

E2-86-376

V.K.Mitrjushkin, A.M.Zadorozhny

PHASE STRUCTURE OF THE SO(3) GEORGI-GLASHOW MODEL

Submitted to "Physics Letters B"

1986

1. In recent years the study of gauge-Higgs systems has drawn a great attention (see, e.g. refs. /1-14/). A special interest to theories including Higgs bosons is mainly due to the problem of the Higgs mechanism and of the continuum limit of such theories. Unlike pure gauge theories and the ones with fermions, in gauge-Higgs systems there is no asymptotic freedom. So, if in the case, say, of a pure gauge theory we know (or believe) that the continuum limit takes place when $g_o \rightarrow 0$, where g_o is a bare gauge coupling constant, in the case of a gauge-Higgs theory the problem concerning which set of bare parameters in the action permits one to achieve the continuum limit remains still open. We think that we may speak about the continuum limit of a lattice theory only in the vicinity of a critical point. Therefore, a first step towards undestanding the continuum limit is the study of phase structure of a lattice theory.

This note deals with studying phase diagrams of the SU(2) gauge-Higgs theory, Higgs bosons being in an adjoint representation (the Georgi-Glashow model). Qualitatively, this problem has been discussed in refs. /12-14/. The aim of this note is to establish an exact quantitative pattern and the nature of phase transitions observed in Monte-Carlo simulations. Here we do not consider the problem of classification of phases which requires an independent and more careful analysis. Our analysis is essentilly based on calculations by the Monte-Carlo method and with the use of an effective potential of the Coleman-Weinberg type.

2. The model under consideration couples an adjoint Higgs multiplet to a set of SU(2) non-abelian gauge fields. The Euclidean action is of the form

$$S = \beta \sum_{\alpha} S_{\alpha} + \sum_{L} S_{L}, \qquad (2.1)$$

$$S_{0} = 1 - \frac{1}{2} T_{z} U_{0} , \qquad (2.2)$$

$$S_{L} = (1 + m^{2}/8) T_{\mathcal{E}} \phi^{2} + \lambda/4 (T_{\mathcal{E}} \phi^{2})^{2} - (2.3) - T_{\mathcal{E}} (\phi_{i}^{+} U_{i;j,\mu} \phi_{i+\hat{j}i} U_{i;j,\mu}^{+}),$$

DODIANT MALE ENCLUYS ARCHINX ECCREADER where $\beta = 4/g_o$, $U_{\Box} = U_{ij}U_{jk}U_{kl}U_{li}$ and $U_{ij} \equiv U_{L}$ is a gauge field defined on the link $L \equiv (i,j) \equiv (i;\mu)$ which originates at the site *i* and ends at the site $j = i + \hat{\mu}$, $\mu = 1, \dots 4$. The Higgs field Φ_i is defined at each site *i*, and we are using the 2x2 matrix representation: $\Phi_{L} = i \sum_{\alpha=1}^{2} G_{\alpha} \Phi_{i}^{\alpha}$, where G_{α} are Pauli matrices and Φ_{L}^{α} are real numbers. The average of any functional $U_{ij}^{\alpha} \in U_{ij}^{\alpha}$

$$\langle U \rangle = \mathcal{Z}^{1} \int [dU] [d^{3}\phi] (J \exp\{-S\}), \qquad (2.4)$$

where $[d^{3}\phi] = \prod_{i} d^{3}\phi_{i}; \qquad [dU] = \prod_{i} dU_{i}; \qquad dU_{i}$

is the Haar measure and \swarrow is a normalization factor. In our paper we calculated the averages of the following functionals:

$$1 - [] = 1 - \frac{1}{2} \operatorname{Tz} U_{i]} ; \qquad R^{2} = \operatorname{Tz}(\Phi_{i}^{T} \Phi_{i}) ;$$

$$\mathcal{L} = \operatorname{Tz}(\Phi_{i}^{T} U_{i}, \Phi_{i}, U_{i}^{T}) . \qquad (2.5)$$

Under gauge transformations the fields U_{ij} and Φ_i are transformed as follows

$$U_{i,\mu} \longrightarrow \mathcal{W}_{i} U_{i;\mu} \mathcal{W}_{i,\mu}^{\dagger},$$

$$\phi_{i} \longrightarrow \mathcal{W}_{i} \phi_{i} \mathcal{W}_{i}^{\dagger},$$

where $W_i \in SU(2)$.

Lattice field variables are connected with continuum ones in a standard manner

$$U_{i;\mu} \simeq \exp\{iga \mathcal{A}_{\mu}(a(i+4/2\hat{\mu}))\}$$

$$\phi_i^{\mathcal{A}} = a \phi^{\mathcal{A}}(ai) \qquad ; \qquad a \sim 0,$$

where \hat{a} is a lattice step. Setting $m^2 = \hat{a}^2 m_{cont}^2$ we obtain in the classical continuum limit $(a \rightarrow 0; g, \lambda, m_{cont}^2 - \text{fixed})$ from (2.1)-(2.3) the following

$$S_{cont} = \int d^{4}X \left\{ \frac{1}{4} g^{2} \left(\vec{F}_{\mu\nu}^{2} \right) + \left| D_{\mu} \vec{\Phi} \right|^{2} + m_{cont}^{2} \vec{\Phi}_{+}^{2} 4 \lambda \left(\vec{\Phi}^{2} \right)^{2} \right\},$$
(2.6)

where

$$D_{\mu}\phi^{\mu} = \partial_{\mu}\phi^{\mu} - g \varepsilon^{\mu} \mathcal{A}^{\mu}_{\mu}\phi^{\nu}.$$

It may easily be verified that the quantity

is invariant under the transformations

\$-\$21

$$\begin{split} \beta &\rightarrow -\beta^{3} \\ U_{n_{4}n_{2}n_{3}n_{4};1} &\longrightarrow U_{n_{1}n_{2}n_{3}n_{4};1} \\ U_{n_{1}} &\cdots & n_{4};2 & \longrightarrow (-1)^{n_{1}} U_{n_{1}} \cdots & n_{4};2 \\ U_{n_{1}} &\cdots & n_{4};3 & \longrightarrow (-1)^{n_{1}+n_{2}} U_{n_{1}} \cdots & n_{4};3 \\ U_{n_{1}} &\cdots & n_{4};4 & \longrightarrow (-1)^{n_{1}+n_{3}+n_{3}} U_{n_{1}} \cdots & n_{4};4 \end{split}$$

Hence it follows that at $\beta=0$ the average $\langle \Box \rangle$ equals zero for all λ and M^2 and is an odd function of β , while the order parameters $\langle \phi^{\dagger} \phi \rangle$ and $\langle L \rangle$ are even functions of β . When $M^2 \rightarrow \infty$ or $\lambda \rightarrow \infty$ the Higgs-field fluctuations die out, and we should come to a pure gauge theory. The limit of forzen radial mode is, obvilusly, established when $\lambda \rightarrow \infty$ and $M^2/4\lambda$ is fixed.

3. The numerical study of the model (2.1)-(2.3) was made by the Monte-Carlo method. All our numerical experiments have been performed on 4^4 and 6^4 lattices with periodic boundary conditions. According to our calculations the results on the 4^4 lattice do not in practice differ from those on the 6^4 lattice. In our calculations we used the Metropolis algorithm. The procedure of construction of the phase diagram is fully analogous to that described for instance in /4, 10, 11/.

Fig.1 presents our main result: the phase diagram of the model. Solid curves represent first-order phase transitions for different λ . These first-order phase-transitions are observed for all the three order parameters: $\langle 1 - 1 \rangle \rangle$, $\langle R^2 \rangle$ and $\langle L \rangle$. In Figs. 2 a,b,c as an illustration, hysteresis loops are shown for

2

3

Fig. 1. Phase diagram in three-parameter space, calculated by the Monte-Carlo method. The solid line represents the phase transitions of the first order; the dashed lines denote the region where the type of phase transition is not clearly established; the vertical dash-dotted lines represent the "crossovers"; the ______ line marks region where the phase transition of the first order disappears.

the order parameter $\langle \chi \rangle$ at $\lambda = 0$ and three values of β : $\beta = 0$; 2; 4. Simulations from different types of initial configurations (starts) show that in the region of hysteresis a jump of the order parameter occurs.

It is to be noted that with growing β the hysteresis curve gets narrowing up to some large enough values of β where it vanishes at all (dashed lines in Fig.1). From the behaviour of the order parameter in this case we cannot yet conclude whether in that region the phase transition is of first or second order or whether it does exist at all. It is interesting that with increasing λ the picture of phase transitions abruptly changes: from the line of first-order phase transitions a segment "drops out" in the interval of β values between 0 and 1. (In Fig. 1 this is shown by a ______ line for $\lambda = 0.3$). This occurs at $\lambda \simeq 0.22$, the value being in good agreement with that found by the effective potential method (see below). In Fig. 3 results are presented for the thermal cycles at $\lambda = 0.3$ and $\beta = 0$; 2; 4 illustrating this behaviour.

The vertical dash-dotted lines in Fig. 1 have been calculated with the use of the order parameter $<1-\square>$ and they correspond, obviously, to the crossover.

4. The effective-potential method for investigating phase transitions turns out to be a useful supplement to the numerical Monte-Carlo method. At $\beta = 0$ an explicit integration can be made over "angular" variables, and as a result, we obtain (like we have proceeded in ref. /4,10,11/) for the effective potential in the leading approximation the following expression:

$$V_{eff} = (8 + m^{2})\overline{R}^{2} + 4\lambda\overline{R}^{4} - 4\ln(\$h(2\overline{R}^{2})/2\overline{R}^{2}) - \ln\overline{R}^{2}.$$
(4.1)

The last term in (4.1) comes from the integration measure $d^{3}\phi$. In Fig. 4 a characteristic form of Veff is shown for various values of the scalar-self-interaction constant λ at such $m_c^2(\lambda)$ at which values of the effective potential at minima coincide. At $\lambda < \lambda_c \simeq 0.22$ the effective potential has two local minima. At some value of $m^2 = m_c^2$ the Veff values at these minima get equal, and consequently, a first-order transition occurs. With increasing λ the height of the barrier between minima lowers; at $\lambda = \lambda_c$ both the minima coincide, and the "well" bottom becomes flat; at $\lambda > \lambda_c$ the effective potential has a single minimum for all values of m^2 , and there is no first-order phase transition.

.4

5

Fig. 3. Thermal cycles at λ =0.3 and varius

Ve#(Ē)

Fig. 4. Behaviour of the effective potential as a function of \overrightarrow{R} at \overrightarrow{P} =0. Curves $1 \div 3$. correspond to growing values of \overrightarrow{A} ; μ^2 is equal to $\mu^2_{\overrightarrow{A}}(\overrightarrow{A})$.

In conclusion, we would like to thank V.A.Matveev, V.A.Mescheryakov, A.N.Sissakian, D.V.Shirkov for constant interest in the work and useful discussions.

References:

- Munehisa T., Munehisa Y., Phys.Lett., 1982, 116B, p.363. Munehisa T., Munehisa Y., Nucl. Phys., 1983, 215B, p.
- Gerdt V.P., Ilchev A.S., Mitrjushkin V.K., Yad. Fiz., 1984, 40, p. 1097.
- 3. Kühnelt H., Lang C.B., Vones G. Nucl. Phys., 1984, 230B, p.16.
- Gerdt V.P., Ilchev A.S., Mitrjushkin V.K., Sobolev I.K., Zadorozhny A.M. JINR preprint, E2-84-313, Dubna, 1984, Nucl. Phys., 1986, 265B, p.145.
- Jersak J., Lang C.B., Neuhaus T., Vones G. Phys.Rev., D32, 1985, p.2761.
- 6. Montvay I. Phys.Lett., 150B, 1985, p.441.
- 7. Langguth I., Montvay I. Phys.Lett., 165B, 1985, p.135.

- 8. Damgaard P.H., Heller V.M. Phys.Lett., 164B, 1985, p.121.
- Jansen K., Jersak J., Lang C.B., Neuhaus T., Vones G. Phys.Lett., 1985, 1558 p.268.
- Gerdt V.P., Ilchev A.S. Mitrjushkin V.K., Zadorozhny A.M.
 Z.Phys. C -Particles and Fields, 29, 1985, p.363.
- Gerdt V.P., Ilchev A.S., Mitrjushkin V.K. Yad.Fis., 1985, Gerdt V.P., Mitrjushkin V.K., Zadorozhny A.M. JINR preprint, E2-85-738, Dubna, 1985; Phys.Lett. 172B, 1986, p.65.
- 12. Olynyk K., Shigemitsu J. Nucl. Phys., 1985, 251B, p.472.
- 13. Lee L.-H., Shigemitsu J. OSU preprint DOE/ER/01545-363
- 14. Schierzholz G., Seixas J., Teper M. CERN TH./4119/85, 1985.

Received by Publishing Department on June 12, 1986.

	including the packing and registered postage	
1,2-82-27	Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.	9.00
2-82-568	Proceedings of the Meeting on Investiga- tions in the Field of Relativistic Nuc- lear Physics. Dubna, 1982	7.50
3,4-82-704	Proceedings of the IV International School on Neutron Physics. Dubna, 1982	12.00
-83-511	Proceedings of the Conference on Systems and Techniques of Analitical Computing and Their Applications in Theoretical Physics. Dubna,1983	2. 9.50
07-83-644	Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta, 1983.	11.30
;13-83-689	Proceedings of the Workshop on Radiation Proble and Gravitational Wave Detection. Dubna, 1983.	≥ms 6.00
D13-84-63	Proceedings of the XI International Symposium on Nuclear Electronics.	12.00
	Bracisiava, czecnoslovakia, 1983.	12.00
21,2-84-160	D Proceedings of the 1983 JINR-CERN School of Physics. Tabur, Czechoslovakia, 1981.	6.50
D2-84-366	Proceedings of the VII International Conference on the Problems of Quantum Field Theory. Alushta, 1984.	:e 11 00
		11.00
1,2-84-599	Proceedings of the VII International Seminar on High Energy Physics Problems. Dubna, 1984.	12.00
17+84-850	Proceedings of the III International Symposium on Selected Topics in Statistical Mechanics. Dubna, 1984. /2 volumes/.	22.50
0,11-84-818	Proceedings of the V International Meeting on Problems of Mathematical Simulation, Programming and Mathematical Methods for Solving the Physical Problems,	
	Proceedings of the IX All-Union Conference	1.50
	on Charged Particle Accelerators. Dubna, 1984. 2 volumes.	25.00
4-85-851	Proceedings on the International School on Nuclear Structure. Alushta, 1985.	11.00

Митрюшкин В.К., Задорожный А.М. E2-86-376 Фазовая структура SO(3)-симметричной модели Джорджи – Глэшоу Методом Монте – Карло исследовалась фазовая структура SU(2)-хиггс-калибровочной модели с хиггсами в присоединенном представлении /модель Джорджи – Глэшоу/. Построены фазовые диаграммы при разных значениях константы скалярного

самодействия.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Mitrjushkin V.K., Zadorozhny A.M. E2-86-376 Phase Structure of the SO(3) Georgi - Glashow Model

The Monte - Carlo method is applied to study the phase structure of the SU(2)-gauge-Higgs model in the adjoint representation (SO(3) Georgi - Glashow model). Phase diagrams are constructed at various values of the scalar selfinteraction constant.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986