


1. INTRODUCTION

The calculation of soft processes in QCD is so far a rather
problematic job connected with all the difficulties of strong
interactions., Because of that, it seems to be reasonable to
describe these processes with the help of a QCD based pheno-
menological approach., A possible guide for such a quark-gluon
phenomenology of soft processes may be the 1/N, expansion
(N, is the number of quark colours)’3" ¥,

A description of hadron-hadron c0111s1ons which is based
on the results of 1/N, expansion is given by the scheme of dual
topological unitarization (DTU) - see, e.g.,”8= 10/ and refe-
rences therein. The original version of the DTU scheme is sui-
table if the characteristic size of the gluon interaction is
of the order of the hadron size., Supposing the effective short-
rangeness of gluon interaction, the DTU scheme leads to a cer-
tain hierarchy of contributions: cylindrical graphs which cor-
respond to the impulse approximation of the additive quark mo-
del/ 1.11-18%ecome the dominating ones, while the other graphs
play the role of shadow correctionms.

In the present paper high energy hadron collision processes
are considered in the case of short range gluon forces. 1In
Part 2 the results of the 1/N, expansion in the quark model
which are necessary for our further considerations are briefly
reviewed. In Part 3 we investigate the elastic scattering ampli-
tude: wve estimate colour shadow effects in %, and pp colli-
sions and discuss the role they possibly play in hadron-nucleus
collisions. The inelastic production of fragmentational hadrons
is considered in Part 4.

f

2. 1/N, EXPANSION, SHORT-RANGE GLUON INTERACTION
AND THE QUARK' MODEL .

In the approach of the 1/N, expansion one considers graphs
containing large combinatorical factors N, due to large num-
bers of intermediate colour states. It is convenient to sepa-
rate diagrams with different orders of N, using a substitu-
tion of gluon lines by double lines corresponding to quark-
antiquark pairs (or, to be more accurate, to colour-anticoclour
pairs). The difference between the number of coloured gtuon
gstates N -1 and of coloured states of quark-antiquark pairs
N2 is negllglble within the accuracy given by the approach.
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*Fig.1. Graphs for self-enerfy parts of mesons (a=j),
quarks (n,0) and blocks of scattered quarks (k-m)
described in the language of QCD quarks and gluons
(a, ¢, e, h, k, n), in the language of colowr diag-
rams (b, d, f, ©, L, o) and in that of the quark mo-
del (g, J, m).

A quark loop, produced by a white souree (Fig.la or, in
a different way, Fig.!b) contains a large factor N, corres-
ponding to N, colours running-around the loop. Bound states
can exist only, if the quark-gluon coupling constant is of the
order of g~1//N_.In this case all planar diagrams of th? types
of Figs.la, le, 1h, etc.,, are of the same order (~Ng).This can
be seen easily if we redraw these graphs in the form of colour
graphs, i.e.,, substitute gluon lines by double ones (see
Figs.1f, 1i - the dotted lines symbolize the path of flavours).

Planar diagrams, containing quark loops (e.g., the graph
Fig.lc) are of one order less in N, (see Fig.ld). However,
the internal loop contains quarks of different flavours, conse-
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quently, an additional factor N; arises. Taking into account
only light quarks (u, d, s) we have N, = 3 and the graph Fig.lc
turns out to be of the same order as all the other planar diag-
rams. Concerning the role of factor N; there exist different
opinions. For example, from considerations in 5 it follows
that N, is practically irrelevant. On the contrary, in a conc-
rete model which is considered in/!%the factor N; enhances
the contribution of the corresponding diagrams. This shows at
least, that there might be cases when Ny is significant, In
the present paper we will use this assumption.

Let us discuss now what the quark model means from the point
of view of the 1/N, expansion. Suppose, that in the graphs
Figs.la, le, 1h the source is a meson field. Consider the cor-
responding self-energy parts of the meson propagator (they de-
termine the meson masses). One can divide graphs like Figs.lc,
lh into parts which are connected by intermediate states con-
taining only qq pairs. In this way one in fact separates blocks
inside of which the quarks and the antiquarks interact by gluon
exchanges (Fig.lk). For example, the graph Fig.le contains one
such block, graph Fig.lh - two of them,

In the leading approximation in N, the block with gluon
exchanges (Fig.lk) means an exchange of colour states C=1e8,
Indeed, as it is seen in Fig.l!l, the colour exchange between
the quarks is carried out by only two colour lines (the main
contribution to the number of states is due, naturally, to the
colour octet). One can assume, that for the block Fig.ll a sort
of dual expansion is valid, and it can be represented by an
exchange of effective fields (see Fig.lm). If so, the amplitude
V  of the block Fig.lk is the sum of propagation functions of
these effective fields (DJg ) with different JP and ¢ va-
lues:

1
V= % Bp.(s)DpP (1), where D,P (t) » ———meee . (1)
JPC J'C JCC J°C mg(JPC)—-L

The amplitude V is a function of 's - the total energy squared -
and of the momentum transfer squared t. Restricting ourselves
to the region of low s (the region in which the quark model is

. assumed to be valid), the coefficients B in (1) can be consi-

dered as being nearly independent of s, In this case it is
enough to summarize over the lowest values J¥ =07, 0% 17,
etc., only; the exchange of such effective mesons has to desc-
ribe the quark interactiens in the quark model.

It is known from investigations of potentials that the ¢ -
channel exchange of an effective gluon (J¥= 17, ¢ = 8) plays
a dominant role in the mass splitting of hadron multiplets/15-17/
Meson spectroscopy shows also that interactions with JF = 0~

in the white channel are necessary: they lead to the splitting
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of n and n° mesons. The role of exchanges with order P s
not clear so far,

Quark propagators D, determine the quark masses Dy~

k2) . Since the self-energy parts of the quark propaga—
Lors (ﬁl .In, lc) are not small 1n Nc, the quark mass m (k )
has to be seriously dependent on k?. Calculations on the basis
of current algebras lead to small mass values of current quarks
(i.e., masses at large k°); muz 4 MeV, my= 7 MeV. Estimations
show/ 18,19/ that the quark mass increases relevantly at small
virtualities k®~ 0.1 GeV (which is the reglon of validity of

the quark model) and therefore nuq(O 1 GeVv ) = 300-400 MeV

is a fairly plausible value for the mass of a dressed non-
strange quark.

In the framework of the quark model graphs lines Figs.le,lh
are represented in the form Figs.lg. 1j. The dressed quark
propagators contain the self-energy parts, while the blocks
with quark interactions, which correspond to gluon exchanges
(of the type Fig.lk) are drawn in the form of effective meson
exchanges (fat waved lines).

From the point of view of the 1/N, expansion it is irrele-
vant, whether the language in which the interaction graphs
are written is that of propagator functions of constituent
quarks and gluons or of QCD quarks and gluons. The combinatorial
factors N, have to be separated in the same way in both cases;
the blocks B in (1) are of the same order as the chromodynami-
cal coupling constant squared g ,1.e., B ~ g2~ 1/N, - The meson
mases are defined by the poles of the qq - qq amplitude, which
in the quark model are given by a series of graphs Figs.2a,b,c,
etc. The residua of these poles are squared vertex functions
(or coupling constants) of the transition "meson - qq". It can
be seen from Figs.2a,b,c, etc. that the vertex functions G
are of the order of \/i/N, and therefore G ~ /B ~ g.

In the quark model hadron masses are usually calculated in
potential approaches. The congidered potentials contain short-

range components(~83(qj)X{Xj%%%%~)as well as long-range ones
i

(which are connected with the confinement of quarks). The had-
ron masses can be obtained, however, without the consideration
of long-range interactions.

The additivity in the quark model is an argument in favour
of the relatively small sizes of the constituent quarks and of
the effective short-rangeness of gluon 1nteract10ns (see/a3230
The latter assumption seems not to contradict QCD /24~ 28/

Masses of mesons belonging to the lowest multiplets (J =
=0, 17, O%) were calculated in’/ 1% assuming short-range gluon
forces by solving bootstrap equations for low-energy scattering
amplitudes qq-+qq and qq - qq. The obtained mass values were in
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Fig.2. Quarks graphs corresponding to interactions which
lead to the formation of mesons (a, b, ¢,...) and of
constituent gluons (g, h, %2, ...), and thezr represen-—
tation in the form of colour graphs (d, e, £, ...) and
(7, k, 1 ...) respectively. ’

satisfactory agreement with experiment. The same calculations
indicate the existence of a constituent gluon with a mass mg=

= 700 MeV which is near to the mass of the p-meson. This ap-
proximate equality mg =mp is a direct consequence of the rele-
vance of factor Ny. Indeed, the p-meson mass can be deter-
mined by graphs of the type Figs.2a, b, ¢, while the gluon mass
is defined by diagrams in Figs. 2g, h, i, etc. If gluon forces
are short-range ones, these graphs are nearly equal (substi-
tuting No% N, ). The existence of a constituent gluon with

mg = 700 MeV is in agreement with the phenomenology of hard
processes’?7/ and of glueballs’/ -3/ ;5 yell.

3. HADRON-HADRON SCATTERING
AT HIGH ENERGIES AND COLOUR SCREENING

As was told already, investigations of hadron collisions
using 1/N, expansion were carried out for the géneral case
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Fig.3. Planar (a, b) and eylindrical graphs ((e-f) -

in the quark-gluon language and (g-j) in the form
of colour diagrams) for meson-meson scattering.

in the framework of the DTU scheme. The main contribution to
the scattering amplitude comes from planar—~type graphs(Figs.3a,
b), which are of the order G*N,- 1/N, and is interpreted as
the contribution of Reggeons like P°, p , w, etc. with the in-

tercept ap(0) = [/2. At large s values planar type diagrams
behave like =y/s. The Pomeron exchange (the contribution of
which increases like ~ s ) corresponds to graph with gluon ex-
changes in the t-channel, In this case cylinder-type graphs
play the main role: a Pomeron is represented by a cylindrical
gluon net around the quarks., The contribution in N, is here
1/N2. The simplest cylindrical graphs corresponding to two-
gluon exchanges are shown in Figs.3c-f.

The assumptions of short-rangeness of gluon interactions
(with a radius tg ), leads to different contributions of the
cylindrical diagrams depending on rf/Rﬁ (where Ry is the had-
ron radius). This can be seen in the case of simple graphs
like Figs.3c-3f; graphs in Figs.3c,d are of the order of r
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while graphs Figs.3e,f give ~ rg/Rs.’The situation is equiva-
lent to that which is considered when in composite systems
shadow corrections are taken into account. The interactions
in Figs.3c, d take place if there is one quark pair, those in
Figs.3e, £ if there are three or four quarks at a small im-
pact parameter. Such an order of contributions remains valid
for the general case also. Graphs in which a cylindrical Pome-
ron is connected to two quarks only (one of the beam, the
other one of the target) play a leading role. These diagrams
corresFond to the impulse approximation of the additive quark
model’ '11-18/ They are of the order of ré.Diagrams with a lar-
ger number of quarks (corresponding to shadow corrections)
give - r4/R§.

All tiis is true, of course, not only for meson-meson scat-
tering, but for meson-nucleon and nucleon-nucleon scattering
too. Baryon scattering can be considered similarly with the
help of colour graphs, interpreting two quarks belonging to
the baryon as a diquark, and understanding now the antiquark
colour line as the colour line of the diquark.

The impulse approximation of the quark model describes soft
hadron collisions at high energies sufficiently well. It gives
for total cross sections of pp and »p collisions amtﬁm)ﬁqoﬁnp)=
= 3/2 which is fulfilled with a 10% accuracy. However, the cal-
culation of shadow corrections /31'3% in the framework of the
model gives o, (pp)/oy , (7p) < 3/2 while the experimental va-
lue is 1.65,

It follows from our previous considerations, that shadow
corrections can be due not only to elastic or quasielastic
rescatterings of quarks (which are taken into account in/31=35/),
but also to one-cylindrical diagrams when a gluon cylinder is
connected with three or more quarks. Such a graph is shown in
Fig.4a (or, in the language of Regge-exchanges, in Fig.4b).

The main contribution in N, comes from the three-Reggeon graph
PR(@®)R(8) (Fig.4d) where R(8) is a colour octet Reggeon (~N?).
Diagrams with exchanges of white states (e.g., the three-Po-
meron diagram Fig.4c) lead to contributions of the same order
as elastic rescatterings (- N ). Since the main contribution

to the colour forces is given by an effective gluon exchange,
it seems to be natural to suppose, that a reggeized gluomn R(8)=g
exchange will be dominant among the three-Reggeon graphs in
Fig.4d. (The reggeization of gluons in QCD is considered in
detail in /34-36/

Let us see now, if coloured three-Reggeon exchanges are
able to explain the experimentally observed value of
Tiot (PP)/04o (np). Consider the ratio of cross-sections in pp
and np collisions in the form
I10sPR) _ 9755 (a0 — 185(p) - 27A(pp)

Tt (D) Boy, (AQ) - 65(D) — 35(n) ~12A (mp) :

(2)
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Pig.4. a) Gluon cylinder, connected to the quarks
2,3,4 (quark 1 is a spectator); b) the cylinder

yraph (a) represented as a three-Reggeon interaction
of quarks. The three-Reggeon diagrams, entering graph
4b are: three-Pomeron graph (c) and three-Reggeon
graph (d) with the exchange of two coloured Reggeons.

Here 0y;(d1) is the interaction cross section of constituent
quarks which determines the contribution of the graphs cor-
responding to the impulse approximation (Figs.5a, 5g), &(p)
is the contribution of the coloured three-Reggeon exchange
in the graphs Figs.5b, Sh -and 8(7) - that in Fig.5c, 5i. A(pp)
and A(rp)are shadow corrections in pp and #p collisions with
all possible rescatterings (factors 27 and 12 are due to the
number of diagrams with double rescattering - Fig.5d, e, f and
Figs. 5i,k,l - which give maximal contributions).

Shadow corrections connected with elastic quark rescat-
terings were calculated in the spirit of the method given
in’ 37/, yhere in fact inelastic screenings due to white exchan-
ges (of the type of PPP exchange in Fig.4c) were also taken
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Fig.5. Diagrams determining the cross sections in pp

and pm scattering processes (the numbers stay for the
corresponding combinatorial factors).. The diagrams

a, g are those of the impulse approximation (the

double line represents the Pomeron); diagrams b,c,h,<
represent three-Reggeon exchanges, diagrams d, e, f, d, K,
1 - double quark rescatterings. Not in the calculations
are triple ete. quark rescatterings.

into account. The proton and pion quark wave functions were
written in the following form:

. 202 2 2 2 2 2 2 2 2
‘Pp exp{ % Rlp (kip+ Kiq+ kzs)] +apexp[——3—R2p(k12+k13+ kog )1,

y 4 .2 2 4 2 2 (3)
o~ exp[—-é—Rm kigl+ a, exp[—~3—R2n kol

- 2
Here R%, = 21.6 GeV™2, Rgp = (3.6+0.8) GeV™2, @p = 0.07+0.02,

R%,= 16.8 GeV~2,R%, = (1.75+0.8) GeV™2, ar = 0.21+0.07, and

kip is the relative quark momentum ko= 1/2(k; - kg ). Such wave
functions provide a good description for the proton and pion
form-factors up to Q% < 0.7 GeV? (the deviation is here not
more than +5%), while in the region at | GeV2 <Q? < 2 Gev?
the deviation is +(10-30%).

The shadow corrections 8(p) and 8(«) are determined by three-
Reggeon exchanges ggP, where g is a reggeized gluon. (Shadow
effects connected with three-Reggeon exchanges were investiga-
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ted in general in/S&'“V). Considering the contribution of ggP

it is convgnient to separate the factors which one obtains
averaging A; A over the colour states qgq (in a meson) and qq
(in a baryon):

beer @ = =205V 0) . 5 (1) = - 25V, ()
The signs of Sw)ﬁn and Bmkﬂ)dEPQDd on the value of the inter-
cept ag(0) and on the gluon signature. In the case of a nega-
tive signature with an intercept 1/2<ag(0) < 1 the values B(ORp)
and &9 () are negative/38"404um consider this version, since
there are different indications for ag(0) being small. (In 73435/
there are arguments in favour of 1/2 <az(0) < 1; the formation
mechanism of the constituent gluon’/%/which was discussed in

the previous part of the present paper leads also to ag(0)>ﬁ#0):
= 1/2).

The results of our calculations are the following. The va-
lue omt(pp)/UMt(np) = 1.65 can be obtained if

o, @) = (85 - 10,1) mb,

(5)
~-5@@my= (1,0 - 1,5) mb. ‘

Determined by o,,,(aq) , 5 (p) and the wave function parameters,
the remaining characteristics which enter (2) turn out to be

Aap) = (1,3 = 1,5) mb, -8 )/Alrp) = 1,4 - 1,8 ,
(6)

n

A(pp) = (0,9 — 1,2) mb,

Without the contribution given by colour screening (i.e.,
VPY=86®(s) = 0 ) the ratio oy, (PP)/ 04, (7D) does not
exceed [.47.

Let us estimate now, with what probabilities one (q), or
two or more (>q) quarks of the projectile hadron interact with
the target nucleon. If the projectile is a proton we obtain

@ W, (>q)= 4213 if it is a pion, W,(q):W,(>q) = 3:1,

These relations show that the consideration of diagrams with
only single interactions gives a relatively rough approxima-
tior (this we pointed out before, describing the additive
quark model - see’3"4Vy  The colour interaction ggP is res-
ponsible for about half of the events when two quarks belon-
giqg to 4 proton are interacting: wécﬂoun (>Q)3Wp(>Q)=(L5:L

10

The contribution of ggP is even higher for interactions of
two quarks belonging to a pion: W,(°°10UD) (>q):W_(q)=a,7:1.

The shadow correctioms in pp and »p collisions break the
predictions of the additive quark model by about 10-207, The
situation is probably the same for other hadron-hadron colli-
sions too: the difference between the measured and predicted
values of their cross sections are due to shadow corrections,
which depend significantly on the radia squared of the colli-
ding hadrons. (Another explanation of the discrepance between
experiment and predictions of the additive quark model is gi-
ven in’/4% and references therein).

Taking into account three-Reggeon graphs ggP means practi-
cally the account of gluons in hadrons: in fact, gluon compo-
nents in hadrons dre responsible for the breaking of the Levin-
Frankfurt relation.

An interesting problem is, how the colour screening mani-
fests itself in high energy hadron and nucleus interactions,
Obviously, the colour screening leads to large effects, since
quark colours in hadrons are strongly correlated. If quarks
are weakly correlated, the contribution of the ggP exchange
decreases, while a gas of inco;relaged quarks would give a ze-
ro ggP contribution(&lxj* SpAj-SpAy = 0). The absence of co-
lour screening has to lead to an effective growth of the cross
section. The analysis of hadron-nucleus collisions at high
energies shows, that the cross-sections of hadron-nucleus in-
teractions are somewhat (5-10%) larger than the expected va-
lues. This experimental fact might indicate that quarks with
weak colour correlations are present in nuclei.

4, MULTIPARTICLE PRODUCTION PROCESSES

As we have already seen, the leading contribution to the
elastic meson-meson scattering amplitude at high energies comes
{rom the diagrams of the degenerated cylinder type like those
in Figs. 2c,d (or colour diagrams in Fig.2g,h). A more compli-
cated ladder diagram of this type with multiparticle interme-
diate state is shown in Fig.6a; the equivalent colour diagram
is that in Fig.6b.

The cut of the diagram in Fig.6b gives the leading contribu-
tion to the inelastic process with production of quarks and
gluons (see Fig.6c). The process of hadronization of the pro-
duced coloured objects assumes the production of some additio-
nal quark-antiquark pairs. Let us consider in more detail the
process of hadronization of the constituent quark-spectator
(quark 2 in Fig.6c), when it picks up one of thc newly produced
quarks f and recombines into a meson (TFig.6d). The ayplitude
of such a recombination process may be easily calculated with
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a) b)

Fig.8. (a) Degenerated
elastic scattering and
form of colour diagram.

¥, e
. {
E::, 1
Ls 1>
-
e) d)

cylinder diagram for meson-meson
(b) its representation in the
(c) Cut of this diagram repre-

gsents an inelastic process; (d) quark-spectator (2)
recombines with a sea quark (f).

the help of dispersion relation technique (see, e.g.,’4% ):

v

dsds G(s)G(sy) -
=1 f f 4 (4) _
A = 2 -k, -
recomd™ 3/ 5750 ST D) (2n)" 87 (P ~ k = k)X
7
Tk, %k, a3k ™

X
“(2n) 2k (2m) 2kgy

(2m)3 2k

(em) 6 & - k; - ky)-A

2+ n°*

Momentum notations are clear from Fig.Gd; 5= ;’2= k,+ k )2,

bt 2
S¢ = k%= (ko+ kp) ,where P

G and Gt are the vertex functions of the transitions "meson -

3 - - -
= /s + P2 P) andk=(/s;+k?, k).

-+ quarks'", g and gy are the initial and final meson masses,

correspondingly. A o, , in
elastic amplitude.

eq. (7) is seme "quark-quark" in-

-

In the infinite momentum frame P+ oo, P = 0 from (7) we

gett,

dsds
A f

G(s)G(sy)

2 dx 2 dX2

recomb™ é"f

12

(2n)® (S—#Z)(S(-—p?) Xy

dx
i S

d .
2L Xg 1

(2n) —Ld k
1 Xy

-

h kzl)a (k -k - kzl)ﬁ(l—xl— Ko ) B(X = X p= X () x

m? m2 m? m% S, + k2 .(8)
xB(th ¢ 2L _gyp(—2L  IL_ T Il s
Xy X2 Xg Xy X N
k > . . . ,
Here X, = -.f]_-:-z- . mi_L: kza_L + mi, Killing ©&-functions in eq.(8)
gives:
2 1 ¥ dx ¢ dzi{l
Arecomb(x' k) = ?f X : 3
1 o f(x—xr)(i“x*'xf) 2(2n)
2 2 2 2
m m m
G(—iL Dol )G, (x (=L » T2y (9
L-x+ X X - X X¢ X~ Xg L
'A2_‘n L
2 2 2 2 .
m m m § m
(s — B e B kB Y
1-x+ x¢ X = X; X¢ X~ Xy
-+ > - -
where ky)= kpy - k) = = ky).

The inclusive cross section of the meson production with
momentum k is given by the square of the amplitude (9) summed
over all possible intermediate states. It may be related with
the discontinuity of the 3 = 3 amplitude in Fig.7a 743/,

do,
el ; —l»—disc-As-;AS*S, (10)
d3k (27)°2k, S
N a%g) . G(s)G(s;)
3»3"0 f 4(2")3 xr(x—xr)(1—~x+xf) (S"Fz)(sr‘l‘?)
2 ’ # rd
«Fax 8 L 1 GG (11)
o 7 4(2m)3 x;(x-xp)(L=x+x7)  (8°-pA(st-pnp)
(quark) s ., Cos ,
x ATg g (Xl'ku_'x1'k1_|_'xr-kr_|_'xr'kri?'

In the diagram in Fig.7a P is a white Pomeron, while R
is a coloured 1® 8 exchange state. The ampli.ude A(sqﬂz’k) is
given then by the diagram in Fig.7b. We shall consider this am~
plitude in two kinematic limits: X- 1 and ¥ - 1/2. Let us begin
with the first one.

In the limit 1~ x<<1 the invariant energies of quark pairs
If and 1"f in Fig.7b are small with respect to the total ini-
tial invariant energy (of the order of x¢~1 - x); this means
that these quarks interact, producing some effective meson
states. On the other hand, the invariant energy in the system
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Fig.?. (a) Double-Reggeon diagram for A ass in eq.(11);
(b) the same for A(aflf“k).' (c) three-Reggeon diagram
for Ag.gin the x+1 %imit; (d) the same for A(a‘*_:‘;'k),

"final meson-Pomeron" is large, since the energy of the Pomeron
part of the ladder is also of the order of 1 - X, Thus these
e?fective meson states may be considered as Reggeons, and the
d}agram in Fig.7a may be presented as a three-Reggeon diagram
Fig.7¢c, or, equivalently, a quark diagram Fig.7b may be re-

df'awn as a three-Reggeon-diagram 7d. The corresponding expres- ¢
sion for A{Wark) g, ‘

(quark) P a2 ap (0) ap -BxZ-g7k? ‘
A3-¢§ E'BZB, RBB'(k_L)(zpmt) P (1— x) P ﬁ i B( .L) y
(12)
2 42
k rd
x P 0 ()P0,

14

o

Here m; is the mass of the target particle; P, the beam mo-
mentum in the lab.system; a sum is assumed over all possible
Reggeons. Inserting (12) into (11) we obtain:

2

X A% kg 1 G(s)G(sy)
A = fdx : .
33 £ t 4(217)3 Rp(x =% )(1-%4+%¢) (S-uz)fsf— {1%) s
2
x a” k1 G(s)G(s¢)
«fax [t 1 = - : (13)
o 423 xp X=X =X+ X)) (- p?(sf - D)

+9 ’~02 ‘-o
<3 R® (£ (2P )“"“”(1_ P =B )= (kgxfl?@x,rﬁ (kf>'
g BB+ t
22, 2
Neglecting 1-X everywhere except the factor (l—x)aP(O)_B(kL)_B (k)
we obtain in the leading order in 1-x:

2 +2 . 2-0’
1Pk, x PO GleNG(sy) 1 d%ky,

.22
xrB (k;)
=3 fdy [ X

P3pEe T a(em® BA-x)) (s-uP(s~uPo | 4@n® x (21 )

A

(14)
G(s)G(sr)
(s2u®)(s 7= )

R 2 cepm POy ap@)-B (K )=B" ()
ﬁﬁ 1 ﬂ']t —x) N

where
2 - - 2 2 - - 2
o Mt - k) o mar G- ky)
Xg 1-x, ’
s - me+ ko N mz"(k.L‘ kf.L) »}»(2
f - = R
xr h xr

and similar expressions for primed values s’, S;.Dispersion
relation technique allows one to introduce the infinite-momen-
tum frame meson wave function )

\p(x"f{z) - 1 G(s) -1

pr—— P = [ - q’(s)»
2yx(1-x) s-u 2y x(1-x) -
! d”k
which is normalized by the condition [i%‘-[(__ﬁ_]q,,z,i;the value
o 2n
G(s
of —-(—-;— = Y(s) here is taken to be the same that for the non-
S—‘l

. . G((ky - kg) ™)
relativistic wave function ‘I‘m-. —
(k (= ko)
m
binding energy of the composite system. Introducing ¥ and V¥,
into eq.(14), we obtain:

y where ¢ is the

+ 7
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»2
- 1 %k, B
As_’a—ﬂ%’ I rf(z )fsle L lI’(xr,k 4 (xr,‘((1~x)k -kf )3 x

ﬁ ( -+ > -
xfdxrf-——— ‘Lx I’(xr’,k'fi)‘i’f (xp(1=x)k, - k;l)?‘) x (15)

ap (0)

-2 ‘->2
(1 - x) ap(@-Bk)-B(ky ).

P
R, 5. (0)(2P
At E_L = 0 eq.(15) takes a very simple form:
2+
1 1 0)-1
fdxr —(——~k—f— xfg() ‘l’(xr
(2r) 3

(o]

A, . =S P, (x, K
3+3 gg- ke )Wp (paky ) x

B©o-~1

1 d k’ -» 2 »> 2
x [ dx! f——fix W(x4, k% YW (x5 ,k% ) x (16)
5 f (277)3 f f f f f f_L

P ap(0) up (0)-B(0)~B(0)
RBﬁ,(O)(ZPmt) (1-x) .

Now let us turn to the situation in the multiparticle pro-
duction process when x ~ 1/2. In this case both invariant ener-
gies Syp= (k4 kf)‘ and 2m;x%; P (or Stf”' (k% + k’f)'? and 2m  x%)
in the diagram Fig.6b are large, and A( q“’" ) is a usual double-
Reggeon amplitude:

> -» 2
uark , 2, (ke —kj ,\ap (0
A(q 3 ) - R((k ['_L) )Ser(( f1 fJ_) )(2mtpr) P( ) X
. 7))
> 2 P >,
x H((k,, kfl),srr,)Jr[xfI xf,kflikrl],
where
2 > 2
. - 1+ (ku_ k_]_) (_mf+k“_)(1—x'"xf) (EE .l: 2 2 2
L S Xp + X = (kg ~kp) +my +myp)
2 2 B2
m? + & m,.-+ Kk
_ 0t 1 f fL .. = T2 2 2
Sy = ” Xp+ T (key +kgy )+ mp + mpr

-» -»
and H((k f_]_-k'f_l_)z," S¢+ ) 1is a vertex 4-point function with ex-
ternal tails R, f, ", P.
Insertlng (17) into (11) and 1ntroduc1ng wave functions
¥Y(x, -kz) we get

. ~—fdx q° er. ‘P(l—x+xf,(k k)g)‘l‘ (—f- k )
82375 a8 Vi QX+ %))
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2-5’ _ , -, nd 2 x’ P2
Xf f 2 )3 X
(8m VET=%+x])
. ap (0) - 2
x IR (K, - rl) (2m Px% )" H(kp |~ kpe )"y Sgpe) x (18)

-» -+ .

’ 2 + b -

ap(ky =k . ’
xs AR =) >+(xf»xf.k,l* k).

Generally speaklng, A3,z in eq. (18) may have a complicated
dependence on x and k_L for different initial and secondary me-—
sons. However, there are some simple considerations in the fra-
mework of the quark model, which give a possibility of clari-
fying the structure of Ag, 5.

First of all, the integration domain in eq. (18) is deter-
mined mainly by the wave functions ¥ and ¥, because the ampli-
tude Agﬁfgk is a rather smooth function as compared with V.
The reason for it is that coloured Reggéon exchange R in Fig.7b
is built of gluonic states, which are assumed to be heavier
than qq states; besides that, the invariant energy in the
block H in Fig.7b is comparatlvely low (xy= x%) and its de-
pendence on s¢r’ and (kg -k7)®  is to be also smooth.

In the quark model the momentum wave functions of the had-
rons-members of one SU(6) multiplet are equal to each other
with a good accuracy. Thus, if Aquark is approximately spin-
independent (this is possible in the case of exchange degene-
rated coloured Reggeons R and of approximate SU(6) symmetry
of qq 1interaction at low energies), from eqs. (18) and (10)
we see, that each spin state of the secondary meson is produ-
ced with the same cross section, or in other words, the cross
section of production of the meson belonging to a given SU(6)
multiplet is proportional to the number of its spin states
2J¢ + 1. The resulting set of relations was previously known
as the rules of quark statistics (see’/*%%3 and refs., given
therein),

In order to estimate the x-dependence of Ag,; in the re-
gionX~1/2 in more detail,let us mneglect transverse momentum
dependence in the Reggeon R exchange amplitude and assume
the block H to be approximately constant. Then Aq“i? will be
proportional to (ap(m = 1)

X}
1-x+x’r

(quark) , X
3.3 = % -al

), (19)

—) + X¢-al
1—X+Xr e

where a(z) is some unknown smooth function.
they may be written as

At k =0 Ay,
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x “ Y(s)¥, (s;) x 5 . .
2 T v )
Agug = [ dxfak, St Sfdxfd k{ - AL x
' o Xe(X=x)(1-%+4%g) o f Lx{(x-x{)(1 ~x+ X%)
[ [ dsa(2)s !
X X ¥A VA R o — =
s @ (2)8( 1-x+xf) (20)
2 dg o (1-12) Y(s)¥ (s) x - Y(s)¥(s;
= [ —a(z)fd%, LI2 [ax] fafx; 7 ¥ -
o 1-%x x-1z o L Ex-xHU~xex))’
where )
2 2 2.2 2. 12 2. 72
m, + k m_+ k m.+ k m k
1t Kep +
S = ~ﬁ+ ......2.__._?{_:’".._, 5{ =X fI_xf_L + 2 f1 21)
1o X Z e x..z...._:....x_ 2 —— X~z l-x/
-z 1~z - 1 -2z

Taking the simplest possible parametrization for ¥ and ¥,
¥(s) = ¥, (s) -~ exp(—st). (22)

we may estimate Ag,g 1in the eq. (20) provided a(z) is given,
The value of z expressed the ratio of the longitudinal momentum
of the sea quark, picked up by the spectator, to that of the

. . X
interacting quark (z = —§L~ . In simple multiperipheral models

this value never exceedsll/z; taking into account that quark q,
is not the fastest one in the ladder (see Fig.6d), we take
a(z) ~ (1 - z)3 ,The resulting A 3,3 is then shown in Fig.8;

it is interesting to compare it with the x —distribution of the
quark-spectator (dashed curve in Fig.8). One can see that these
distributions are quite similar in the region x ~ 1/2. This
property of secondary hadron distributions was previously cal-
led "the assumption of soft hadronization" /4143 {n the con-
text of 1/N, expansion it seems to be a good first approxima-
tion.

Let us compare now the expressions for A 3+3 1n two cases
considered here: x» 1 and x ~ 1/2. The main difference between
these two cases is that in the first one X —~dependence of the
cross section is mainly determined Ey the set of the exchanged
Reggeons R g,R g+ (factor (1-x)% ~ =B in the eq. (13)), while
the form of the wave functions ¥ and ¥, is not significant. On
the contrary, in the second case x ~dependence of the cross sec-
tion is strongly determined by the form of the wave functions
almost independent of the exchanged states. Of course, there
is an intermediate region of values, where both wave functions
and exchanged states play significant role in the formation of
X-dependence of the inclusive cross sections. Looking at the

i8

A eq. (11) one may conclude that
3+3 the two considered behaviours
of the inclusive cross section
turn one into another smoothly,
like, e.g., the resonance beha-
viour of the low-energy scatte-
ring cross section turns into
high-energy Regge behaviour.

Fig.8. Secondary meson x —dig-
tribution, estimated as desc-—
. ribed in the text (full curve)
and that for the quark-spectator
(dashed curve).
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