
‘ 7f e~ v 7\/8 & (B.1)

D

o2

e e g o e
‘ 0.9 =
- 2(: (A(‘_JZ("{Y{‘&Z{,O/'Q 9 9 L 4)“’()
Q 20{ OZal 0)! 4,! -” a8 0 az
d! (2+¢€)9 Zng( Pl a] ﬁzé

+(A\? uﬂc,uaz Qou (A il”‘u’”g
o"e,rd‘(gﬂg) 7 vy :é,u f/’t{ :
_(.,\L.b 1{’:‘1%( ffef ~tol ,

Xﬂj"( was defined by ou: (3.5, *

=10y Pt Fo-2d_ [Jpoed
fe =g | 6 = &=~
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Appendix C, Complexii‘ieci analytic superspace (3.14)

This 33 has coordinates
g i 0,94 = H1d } (c.1)
Y] o) ?
iX/H) U, )Ga,éu )/L{

connected with coordinates of customary N=3 $S (2.1) by formulas
(2.15) and (3.5). However, now harmonics T{L-Q‘ are not self-conjuga-
ted in the sense of (2.11); they parametrize that time SL(3.8) group
instead of SU(3) . So 85 (Cl) has a doubled set of harmonics in
comparison with the real analytic SS (2.16). Under conjugation <
we have .

4 1-1¢ 1,1
’u;"-—;@” "'7",:/“‘-'{J
~11 et ~1,1
U  s -uT c.2)

’L(‘o)_ - %0328—9“‘0) 2

—u
,uq, ﬂ 7/ __? 'L{
.—(—t(_ -

U S iU
ua)!t,afu(:o,~z_) ,L{O)Z (."

Here U are conjugated harmonics not connected generally to 2L
by any algebralc relation . Respectively 9 and é’"a are
not conjugated to each other. Spinor coordinates in (C.1) are furnished
with index ¢ to stress that they are related to a set of harmonics
. Their complex conjugated coordinates will be supplied by index

“V .+ One should have in mind that the whole complex nature of SS
(C.1) 1s just due to the complex nature of harmonics. At the same
time the central basis coordinates remain real.

To find a realization of 8U(2; 3/3) in (C.1) we shall copy

derivation in Sect. 3. of superconformal transformations of real analy-
“tic SS, Then, we easily find conformal boosts

ey 'X,:iﬁxﬁ-f; dy oo égﬁ.xﬂ*"(gﬂ”"’

1,18 &g “f"
Jjﬂ 0/]9 k Mé (C.3)

4fc,

08l
o 8



dub -y /(f/* 6 lfav Py My ﬂ.a@'fe“"y’aﬁ‘z
‘fk 7,(4’_“: Lfc‘/( '9";‘?@(,4/;1/-.1,-4{)

c/)<u°"’“: wkj;e")zﬁév'ff'ﬂ”"“'
J\I}U o/\ u-u G/\ ,a-4,—f¢‘_ o

Under can:jugation A2 bdboosts (C 2) turn to conformal boosts of the
1
conjugated I {X‘“‘ @""“ 60 24 6" d} ’U} . Now we can

easlly obtain the remaining superconfomal tra.nsforma.tions (1like we
did it in seot.3 for (2.16) )
A f(XVe'o{‘

et dot |, Gy,
C{LX =X, - 17',_ 6

ua( 11 162K, 02 dp A kgttdptted g, 1€

’[e 1,090 Y X oA T

)
(W@g’ '°‘+7f XA Ut ‘i?,Z&JZé "y 54%@7@4@

_A})[ef -1l _44+ 0,2, 0~ 2]711, 1¢
D) 20,24 J 9% p1-1e 11 02d o 90/"/"._
IO (2% X u S 0
. —/\j(_94 1-( 01 60’4“11 o, %o,z:. ,
J\E L (4-&)0%7 X"’M( . vc'%.eﬂ’“e e, 5)

— Aa 9.4folu-f ""H 1,1
(We omit here indices¥of spinof ooordinates). The full realismation
of SU(2,2/3) on harmonics is given by equa.tions (3.6) where one i ;
should discard terms with A3 (now A"3 15 not conjugated to
/\4"3 and A%% 1s not self-conjugated). |
Now we shall show that the real analytio 88 (2,16) arises as a
real hypersurface in $S (C.1). Let us impose the following constraints? :

(C.4)

+ (f cA ,u-(,—4€

44-!

u =Y (@)
- - - -2 _
U2yl . (v k) st o)
(LL»-{)'fc' - 714,-4 ("-f- (/U‘f,-fk,uko,-zj ua),“ (C) (C.6)

and conjugated constraints.
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It can be checked that constraints (C.6) are closed with respect
to (C.2) and superconformal transformations (C.3), (C.4) . After
imposing these constraints, the number of ipdependent harmonics
reduces just to half the original one X/ | Let us take now a
coordinate set

o( 0201 4 1 & = fa( ’v}
Tx:= 6” A €.
h
" eereo, 20 __ 0,2« 1,-1 o 4,-1d c.8)
144 =-0 w & =6 v ’
A )d_ =1 & -——0_2&/ —_ . 4
°""=8 " , 97 =-6°% (€.9)

{u}_ uﬂfc uf—uvf—n_vaz,y,‘f‘lj
Using the rule (C 2), one oan check that the set (C.7) is 21fe conju~
gated in the sense (2.11) (2.18) and that /&" ~harmonics satisfy alk
defining relations (2,2), (2.11) due to constraints (C.6), e.g.,

“~

UBEG o =, g kg ' oy ete.
‘C p)

Starting with (C.6) after some straightforward calculations one can
see that the SU(2, 2/3) transformations in SS (C,1) induce for coor—
dinates (C.7) just the transformations (3.2), (3.3), (3. 4), (3.6) and
(B.1) of the real apalytic 88, (C.7) can be identified with the real
analytic 88 (2.16),

U614 %
J

x) When solving these constraints expliocitly, ome has to fix
parametriaation of SL(3,C).
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TNansnepun A.C., UBanos E.A., Orueseuxuit B.1.
CynepnpocrparcTa gis cynepcummetpuit (N = 3)

E2-86-553

Haiimena peanusauun cyneproHGOpMHON rpynnel B BeilleCTBEHHOM
aHanurmueckom N =3 cyneprnpocTpalicTBe. YCTaHOBJIGHD, YTO Gepe3sHHUaH
ee mpeobpasoBaHui pason oauunuye. Hanmuue Taxo# peanusanum nenaer
OueBHOHOH KOHAOPMHYIO MIIDAPUAHTHOCTL CYIepIosieBOro AeHcTBUA
N =3 teopun Axra - Muanca, llonyuerusie pesynbTaThl ABIAIOTCA Ipen-
BapHTeNIbHhiM vTanoMm 0 nocrpoeiun N =3 cyneprpasurauuu. Y KasaHbl
TAKXKE ICOMIUICKCHLIO OQHOMWTUUOCKHE CYMeprnpoCTPaHCTBA € MeHbIINM
YUCIIOM CHUHODHLIX MOPOMOMHLIX M TIONyYeHa peanusandsa B Hem N =3
CynepoIhopmMIICH rpy L.

Pulora niutonnonn 8 Jlaboparopnu Teoperuueckoit dusuxun OUSH.

Mponpinit OBBOAUKOHIOrD HHCTUTYTA AAepHbIX MccnefoBaHuil. llyGHa 1986

Galporin A.8., Ivanov E.A., Ogievetsky V.1.
‘Superspaces for N = 3 Supersymmetry

E2-86-553

N = 8 superconformal group (SU(2,2/8) is realized in the real analy-
tic subspoce of harmonic N = 3 superspace. Berezinian of its transforma-
tions is shown to be unity. Conformal invariance of the N = 3 Yang - Mills
superfield action becomes evident within such a framework. A complex
analytic superspace is also indicated, having a smaller number of spinor
coordinates. A realization of SU(2,2/3) in this superspace is found.

The investigation has been performed at the Laboratory of Theore-
tical Physics, JINR.
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