

E2-86-414

986

A.N.Ivanov*, N.I.Troitskaya*, M.K.Volkov

THE CHIRAL QUARK-LOOP MODEL AND THE $\Delta I = 1/2$ RULE IN KAON DECAYS

Submitted to "AO"

* Polytechnic Institute of Leningrad

and the second state of the second second

1. Introduction

In the note, electroweak decays of kaons: $K_{L^*S} \sim 2\sqrt[3]{}$ and $K \sim 2\sqrt[3]{}$ are considered¹. The decays $K_{L^*S} \sim 2\sqrt[3]{}$ and $K \rightarrow 2\sqrt[3]{}$ are due to both electroweak and strong low-energy interactions. For describing weak interactions we use an effective Lagrangian obtained in [2]. In terms of this Lagrangian weak vertices take the form of four-quark operators, the structure of which is defined by the Standard Kobayashi-Maskawa Model (KM) [3] with the account of the QCD-interaction.Matrix elements of four-quark operators are due to low-energy strong interactions. Feynman diagrams of matrix elements contain strong quark--meson vertices and divergent quark loops. For describing strong quark-meson vertices and quark loops it is convenient to employ the Chiral Quark-Loop Model (the CQL-model) [4,5]. Matrix elements of four-quark operators can be expressed in terms of square- and logarithmic-divergent integrals

$$\begin{split} I_{1}(m_{i}) &= \frac{-3i}{(2\pi)^{4}} \int \frac{d^{4}k}{m_{i}^{2} - k^{2}} = \frac{3}{76\pi^{2}} \left[\Lambda^{2} - m_{i}^{2} ln \left(t + \Lambda^{2}/m_{i}^{2} \right) \right], \\ I_{2}(m_{i}, m_{j}) &= \frac{-3i}{(2\pi)^{4}} \int \frac{d^{4}k}{(m_{i}^{2} - k^{2})(m_{j}^{2} - k^{2})} = \frac{3}{76\pi^{2}} \frac{t}{m_{i}^{2} - m_{j}^{2}} \\ \left[m_{i}^{2} ln \left(t + \Lambda^{2}/m_{i}^{2} \right) - m_{j}^{2} ln \left(t + \Lambda^{2}/m_{j}^{2} \right) \right], \end{split}$$
(1)

where Λ is a cut-off parameter, and $\mathcal{M}_{i}(i=4,a',s)$ is the mass of a constituent quark i. In the CQL-model Λ =1.25 GeV, $\mathcal{M}_{a'} = \mathcal{M}_{a'} = -0.28$ GeV and \mathcal{M}_{S} =0.46 GeV. With the help of these parameters one can calculate both all strong low-energy coupling constants of four meson nonets (scalar, pseudoscalar, vector and axial-vector) and such important characteristics of strong low-energy interactions of mesons as scattering lengths, slope parameters, electric radii and so on. The employment of the CQL-model for describing low energy strong interactions in decays $K_{L,S} + 2\gamma'$ and $K + 2\sqrt{4}$ does not result in new low-energy parameters. Emphasize that in the calculation, the relationship $I_{4}(\mathcal{M}_{a})/\mathcal{M}_{a}' I_{2}(\mathcal{M}_{a}, \mathcal{M}_{a}) = 8$ is employed.

Объсявненный енститут вагрных всследований БИБЛИСТЕНА

1

¹⁾The wave-functions of K_L and K_S mesons are connected with the wave-functions of \overline{K}^o and \mathcal{K}^o mesons in a standard manner [1].

The effective Lagrangian of weak interactions takes the form [2]

$$\mathcal{L}_{eff} = \frac{G_{F}}{\sqrt{2}} S_{4} C_{4} C_{3} (-1.000 \ Q_{1} + 1.600 \ Q_{2} - 0.033 \ Q_{3} + 0.018 \ Q_{5} - 0.100 \ Q_{6}) \equiv \frac{G_{F}}{\sqrt{2}} S_{4} C_{4} C_{3} \sum_{i=1}^{6} C_{i} C_{i} C_{i}, \qquad (2)$$

where $(G_F/\sqrt{2}) S_f C_f C_3 = 1.77 \times 10^{-6} \text{ GeV}^2_{,S_i} = 4 \text{ in } \partial_i \cdot C_i = col \partial_i \cdot (i = r, 3)$ are KM-matrix elements [3], and $Q_1(1=1,2,3,5,6)$ are four-quark operators:

$$\begin{aligned} Q_{1} &= \left[\bar{s}_{a} Y^{a} (1 - Y^{5}) d_{a} \right] \left[\bar{u}_{b} Y^{a} (1 - Y^{5}) u_{b} \right], \\ Q_{2} &= \left[\bar{s}_{a} Y^{a} (1 - Y^{5}) d_{b} \right] \left[\bar{u}_{c} Y^{a} (1 - Y^{5}) u_{a} \right], \\ Q_{3} &= \left[\bar{s}_{a} Y^{a} (1 - Y^{5}) d_{a} \right] \sum_{q = u, d, s} \left[\bar{g}_{e} Y^{a} (1 - Y^{5}) g_{e} \right], \\ Q_{5} &= \left[\bar{s}_{a} Y^{a} (1 - Y^{5}) d_{a} \right] \sum_{q = u, d, s} \left[\bar{g}_{e} Y^{a} (1 + Y^{5}) g_{e} \right], \\ g_{4} &= u_{1} d_{1} s \\ Q_{6} &= \left[\bar{s}_{a} Y^{a} (1 - Y^{5}) d_{b} \right] \sum_{q = u, d, s} \left[\bar{g}_{e} Y^{a} (1 + Y^{5}) g_{a} \right]; \\ g_{4} &= u_{1} d_{1} s \end{aligned}$$

$$(3)$$

a,b=1,2,3 are colour indices. The effective Lagrangian (2) satisfies the selection rules: $|\Delta S| = 1$, $|\Delta I| = 1/2$ and $|\Delta I| = 3/2$, where S and T are strangeness and isospin. The $|\Delta I| = 3/2$ transitions are carried out by the four-quark operator

$$O_{|\Delta I|=3/2} = [\bar{s}_{a} \delta^{a}(1-\delta^{5})d_{a}][\bar{u}_{b} \delta^{a}(1-\delta^{5})u_{b}] - [\bar{s}_{a} \delta^{a}(1-\delta^{5})d_{a}].$$

$$[\bar{d}_{b} \delta^{a}(1-\delta^{5})d_{b}] + [\bar{s}_{a} \delta^{a}(1-\delta^{5})u_{a}][\bar{u}_{b} \delta^{a}(1-\delta^{5})d_{b}], \qquad (4)$$

that is contained in the Q₁ and Q₂ operators with factor 1/3 [2]. The remaining part of Lagrangian (2) leads to the $\Delta I = 1/2$ transitions.

It should be noted that the coefficients for the Q_1 -operators in the effective Lagrangian describing weak interactions in kaon decays depend on $\mathscr{A}_{\mathcal{S}}(\mathcal{M})$, where $\mathscr{A}_{\mathcal{S}}(\mathcal{M})$ is the QCD- coupling constant for three quark flavours [2], and \mathcal{M} is the normalization point. In the effective Lagrangian (2) the coefficients are calculated for $\mathscr{A}_{\mathcal{S}}(\mathcal{M}) = 1$ that corresponds to $\mathcal{M} = 0.24$ GeV. In general; $\mathscr{A}_{\mathcal{S}}(\mathcal{M})$ is a free parameter in the CQL-model. The choice $\mathscr{A}_{\mathcal{S}}(\mathcal{M}) = 1$ is explained by the fact that only for $\mathscr{A}_{\mathcal{S}}(\mathcal{M}) = 1$ one can agree the theoretical values of decay $K_{L}, S \to 2 \mathcal{J}^{\mathcal{L}}$ and $K \to 2 \mathcal{T}$ amplitudes with experimental ones.

The paper is organized as follows. In Sec.2 decay $K_{L,S} \neq 2 \gamma'$ amplitudes are calculated. Section 3 is devoted to the calculation of decay K+2 η' amplitudes that are due to $/\Delta I /= 3/2$ transitions. In Sec. 4 decay K+2 η' amplitudes that are due to $/\Delta I /= 1/2$ transitions are calculated, In Sec. 5 we discuss the results obtained.

2. Decays KL, S-2/

ŗ

In the CQL-model decay $K_{L',S} + 2\gamma^{\circ}$ amplitudes are defined by contact and pole diagrams in Fig. 1. Pole diagrams are due to the exchange of pseudoscalar mesons $\mathcal{N}', \mathcal{P}, \mathcal{P}'$ and scalar meson \mathcal{E} (700).

Fig.1. Contact and pole diagrams, defining decay KL,S+2 y amplitudes

Within the CQL-model accuracy (15÷20%) the contact-diagram contribution can be neglected with respect to the pole diagram one [7].

To calculate the pole diagram contribution, consider quark diagrams determining matrix elements of four-quark operators between states K⁰ and X (where X= π^{o} , γ , γ' or \mathcal{E} (700)), (Fig:2).

<u>Fig.2.</u> Quark-diagrams, defining matrix elements of $K^0 \rightarrow P$ and $K^0 \rightarrow \mathcal{E}$ transitions, where $P = \pi^o$, γ and γ' .

Write down the result of the calculation:

 $\langle \pi^{o}|Q_{2}|\kappa^{o}\rangle = -\langle \pi^{o}|Q_{3}|\kappa^{o}\rangle = !/_{3}\langle \pi^{o}|Q_{1}|\kappa^{o}\rangle = \sqrt[7]{2}_{3}F_{\pi}F_{\kappa}m_{\kappa}^{2} = !/_{3}X, \\ \langle \pi^{o}|Q_{5}|\kappa^{o}\rangle = !/_{3}\langle \pi^{o}|Q_{6}|\kappa^{o}\rangle = !/_{3}\mathcal{D}X; \\ \langle \gamma|Q_{2}|\kappa^{o}\rangle = !/_{3}\langle \gamma|Q_{1}|\kappa^{o}\rangle = !/_{3}\mathcal{D}(\mathcal{A}_{c}-\mathcal{D}_{c})X,$

 $\langle \gamma | Q_{3} | K^{o} \rangle = \left[(2 + 1/3) \sin(\theta_{0} - \theta_{p}) - \sqrt{2} (F_{3} / F_{T}) (1 + 1/3) \cos(\theta_{0} - \theta_{p}) \right] X,$ $\langle \gamma | Q_{5} | K^{o} \rangle = \left[- (2 + \beta'/3) \sin(\theta_{0} - \theta_{p}) + \sqrt{2} (F_{5} / F_{T}) (1 + \beta'/3) \cos(\theta_{0} - \theta_{p}) \right] X,$ $\langle \gamma | Q_{6} | K^{o} \rangle = \left[- (2'_{3} + \beta') \sin(\theta_{0} - \theta_{p}) + \sqrt{2} (F_{5} / F_{T}) (1'_{3} + \beta') \cos(\theta_{0} - \theta_{p}) \right] X;$ $\langle \gamma' | Q_{2} | K^{o} \rangle = 1/3 \langle \gamma' | Q_{1} | K^{o} \rangle = 1/3 \cos(\theta_{0} - \theta_{p}) X,$ $\langle \gamma' | Q_{3} | K^{o} \rangle = \left[(2 + 1/3) \cos(\theta_{0} - \theta_{p}) + \sqrt{2} (F_{5} / F_{T}) (1 + 1/3) \sin(\theta_{0} - \theta_{p}) \right] X,$ $\langle \gamma' | Q_{5} | K^{o} \rangle = \left[(2 + 1/3) \cos(\theta_{0} - \theta_{p}) - \sqrt{2} (F_{5} / F_{T}) (1 + 1/3) \sin(\theta_{0} - \theta_{p}) \right] X,$ $\langle \gamma' | Q_{5} | K^{o} \rangle = \left[(2 + 3 + \beta) \cos(\theta_{0} - \theta_{p}) - \sqrt{2} (F_{5} / F_{T}) (1 + 1/3) \sin(\theta_{0} - \theta_{p}) \right] X;$ $\langle \gamma' | Q_{6} | \overline{K}^{o} \rangle = \left[- (2/3 + \beta) \cos(\theta_{0} - \theta_{p}) - \sqrt{2} (F_{5} / F_{T}) (1 + 1/3) \sin(\theta_{0} - \theta_{p}) \right] X;$ $\langle \gamma' | Q_{6} | \overline{K}^{o} \rangle = \left[- (2/3 + \beta) \cos(\theta_{0} - \theta_{p}) - \sqrt{2} (F_{5} / F_{T}) (1 + 1/3) \sin(\theta_{0} - \theta_{p}) \right] X;$ $\langle \gamma' | Q_{6} | \overline{K}^{o} \rangle = \left[- (2/3 + \beta) \cos(\theta_{0} - \theta_{p}) - \sqrt{2} (F_{5} / F_{T}) (1 + 1/3) \sin(\theta_{0} - \theta_{p}) \right] X;$ $\langle \gamma | Q_{6} | \overline{K}^{o} \rangle = \left[- (2/3 + \beta) \cos(\theta_{0} - \theta_{p}) - \sqrt{2} (F_{5} / F_{T}) (1 + 1/3) \sin(\theta_{0} - \theta_{p}) \right] X;$ $\langle \gamma | Q_{6} | \overline{K}^{o} \rangle = \left[- (2/3 + \beta) \cos(\theta_{0} - \theta_{p}) - \sqrt{2} (F_{5} / F_{T}) (1 + 1/3) \sin(\theta_{0} - \theta_{p}) \right] X;$ $\langle \gamma | Q_{6} | \overline{K}^{o} \rangle = \left[- (2/3 + \beta) \cos(\theta_{0} - \theta_{p}) - \sqrt{2} (F_{5} / F_{T}) (1 + 1/3) \sin(\theta_{0} - \theta_{p}) \right] X;$ $\langle \gamma | Q_{6} | \overline{K}^{o} \rangle = \left[- (2/3 + \beta) \cos(\theta_{0} - \theta_{p}) - \sqrt{2} (F_{5} / F_{T}) (1 + 1/3) \sin(\theta_{0} - \theta_{p}) \right] X;$

Here θ_{F} is a singlet-octet mixing angle of pseudoscalar mesons, $tg\theta_{0}=t/\sqrt{2}, F_{T}=0.093 \text{ GeV}, F_{K}=1.15 f_{T}$ and $F_{S}=1.27 f_{T}$ are PCAC (Partial Conservation Axial Current) constants of T, K -mesons and a pseudoscalar state containing only strange quarks. In the QCL--model constants F_{T} , F_{K} and F_{S} are defined by the formulas [4]: $F_{T}=2m_{L}\left[I_{2}(m_{u},m_{u})/Z\right]=0.093 \text{ GeV},$ $F_{K}=(m_{u}+m_{S})\left[I_{2}(m_{u},m_{S})/Z\right]=\left(\frac{1+\lambda}{2}\right)\left[\frac{I_{2}(m_{u},m_{S})}{I_{2}(m_{u},m_{u})}\right] \cdot f_{T}=1.15 f_{T},$ $F_{S}=2m_{S}\left[I_{2}(m_{S},m_{S})/Z\right]=\lambda\left[\frac{I_{2}(m_{S},m_{S})}{I_{2}(m_{V},m_{U})}\right] \cdot f_{T}=1.27 f_{T},$ (6)

where ≥ -2 ≥ 0 ≥ 1 is the renormalization constant of O-meson wavefunctions, that is due to nondiagonal $0 \rightarrow 1^+$ transitions (1⁺ is an axial meson). The constant Z is identical for all components of O--meson nonet [8]. The theoretical values of PCAC constants are in good agreement with experimental data: $f_{op}^{-} = (0.09324 \pm 0.0013)$ GeV and $F_{\rm K}/F_{\rm pr} = 1.17 \pm 0.01$ [1,9].

The parameters \mathcal{P} , \mathcal{P}' and \mathcal{P}'' are defined by the expressions:

$$\begin{split} \beta &= Z^{2} \frac{64(t+\lambda)m_{u}^{2}}{m_{\chi}^{2}} \frac{F_{u}^{2}}{F_{u}^{2}} \begin{bmatrix} 1 - \frac{\lambda}{2(t+\lambda)^{2}} \frac{F_{u}^{2}}{F_{u}^{2}} \begin{bmatrix} 1+\lambda \frac{T_{t}(m_{u})}{T_{t}(m_{u})} \end{bmatrix} \end{bmatrix} = 51, \\ \beta' &= Z^{2} \frac{64\lambda(t+\lambda)m_{u}^{2}}{m_{\chi}^{2}} \frac{F_{u}^{4}}{F_{u}^{2}} \frac{T_{t}(m_{u})}{T_{t}(m_{u})} \begin{bmatrix} 1 - \frac{\lambda}{2(t+\lambda)^{2}} \frac{F_{u}^{2}}{F_{u}^{2}} \begin{bmatrix} 1+\frac{1}{\lambda} \frac{T_{t}(m_{u})}{T_{t}(m_{u})} \end{bmatrix} \end{bmatrix} = 50, \\ \beta'' &= Z^{3/2} \frac{64(t+\lambda)m_{u}^{2}}{m_{\chi}^{2}} \frac{F_{u}^{2}}{F_{u}^{2}} = 68. \end{split}$$
(7)

5

4

Table 1.

Numerical values of matrix elements of Q,-operators

Qi	K ⁰ → <i>T</i> °	к ⁰ →7	к ⁰ →?′	κ ⁰ →ε		
	in units by $\langle \pi^{o} Q_{i} \kappa^{o} \rangle = 3.5 \times 10^{-3} \text{ GeV}^{4}$					
Q1 ,	1.0	0 . 8	0.6	0		
Q ₂	0.3	0.3	0,2	0		
Q ₃	- 0.3	0.4	3.3	0		
Q ₅	17.0	3.8	-37.0	123		
Q ₆	51.0	• 13.0	-104.0	168		

Numerical values of Q,-operator matrix elements are presented in Table 1. Matrix elements of $K^0 \rightarrow 7, 7'$ transitions are calculated for $\theta_{p} = -21^{\circ}$ ((θ_{P}) = $-17.3 \pm 3.6^{\circ}$ [10]). It should be noted that matrix element of the $K^0 \rightarrow h$ transition strongly depends on the quark-mass difference and Θ_P mixing angle. For example, for a fixed quark-mass difference the variation of θ_P by three degrees ($\theta_{p} = -18^{\circ}$) almost twice changes the matrix element of $K^0 \rightarrow \eta$ transition. The same strong variation takes place for a fixed mixing angle and a variation of quark-mass difference. Such a strong dependence can be explained by the fact that the contributions of quark-components $(\overline{u}u+\overline{d}d)/\sqrt{2}$ and $\overline{s}s$ are subtracted in the $K^{0} \rightarrow \eta$ transition matrix element. The contributions of these quark components are of the same order, that is why, a slight variation of one of them leads to a significant variation of their difference. In the $K^0 \rightarrow 7'$ transition matrix element the contributions of quark-components $(\overline{u}u+\overline{d}d)/\sqrt{2}$ and is are added so, the influence of their variation is not so essential.

The choice $\theta_{P} = -21^{\circ}$ is agreed with experimental data on two--photon decays of γ , γ' -mesons. For $\theta_{P} = -21^{\circ}$ partial widths of decays $\gamma \rightarrow 2\gamma'$ and $\gamma' \rightarrow 2\gamma''$, calculated in the CQL-model, are in good agreement with experimental data:

$$\Gamma(\gamma \rightarrow a\gamma) = \left(\frac{\alpha}{2\pi F_{T}}\right)^{2} 5 \pi n (B_{0} - b_{T}) - \sqrt{a} \frac{F_{T}}{F_{3}} \cos(B_{0} - b_{T})^{2} \left(\frac{m_{1}}{T}\right)^{3} = 0.77 \text{ keV}$$

Let us write down analytical expressions for decay $K_{L^*S} \rightarrow 2\gamma^*$ amplitudes:

$$\begin{split} A(K_{L} \rightarrow 2K) &= -\frac{d}{\pi} (G_{F} s_{t} c_{t} c_{3}) \left\{ \frac{1}{m_{K}^{2} - m_{\pi^{0}}^{2}} \langle \pi^{0} | Q_{|\Delta S|=t} | K^{0} \rangle + \right. \\ &+ \frac{1}{3} \left[5 \sin(Q_{0} - D_{P}) - \sqrt{2} \frac{F_{\pi}}{F_{s}} \cos(Q_{0} - D_{P}) \right] \frac{1}{m_{K}^{2} - m_{2}^{2}} \langle \gamma | Q_{|\Delta S|=t} | K^{0} \rangle + \\ &+ \frac{1}{3} \left[5 \cos(Q_{0} - D_{P}) + \sqrt{2} \frac{F_{\pi}}{F_{s}} \sin(Q_{0} - D_{P}) \right] \frac{1}{m_{K}^{2} - m_{2}^{2}} \langle \gamma | Q_{|\Delta S|=t} | K^{0} \rangle + \\ &= 3.3 \times 10^{-9} \text{GeV}^{-1}, \qquad (9) \\ A(K_{g} \rightarrow 2K') &= \frac{10}{9} \frac{d}{\pi T_{\pi}} \frac{2}{F_{\pi}} \frac{1}{2} i_{2} (G_{F} s_{t} c_{t} c_{3}) \frac{i \langle \varepsilon | Q_{|\Delta S|=t} | K^{0} \rangle}{m_{E}^{2} - m_{K}^{2}} \exp(\delta_{\varepsilon} (m_{K})) \\ &- \cos \delta_{\varepsilon} (m_{K}) = 4.0 \times 10^{-9} \times \cos \delta_{\varepsilon} (m_{K}) \times \exp(\delta_{\varepsilon} (m_{K})) \quad Gev^{-1} \end{split}$$

Here $Q_{|\Delta S|=1} = \sum C_i Q_i$, $m_E = 0.73 \text{ GeV}$ is the mass of \mathcal{E} -meson, $\mathcal{S}_E(m_K) = \operatorname{acctg}[m_K / \mathcal{E}(m_K) / m_E^2 - m_K^2] = 6.44 \text{ and } / \mathcal{E}(m_K) = 1 \text{ GeV}$ is the partial width of decay $\mathcal{E} \to 2.57$ of the virtual \mathcal{E} -meson with energy m_K [4,13]². The theoretical value of $\mathcal{A}(K_L \to \mathcal{Z}_F)$ is in good agreement with the experimental one:

$$|A(K_{L} \rightarrow 2\gamma)|_{exp} = (3.18 \pm 0.14) \times 10^{-9} \text{ GeV};$$
(11)

the value of $A(K_S \rightarrow \partial_F)_{H_1}$ satisfies the experimental constraint: $|A(K_S \rightarrow \partial_F)|_{e_{H_1}} < \pi_* / 0^{-8} Gev [1].$

 $\frac{1}{2} \int_{\mathcal{E}} (m_{k}) = (3m_{u}^{2}g/25m_{k}) \int_{\mathcal{E}}^{2} (m_{k}) (1-4m_{u}^{2}/m_{k}^{2}) = 1 \text{ GeV} \text{ where } 4m_{u}g = 4m_{u}^{2} Z^{1/2} / F_{T} = 4 \text{ GeV} \text{ and } F_{\overline{E}_{TT}}(m_{k}) = 1 + (m_{\overline{E}}^{2}-m_{k}^{2})/(4f_{T}f_{\overline{E}})Z = 1.15^{-} \text{ are respectively the coupling constant and form factor of decay } E \longrightarrow 2\pi$ of the virtual \dot{E} -meson with energy $m_{u}[4, 13]$.

.

3. $|\Delta I| = 3/2$ transitions in decays K+2 π .

The effective Lagrangian. satisfying the selection rules ΔS =1 and $|\Delta I| = 3/2$, takes the form [137 :

$$\mathcal{L}_{eff}^{|\Delta I|=3/2} G_{F} S_{1} C_{1} C_{3} \times 0.2 \times Q_{|\Delta I|=3/2}$$
(12)

An amplitude $A^{3/2}(K \rightarrow \partial \pi)$ is proportional to a matrix element

$$A^{3/2}(K \rightarrow 2\pi) = 3.54 \times 10^{-7} (AT | Q_{|\Delta I}| = 3/2 |K) (GeV)^{-2}$$

$$A^{3/2}(K \rightarrow 2\pi) = 3.54 \times 10^{-7} (AT | Q_{|\Delta I}| = 3/2 |K) (GeV)^{-2}$$

$$(13)$$

In the CQL-model matrix elements $\langle a \pi / Q_{|\Delta I|^{-3/2}} / K \rangle$ are defined by contact quark diagrams in fig. 3.

Fig. 3. Contact quark diagrams, defining matrix elements 22#1QIATI=3/1K>.

As a result of the calculation we get

$$\langle \pi^{+}\pi^{-}|Q_{|\Delta I|=3/2}|K^{\circ}\rangle = -1/2 \langle \pi^{\circ}\pi^{\circ}|Q_{|\Delta I|=3/2}|K^{\circ}\rangle =$$

$$= \sqrt{a/3} \langle \pi^{+}\pi^{\circ}|Q_{|\Delta I|=3/2}|K^{+}\rangle,$$
(14)

(51+510)QIAI/=3/2/K+>=- i - Fx mx [1- (1+)2(Form, /Fx mx)- $-(z-1)\left(\frac{1+\lambda}{4}\right)\left(1-F_{T}^{2}/F_{K}^{2}\right)=-i^{\prime}x \ 6.55 \times 10^{-2} (Gev)^{3}$. (15) Numerical values of amplitudes and partial widths of decays K-2 m that are due to $\Delta I = 3/2$ transitions are presented in Table 2.

Table 2.

Numerical values of amplitudes and partial widths of decays K+2 77 .

Decay	▲ I=3/2	EXPERIMENT				
	A	r	A	ſ	A	Γ'
$ \begin{array}{c} \mathbf{k}^{+} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{0} \\ \mathbf{k}^{0} \rightarrow \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \\ \mathbf{k}^{0} \rightarrow \boldsymbol{\pi}^{0} \boldsymbol{\pi}^{-0} \end{array} $	2.33 1.10 2.20	1.80 0.40 0.80	0 · 30.0 .30.0	0 297 149 ·	1.84 27.7 26.3	1,13 253 116

Here A is the absolute value of decay K+2 π amplitude in units 10^{-8} GeV, and \int' is a partial decay K+2 π width in units 10^{-17} GeV.

4. [A I / =1/2 transitions in decays K+297.

 $|\Delta T|_{=1/2}$ transitions take place in decays $K^0 \rightarrow \pi^+ \pi^-$ and $K^0 \rightarrow \pi^- \pi^-$ for $\pi^- \pi^- \pi^-$ and $K^0 \rightarrow \pi^- \pi^-$. The effective Lagrangian of weak interactions describing $|\Delta T| = 1/2$ transitions, can be obtained from (2) by subtracting (12):

$$\mathcal{L}_{eff}^{|\Delta I|=1/2} = \mathcal{L}_{eff}^{|\Delta I|=3/2} \mathcal{L}_{eff}^{eff} = \frac{|\Delta I|=3/2}{\sqrt{2}} \mathcal{L}_{eff}^{eff} = \frac$$

The decay K⁰ -2 m amplitudes are defined by contact and pole diagrams. The main contribution comes from the pole diagram with the scalar \mathcal{E} (700)-meson exchange. Within the accuracy of CQL model the contribution of contact diagrams and pole diagrams with other resonance exchange can be neglected as compared to the \mathcal{E} -meson one.

The matrix element $\langle \mathcal{E} | \mathcal{Q}_{|\Delta \mathcal{I}|=1/2} | \mathcal{K}^o \rangle$ is connected with the matrix element $\langle \mathcal{E} | \mathcal{Q}_{\mathcal{E}} | \mathcal{K}^o \rangle$ by the equality:

$$\langle \varepsilon | \mathcal{Q}_{|\Delta I| = 1/2} | \mathcal{K}^{\circ} \rangle = -0.09 \langle \varepsilon | \mathcal{Q}_{\varepsilon} | \mathcal{K}^{\circ} \rangle = -\iota' \times \mathcal{A} \cdot 2 \times 10^{-2} (GeV)^{\circ}$$
(17)

Decay $K^0 \rightarrow 2\pi^{-1/2}$ amplitudes that are due to $|\Delta \mathcal{I}| = 1/2$ transitions take the form [137 :

$$A^{1/2}(K^{\circ} \rightarrow \pi^{+}\pi^{-}) = A^{1/2}(K^{\circ} \rightarrow \pi^{\circ}\pi^{\circ}) = \frac{G_{F}}{\sqrt{2}} s_{r} c_{r} c_{3} \frac{4m_{4} g_{F}}{m_{2}^{2} - m_{K}^{2}}$$

$$e_{XP} i \delta_{\mathcal{E}}(m_{K}) \cdot \cos \delta_{\mathcal{E}}(m_{K}) \cdot \langle \mathcal{E} | Q_{|\Delta \mathcal{I}| = 1/2} | K^{\circ} \rangle =$$

$$= -\iota^{\prime} \times 3.0 \times 10^{-7} \epsilon_{XP} \iota^{\prime} \delta_{1/2} (GeV), \qquad (18)$$
where $\delta_{1/2} = \delta_{\mathcal{E}}(m_{K}) = 61.4^{\circ}$ is the amplitude $A^{1/2}(K^{\circ} + 2\pi^{-})$ phase.

In the standard parametrization amplitude decay K+2 \mathcal{T} phases are parametrized by two phases \mathcal{S}_0 and \mathcal{S}_2 [14] that are determined by strong $\mathcal{T}\mathcal{T}$ -interaction in states with I=0 and I=2, respectively. The phase $\mathcal{S}_{1/2}$ of the amplitude $\mathbb{A}^{1/2}(\mathbb{K}^0 + 2\mathcal{T})$ should be compared with the phase \mathcal{S}_0 . However, there are experimental data only for the quantity: $(\mathcal{S}_0 - \mathcal{S}_2)_{exp} = 56.5 \pm 3.0^0$ [15] that is extracted from experimental data on decays K+2 \mathcal{T} . That is why, taking into account that a value of \mathcal{S}_2 is small as compared to \mathcal{S}_0 , it is possible to compare $\mathcal{S}_{1/2}$ with ($\mathcal{S}_2 - \mathcal{S}_2$). It is easy to see that the theoretical value $\mathcal{S}_{1/2} = 61.4^0$ agrees with the experimental one.

Numerical values of amplitudes and partial widths of decays $\mathcal{K} \rightarrow \mathcal{A} \mathcal{T}$, that are due to $/\Delta \mathcal{I}/=1/2$, transitions are presented in Table 2.

5. Discussion

The obtained theoretical values of decay $K_{L,S}+2 \ \gamma'$ and $K+2 \ \pi'$ amplitudes confirm the phenomenological rule $/\Delta T / = 1/2$. The account of the QCD-interaction in effective Lagrangian (2) plays an essential role for strengthening $/\Delta T / = 1/2$ transitions. The main contribution to matrix elements of $K^0 \rightarrow X$ transitions, where $X = \ \pi'', \ \gamma', \ \gamma''$ or \mathcal{E} (700), comes from Q_6 -operator matrix elements. The appearance of the Q_6 -operator in effective Lagrangian (2) is due to a diagram of the "Penguin" type defined by the W-boson and the glueon exchange [16].

In the decays $K^{0} \rightarrow 2 \mathcal{T}$ the strengthening of $/\Delta \mathcal{I} / = 1/2$ transitions is due to the scalar meson \mathcal{E} (700) exchange. The dominance of \mathcal{E} --meson is not surprised. In the CQL-model the \mathcal{E} -meson exchange plays an important role for describing many decays (for example, $\chi' \rightarrow \chi \mathcal{T} \mathcal{T}, \chi(\chi') \rightarrow 3 \mathcal{T}$) and such important low-energy characteristics as scattering lengths and polarizabilities [17].

It should be emphasized that matrix elements of four-quark operators calculated in the CQL-model do not contain new low-energy parameters. For describing strong low-energy interactions in kaon decays sufficient are three parameters: Λ =1.25 GeV, m_d=m_u=0.28 GeV and $m_g=0.46$ GeV. In our calculation the sole free parameter is a normalization point \mathcal{M} , or accordingly $\mathcal{A}_{\mathcal{S}}(\mathcal{M})$. The appearance of a normalization point is due to the account of QCD-interactions for obtaining the effective Lagrangian of weak interactions. We choose $\mathcal{A}_{\mathcal{S}}(\mathcal{M}) = 1$ which corresponds to $\mathcal{M}=0.24$ GeV.In this case theoreitical values of kaon decay amplitudes can be agreed with experimental values within 30% accuracy.

In conclusion let us discuss decays K+3 \mathcal{T} . Since the energyrelease of decays K+3 \mathcal{T} is sufficiently small (of an order of 0.025 GeV per one decay particle), the soft-pion approach (low-energy limit) is a good approximation for their description. In the low-energy limit decay K+3 \mathcal{T} amplitudes can be connected with decay K+2 \mathcal{T} amplitudes [18] : $|A(K^{\pm} \gg 2\pi + \pi^{-})| = (1/2F_{\pi})|A(K^{\pm} \pi + \pi^{-})|, |A(K^{\pm} \pi + \pi^{-})| = (\pi^{-}F_{\pi})|A(K^{\pm} \pi + \pi^{-})| = (\pi^{-}F_{\pi})|A(K^{\pm} \pi + \pi^{-})|$. In this approximation one obtains

$\int (K^{+} - \lambda \overline{\lambda} \overline{\lambda}^{+} \overline{\lambda}^{-}) \qquad (M_{K} - M_{\overline{M}})^{-}$. 1/-
$\overline{\Gamma(K^{\circ} \to \pi^{+}\pi^{-})}^{=} \overline{64\pi^{2}F_{\pi}^{2}m_{K}}} (m_{K}^{2} - 4m_{\pi}^{2})^{1/2}}) \xrightarrow{c_{1}}{5^{1/2}} (S - 4)^{1/2} (S - $	mg)22.
$\cdot \left[(m_{k} - m_{f})^{2} - s \right]^{1/2} \left[(m_{k} + m_{f})^{2} - s \right]^{1/2} = 1.35 \times 10^{-3},$	
$\Gamma'(K^{+} \to a_{5} + \pi^{-}) = 4 \Gamma'(K^{+} \to a_{5} \to a_{5} +) = 4.0 \times 10^{-18} \text{GeV}.$	
	(19)

The theoretical values of decay K+3 \mathcal{T} amplitudes agreed with experimental values: $\Gamma(\mathcal{K}^{t} \rightarrow \mathcal{J}_{x}^{+} \mathcal{T}_{x}^{-}) = (\mathcal{A} \cdot \mathcal{B}_{x} \pm \mathcal{O} \cdot \mathcal{O}_{x})_{x} / \mathcal{O} \quad \mathcal{C}_{ev}$ and $\Gamma(\mathcal{K}^{t} \rightarrow \mathcal{D}_{x})_{x} / \mathcal{O} \quad \mathcal{C}_{ev}$ and $\Gamma(\mathcal{K}^{t} \rightarrow \mathcal{D}_{x})_{x} / \mathcal{O} \quad \mathcal{C}_{ev}$ and $\Gamma(\mathcal{K}^{t} \rightarrow \mathcal{D})_{x} / \mathcal{O} \quad \mathcal{C} \quad \mathcal{C}$

References:

- 1. Particle Data Group: Rev.Mod.Phys., 1984, 56, No.2, part II.
- Gilman F.J., Wise M.B.: Phys.Rev., 1979, <u>D20</u>, 2392; ibid., 1983, <u>D27</u>, 1128; Buras A.J., SZominsky W.: Nucl. Phys. 1985, <u>253B</u>, 231.
- 3. Kobayashi M., Maskawa K.: Progr. Theor. Phys. 1973, 49, 652.
- 4. Ebert D., Volkov M.K.: Z.Phys., 1983, <u>C16</u>, 205: Volkov M.K.; Ann.Phys. (N.Y.), 1983, <u>157</u>, 282; Part. and Nucl., 1986, <u>17</u>, 433.
- Ivanov A.N., Schechter V.M.: Yad. Fiz., 1980, <u>31</u>, 530; Ivanov A.N.: Yad.Fiz., 1981, <u>33</u>, 1679; Ivanov A.N., Troitskaya N.I.: Yad.Fiz., 1982, <u>36</u>, 220.
- De Rafael E.: Lectures on Quark Mixing in the Standard Model, Preprint MPI-PAE/PTh 72/84, 1984.

10

11

- 7. Volkov M.K., Ivanov A.N., Troiskaya N.I.: Preprint of JINR, P2-86-43, Dubna, 1986.
- Volkov M.K., Osipov A.A.: Preprint of JINR, P2-85-390, Dubna, 1985; Volkov M.K., Ivanov A.N.: Communication of JINR, P2-85-566, Dubna, 1985.
- 9. Nagels M.M. et al.: Nucl. Phys. 179, 147B, 189.
- 10. Weinstain A. et al.: Phys. Rev. 1983, <u>D27</u>, 2896.
- 11. (PLUTO Collab). Berger Ch. et al. Phys. Lett., 1984, <u>142B</u>, 125 (TASSO) Acthoff A. et al., Phys.Lett., 1984, <u>147B</u>, 487
- 12. Bartel W. et al.: Phys.Lett., 1985, <u>B158</u>, 511.
- Volkov M.K., Ivanov A.N., Troitskaya N.I.: Preprint of JINR, P2-85-143. Dubna, 1986.
- 14. Wolfenstein L.: In: Theory and Phenomenology in Particle Physics, ed. Zichichi A., Acad; New York, 1969.
- 15. Kamal A.: Preprint SLAC-PUB 3593, 1985.
- 16. Shifman M.A. et al.: Nucl. Phys., 1977, 120B, 315.
- 17. Volkov M.K., Osipov A.A.: Yad.Fiz., 1984. 39, 694;
- Ivanov A.N., Troitskaya N.I.: Yad.Fiz., 1986, <u>43</u>, 405, 967. 18. De Alfaro et a.: Currents in Hadron Physics, New York, 1973; 19. Volkov M.K., Part. and Nucl., 1979, 10, 693.

Волков М.К., Иванов А.Н., Троицкая Н.И. Киральная модель кварковых петель и правило Δ1 = 1/2 в распадах каонов

Рассмотрены слабые распады каонов: К + 2у, К + 2т и К + 3т. Дано теоретическое подтверждение феноменологического правила $\Delta I = 1/2$. Для описания слабых взаимодействий использован эффективный лагранжиан, найденный в стандартной модели Кобаяши - Маскавы с учетом КХД-взаимодействия. Слабые вершины имеют вид четырехкварковых операторов. Низко-энергетические матричные элементы четырехкварковых операторов вычислены в киральной модели кварковых петель /КМКП/. В КМКП амплитуды распадов определены контактными и полюсными диаграммами. Последние обусловлены обменом псевдоскалярными мезонами π^{o} , η и η^{*} и скалярным мезоном ϵ /700/. В пределах точности модели /15+20%/ вкладом контактных диаграмм можно пренебречь по сравнению с вкладом полюсных диаграмм. Основной вклад в низкоэнергетические матричные элементы переходов К⁰ + X(X = π^{o} , η , η^{*} или ϵ (700)) дают матричные элементы Пингвин-оператора Q₀. Теоретические значения амплитуд распадов К + 2 γ , К + 2 π и К + 3 π согласуются с экспериментальными с точностью до 30%.

E2-86-414

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Преприят Объединенного института ядерных исследований. Дубна 1986

Volkov M.K., Ivanov A.N., Troitskaya N.I. E2-86-414 The Chiral Quark-Loop Model and the $\Delta I = 1/2$ Rule in Kaon Decays

 $K \rightarrow 2\gamma$, $K \rightarrow 2\pi$ and $K \rightarrow 3\pi$ kaon decays are considered. A theoretical groundwork is given for the phenomenological (ΔI) = 1/2 rule. For describing weak interaction the effective Lagrangian has been obtained in the standard Kobayashi-Maskawa model with the account of the QCD-interaction. Weak vertices take the form of four-quark operators. Low-energy four-quark matrix elements are calculated in the Chiral Quark-Loop Model (the CQL-model). In the CQL-model decay amplitudes of kaons are defined by contact and pole diagrams with exchange of pseudoscalar π° , η , η' -mesons and scalar (700)-meson. The contribution of contact diagrams, as compared to pole diagrams, can be neglected within the CGL-model accuracy (15-20%). The main contribution to low-energy K°-X transition matrix elements (X = π° , η , η' and ϵ) comes from Penguin operator matrix elements. Theoretical values of decay K + 2 γ , K + 2 π and K + 3 π amplitudes are consistent with experimental data within 30% accuracy.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986

Received by Publishing Department

on June 27, 1986.