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1. INTRODUCTION

The renormalization-group method widely used in various
branches of physics has a more than thirty-year-long history.
As early as 1953 Stueckelberg and Petermann’!/ found the group
of continuous transformations related with a finite arbitra-
riness arising in quantum field theory (QFT) while removing
the ultraviolet divergences. A year after almost the same re-
normalization gtoup (RG) was used by Gell-Mann and Low 2/ for
studying quantum electrodynamics at short distances., There the
notion was introduced of a fixed point of the RG transformation.
Functional. equations for the Green functions and for new spe-
cific quantities, effective coupling constants, as well as the
Lie differential group equations constructed later by Bogolubov
and Shirkov/3/ allowed then to develop a regular procedure for
improving the results of perturbation theory in the ultraviolet
and infrared regions known as the renormalization-group method
(RGM) "4/, ,

From the early seventies the RGM has been intensively used
in the theory of critical phenomena the construction of which
represents a most important problem of modern physics. The re-
ason is that, on the one hand, the investigation of phase tran-
sitions and related critical phenomena promotes the develop-
ment of technique, and on the other hand, that very different
systems (quantum fields, condensed matter, biological or che-
‘mical objects) near singularities exhibit a general behaviour.
Such a generality permits the elaboration of a universal ap-
proach and a fruitful exchange by ideas between various bran-
ches, first of all, between QFT and statistical mechanics.

‘In modern literature one may find statements according to
which the RG in the theory of critical phenomena is something
different in principle from the quantum-field group of multi-
plicative renormalizations (see/ e.g., the Introduction in 5/,
and sects.l,2 of chapter V in’"" ). As a matter of fact, there
exists a rather simple formulation of specific symmetry under-
lying RG transformations, which allows one to interpret these
"various" renormalization groups from a unique mathematical
point of view. The symmetry is based on the so-called’? pro-
perty of functional self-similarity (FS) that is a generaliza-
tion of the property of power self-similarity well-known in
the problems of hydrodynamics and gas dynamics. However, though
there is a formal identity of the mathematical apparatus, it
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is possible to establish the boundary/a/ between applications

-of the RG in various fields based on physical arguments. It

turns out that such applications may be divided into two classes.
First of them incorporates the cases when the introduction

of RG is connected with the properties of internal symmetry of
a considered physical system formulated in the language of na-
tural variables of this problem. Here as an example one ma
point to the formulation of the quantum-field RG given in/1:3.4/
and based on concepts and functions belonging to one local re-
normalizable model. The other class contains the RG connected
with the construction of a certain set of models having the
same or almost the same properties and differing from each
other by the scale of some variable. It is just this class to
which the RGM in the theory of critical phenomena belongs.

The above-mentioned principle of FS is common for both the
classes though it may appear in different forms, being either
exact or approximate for a given problem.

In this work, we shall analyse the basic content of the
principle of FS and using it consider the relationship between
various RG,.

2. FUNCTIONAL SELF-SIMILARITY

Let a continuous positive parameter t defines the trans-
formation of quantities x and g of the form

’

X »x7 = x/t, g~g'=zgteg, (1)
where g(:) is a single-valued function of its arguments, such
that 8(1,8) =8 The first of transformations (1) is obviously
a scaling transformation and has a group nature. Transforma-
tions (1) for g also compose a group if together with trans-
formations t and r there also is their composition

gtr, g) =g(r, 601, 8)) . (2)

Setting tr =x we hence find g(x,g) = g(x/t, 2(t, g), therefore,

it follows that g(x,g) is an invariant of transformatiom (1):
Relation (2) may be treated as a functional equation for g

from which it can easily be derived the Lie differential equa-

tion :

9

to= B(g).. 3)
at

The function f(.) transforming by the law f(x’,g") ==z(t, g) f(x, g)

realizes a representation of the FS group. At z=1 f(.) 1is an
2

invariant of the FS group. When the second transformation in (1)
is linear in g, the general solution may be represented by the
simplest power self-similarity: g =t®g beimg thus a particular
case of the FS.

Transformations (1) and equations (2), (3) in QFT correspond
to a single-charged RG in the massless case /% The argument
X is-then an invariant momentum variable, € is the so-called
invariant or effective coupling constant. A natural generaliza-
tion of this case is the RG for a massless QFT with several coup-
ling constants. In this case the argument g "multiplies':
g~ lgl= !gl .. 8}, and equations (2), (3) turn into systems
of coupled equations for the corresponding effective §;. For the
first time an RG ofg}hat type for the case of two constants was
considered in ref. The system of differential equations ob-
tained there may be written in the form
9 - -
"a'I‘n"t' = Bi(gl(t'gl' gg)v 32(tl gll g2))

(=12). (4)

Its important property consists in that there is no explicit de-—
pendence on the variable t in the right-hand sides of the nonli-
near differential equations.

The second essential generalization is due to the homogeneity
in variable X being broken. Let there be a fixed parameter y of
the same physical nature as x, Then the transformation of FS is
written in the form

x > x/t, y-yit, g-g =gy, e, ‘ (1a)
while (2) in the form
gz, v, 8) = g(x/t, y/t, glt.y,g). ' (2a)

This case was first considered in ref,’3/,

3. SOME ILLUSTRATIONS

We have said above that the FS property may appear either
as a result of internal symmetry of a certain model, or as a ref-
lection of some scale invariance on a set of related models.
Simplest examples of the FS of the first of the mentioned clas-
ses may be classical systems (a flexible rod with a fixed end,
flat transport problem, a hydrodynamic wave in homogeneous me-
dium) considered in ref. . In these examples, the FS follows
from the property of invariance of the model itself formulated
in the language of natural variables and functions with a direct
physical meaning.

Let us more carefully analyse the problem of the transport
theory in a one—~dimensional medium /1%, It is assumed that onto
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the boundary of semi-infinite one-dimensional medium there falls
a stationary monochromatic radiation of the intensity &. Consi-
" dering X to be the depth of penetration of the radiation into
the medium and performing transformation ({),for the radiation
intensity g(x g) at the depth X inside the medium one may obtain
a functional equation of type (2) that results from the Ambartsu-
myan invariance principle. In this case the differetial equation
of RG (3) differs from the integro-differential kinetic equation
usually used for describing transport phenomena. The function
B(B) entering into its r.h.s. characterizes the damping of the
radiation intensity in the semi-infinite medium when an infinite-
ly thin layer is put in front of the medium. Explicit form of
that function may be found Erom given optical characteristics
of the medium

Therefore, the formulation of a nonlinear problem on the ra-
diation transport in a semi-infinite medium is made in full ana-
logy with the single-chaged RG in the massless case in QFT.

In the case of radiation transport in a f1n1te-depth medium
the consideration leads to an analog 710/ 5f the massive equation
of F8 (2a).

An illustration of the second type of FS is the analysis made
in’?/ in connection with the study of effects of vacuum polariza-
tion by virtual e e -pairs at short distances from the electron.
The model in this case associates the electron with a certain
spatial dimension, the!radius of smearing. The RG transformation
changes one smearing radius by another with a simultaneous chan-
ge. A transformation of that king may be interpreted as the-
transition from one nonlocal physical problem to another, each
of them being at long distances equivalent to the local mo-
del /"8, In other words, here the RG takes place on a set of mo-
dels.

Construction is analogous also when the RGM is used in the
theory of critical phenomena which we shall consider: below.

4, CRITICAL PHENOMENA

We shall not expound the modern theory of critical phenomena
in detail, and shall consider only those basic assumptions that
will be important for our consideration.

First of all we note that the RGM in the theory of critical
phenomena are applied only to homophase (i.e. homogeneous in sym—
metry) states of macroscopic systems. Critical phenomena in such
states are due to increasing contribution .0of elementary excita-
tions *as the phase~transition point is approached.

The RGM in the theory of critical ghenomena was initially ba-
sed on the Kadanoff transformations’ as applied to the
Ising model. These transformations consist in the following:
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sirce below the critical point profitable are those configura—
tions 'in which neighbouring spins are parallel to each other,

it is possible to enlarge an initial lattice: with the constant
a by passing to a block lattice with sizes of blocks 2a, 3a....
With each block an effective spin g is associated, and it is as-
sumed that correlations between Py and g, in the englarged lat—
tice should be the same as those in the initial lattice but with
a respective change of the dimensionless coupling constant K.
Near the critical point the correlation length ¢>>a, and the-
refore the change of scale

a+a’=a KoK’ =ER(EK) (5)

may be characterized by the almost continuous parameter .%,
1« t <«<&/a, Transformatlons (5) are basically the same as
(1), and Wilson in his ‘first work 713/ has postulated for them
the- va11d1ty of the Lie differential equation (2). The critical
point B, in this case is defined as a fixed point of that equa-
tion, and linearization of the equation near B, and use of a
special ' iteration procedure lead to the Kadanoff phenomenologi-
cal results connected with scaling laws. Here the FS has the
meaning of the simplest power self-similarity, and the RG trans-
formations are -defined, after Gell-mann ‘and Low, on a set of imo-—
dels and represent transformations of the scale of microscopic
distances with a gimultaneous renormalization of the demension-
less coupling constant. As far the Kadanoff construction is con-
cerned, the following comments are to the point.

1. The parameter t is only approximately continuous, and the
sequence of transformations a-» a8’ =at » 8" =a’/r may lead not
to the return tao one of the block lattice considered above hut
to the construction of a new lattice (model). In other words,
for the Kadanoff approximately continuous scaling transformation
no inverse transformation exists, and therefore, one may speak
only about a renormalization semigroup (RSG).

2. Conservation of the form of spin correlations for a set
of models should, by definition of the correlation function, im~
ply conservation of the form of Hamiltonians: H(K, a) -»H(K’,a")
which is not true for the Ising model. In the course of enlar-
ging the lattice a new Hamiltonian acquires interaction terms
of a higher order than the starting Hamiltonian, and their con-
tribution to thermodynamics is negligible only when B+ 8,

3. The validity of an RG equation of type (2) is postulated.
Thus, the Kadanoff construction is to be considered only as ap-
proximate FS (in the simplest form PS) leading to the RSG. '

5. THE WILSON, APPROACH

Wilson has attempted to avoid difficulties in the Kadanoff °
construction, in the first place, to determine the class of



Hamiltonians invariant under the scaling transformation of na- !
tural variables for which the RG equations are not already pos- )
tulated but follow immediately from the consideration 714,15/

The first step represents the transition from the Ising mo-
del having a simple and obvious physical meaning to a phenomeno-
logical model which contains, instead of a local spin a spin
field 8(x) and, in addition to a pair interaction, an additional
functional of spin fields Q[S(x)] that essentially takes into ac-
count an infinite sequence of extra interactions. A natural va-
riable in such a problem (an analog of & in (1)) is the spin
field, while a renormalizable quantity (an analog of g in (1))
is the functional Q.

The most simple interpretation may be obtained in the momen-
tum representation in which spatial contributions of the spin
field may be characterized by index ! defining a sequence of the
spherical shells of the radius k=2"®=2 in the momentum space
(see /5:8/) 1In this case the expression for the partition func-
tion involves integration over 8¢ and product of all . Integra-
tion over 8y with fixed f = 0,1... at each step lowers the num-
ber of variables by unity, whereas the statistical sum conserves
its form up to renormalization of the functional Q. At an f-th
step of integration it becomes possible to write a recurrence
of the type

Qe+2%,Q) =Q(f,Q(?,q)), (6)

which is consistent with the FS equation (2).

Let us make two comments. First, the integration over $; at
(-]
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each step, | dSE, prevents from the construction of inverse
. =00

trafisformation since it is no longer possible to find an integ-
rand corresponding to .a definite integral (the number); conse-
quently, the Wilson construction also possesses semigroup proper-—
ties. Second, one cannot exactly integrate the partition func-
tion, and the Wilson approximations have no rigorous grounds.

So, the FS in the Wilson RG defined by relation (6) is only
approximate, as in the Kadanoff construction given by transfor-
mation (5).

The next step in the Wilson approach consists in an approxi-
mate solution of the nonlinear RSG equation (6). A fixed point
corresponds to an { -independent solution of equation (6). For
the approximate solution of those equations Wilson and Fisher’/!4/ &
have used an o0ld idea on the possibility to introduce a continu-

ously changing dimensionality 7!8/ g and have constructed the

l;
perturbation theory in small parameter ¢ characterizing-the J
deviation of dimensionality from d = 4. The choice of dimensio- !
nality d =4 is caused by the possibility of constructing per-
turbation theiry near the known (at @ = 4) solution.
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6. THE COLLECTIVE-VARIABLE METHOD

An interesting version of the RSG approach has been developed
by Yukhnovsky and his followers Within this approach,
the interaction parameter in the Ising model’' is treated as a
function of site coordinates having the Fourier transform

-+
IO =L 2 fdelt'
N
where the vector k runs over values inside the first Brillouin

zone. The spin variables are replaced by the Fourier transform
Py o and the partition function assumes the form

Z = (@) 1pexpt £ BT P, 0,1,
k

where 1(p) 1s the Jacobian of transition from spin to collec-
tive variables p . Calculation of this function is based on the
explicit determination of I(p) and representation of the parti-
tion function as a sum of moments of the Gaussian distribution;
the behaviour at the critical point is described by a specially
constructed basis distribution of collective variables, an ex-
ponential ‘of the polynomial in even powers of collective variab-
les. A further procedure consists in integration over the layers
of phase space of collective variables, which, after Wilson,
leads to an RSG. However, in the Yukhnovsky approach critical
indices can be calculated with the use of recurrence relations
obtained from the consideration of partial partition functions
within the real space withd = 3 without resorting to d= 4 -

7. CLASSES OF UNIVERSALITY OF MODELS

Universality of critical phenomena as defined by Kadanoff
is understood as equivalence of the critical behaviour of va-
rious physical systems, i.e. it is assumed that the critical
exponents characterizing the thermodynamics of a system near
the critical point are the same for different models within
a certain class.

In some cases, the class of universality may be determined
by using analogy in the formulation of problems of statistical
mechanics and quantum field theory. Consider, as an example,
problems of statistical mechanics with the following density of
the potential energy

U - —;— Ty ¢ @)K x) ¢ () i) dx”, (7

where #{x} is a field operator. Form (7) corresponds to a number
of physical models applied for the description of liquids, crys-
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tals, magnetics, etc. (in particular, to the three-dimensional
Ising model).

The theory of critical phenomena assumes that the quantum
properties of systems do not influence their critical behaviour
usually observed at sufficiently high temperatures /% 12:28/  The-
refore the quantum representation of the Hamiltonian can be rep-—
laced by its classical analog through changing field operators
Y(x) by scalar functions ¢(x). As a result, we have,

U(x) = o [0 x) 2@ $*@ . (8)
For the local interaction

‘®(x, 37) = Cé(x~-x"), (9)

the potential-energy density (8) reduced to the expression

Ux) =got®, g=0C2, (10)

corresponding to the potential part of the Lagrangian density
in field theory ¢4; Consequently, statistical systems with a fi-’
nite radius of two-particle interaction should belong to the samg
class of universality as the ¢  field-theory model in three di-
mensions.

A different situation occurs for interaction of an infinite
redius when, for instance,

@(x, ) =y/V,

where V is the volume of a system. In this case the mean-field
approximation for V- ~ gives thermodynamical solutions asymp-
totically coincident with exact one, i.e. the potential-energy
densjity (8) for interaction (11) and V-2« asymptotically equ-
als ’

y = const, (1)

U@ = Uy ¢%@), U, = -k fox)ds, (12)

where n{x) =<¢2(x)>. It is then seen that the stat;stical mo-—
del with long-range interaction corresponds to the ¢° field
theory in an effective external field generally dependent on
thermodynamic variables.

The equivalence between statistical and field models allows
one to calculate the critical exponents by methods of quantum
field theary 721,227 '

Among other interesting statistical problems that may be re-
formulated in the language of field theory we mention the prob-
lem of igotropic turbulence of an incompressible,viscous flu-
id /28-257 .

The above transition from (7) to (8) was made for the simp-
lest case of a one—component system consisting of particles
of. one sort without internal degrees of freedom. Just for this
reason ¢{X) was understood as a scalar function. In the general
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case the class of universality in the language of field theory

is defined by the following characteristics: the number of diffe-
rent fields, the number of components of each field, leading po-
wers of the fields, space dimensionality, and the nature of in-
teraction (short- or long-range interaction, the presence or ab-
sence of anisotropy).

The introduction of classes of universality essentialy simp-—
lifies the description of critical phenomena since a large num-
ber of models with a different physical content may be substitu-—
ted by a small number of their mathematical equivalents. It is
to be stressed that belonging of particular models to a certain
class of universality is usually postulated a priory rather than
proved. The assumption of classes of universality is verified by
a universal behaviour experimentally observed for various subs-—
tances when asymptotically approaching the critical point.

It is, however, to be recognized that the critical behaviour
experimentally observed for many substances does not allow one
to put them into a certain class of universality. For a number
of model problems of statistical mechanics the concept of clas-
ses of universality is also meaningless; this, for instance,
concerns the exactly solvable Baxter model.

8. CRITICAL PHENOMENA AND HETEROPHASE STATES

The renormalization-group method is usually used solely for
considering homophase critical phenomena, when only a single
thermodynamic phase is present on each side of a phase-transi-
tion point. However, in many physjcal systems the so-called he-
terophase states are experimentally observed, the latter being
a mixture of two or several phases, having, as a rule, diffe-
rent macroscopic symmetries. For example, in ferro - and anti-
ferromagnets paramagnetic fluctuations can occur, in ferroelec-
trics paraelectric fluctuational nuclei appear, in liquids crys-
talline clusters exist and so on. A distinguishing feature of
heterophase phenomena is their occurrence in quite wide tempera-
ture intervals below as well as above of the phase-transition
point that can be of first or second order. Note that the Wil-
son approach efficiently works exceptionally near second-order
transitions, while there are some attempts to apply it to first-
order transitions/287,

A microschic description of heterophase states has been
done in refs. *72%  and exploited in the case of various sys-—
tems/27-30/ | An essential point is that the heterophase fluctua-
tions require for their existence the presence of disordering
interaction entering into the Hamiltonian side by side with an
ordering interaction. According to the correlation of these
competing forces the system can have either first- or second
order transition,and even the critical indices can be changed.
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In such a way the same physical model can belong to diffe-
rent universality classes depending on the values of interacti-
ons but not merely on their effective radii.

9. CONSCLUSION

To summarize, let us make the following conclusions.

1. The functional self-similarity, reflecting the property
of transitivity of physical characteristics with respect to the
way of giving their initial values and being an exact or approxi-
mate consequence of the internal symmetry of a system or reali-
zed on a set of models, makes the basis for constructing the
renormalization group.

2. In the theory of homophase critical phenomena the proper-
ty of functional self-similarity is' usually realized on a set
of models as an approximate one leading to renormalization se-
migroup. This is just the main difference from problems of QFT
and classical physics for which the functional self-similarity
and the corresponding renormalization group are exact.

3. The introduction of classes of universality simplifies
the description of critical phenomena by allowing a simplest
model to be chosen from a considered class.

4. There are exampes of the systems which cannot be related
to a definite class of universality (heterophase systems) or
even to any of the classes of universality (the Bdxter model).

5. In many cases being based on equivalence between statis—
tical and field models (in the sense of critical behaviour) it
is convenient to employ renormalization group methods developed
in field theory.
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is considered. Different formulations of renormalization group and semi-
group transformation are analysed. Their general and particular properties
are discussed. From the mathematical point of view a renormalization group
can be introduced by two ways. One is based on the elucidation of an inter-
nal symmetry of a concrete physical system and on the description of the
symmetry given using the lanquane of variables that are natural for the prob]
lem considered. Such a method of constructing renormalization groups has
been used by Stueckelberq and Petermann and by Bogolubov and Shirkov. The
other way is connected with the separation of a class of models that have
similar properties and differ one from another by the scale of some variab-
le. This method is illustrated by the approaches due to Gell-Mann and Low,
Kadanoff and Wilson, and Yukhnovsky. Both the ways mentionned are particu-
lar consequences of the general principle of the functional self-similarity.

. The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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