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1. INTRODUCTION

In recent years considerable efforts have been made to find
possible ways of going beyond the standard SU (3)xSU (m xUYO)
model. One of the most successful approaches 1s assoclated with
the unification of all interactions based on supersymmetry/l/

In supersymmetr1c models heavy Majorana fermions appear inevi-—
tably. Thus, in the minimal supersymmetric model Majorana partic-—
les arise as superpartners of the photon, Z° and the two neutral
Higgs bosons z.So,an observation of heavy Majorana fermions would
be of a particular importance for unified theories.

In this paper we consider the production of two different
Majorana fermions in a collision of polarized et and e ~. We shall
assume that the process is identified by observing a lepton pair
(from the decay of the short-lived Majorana particle) and a lar-
ge amount of '"'missing” momentum (taken away by the stable Majo-
rana particles). The main question which we shall examine here
is the following: how, using only the general principles of in-
variance and unitarity of the S-matrix, can one test the nature
(Dirac or Majorana) of the produced particles? For unpolarized
initial beams this question has been considered in ref.’3’

Here we shall show that investigations of the process, when the
initial e'e beams are polarized,considerably enlarge our possibi~
lities to get infoarmation about the nature of the produced par-
ticles. In the minimal supersymmetric model the cross section

of the process considered has been calculated for unpolarized
ete” initial beams in refs.’47 and for polarized beams in
ref.’8,

In Sec.lI an expression for the cross section for the sequen-
tial process of production and subsequent decay of a short-
lived particle in the general case of arbitrarily polarized et
and €~ ~heams 1s obtained. In Sec.TlI we shall show that even
when 6% and e¢” are polarized, measurements ol thec cross section
and the relevant asvimmetries do not allow one to distinguish
betwecen Majorana and Dirac pair production. Different relations
between the asymmetries are obtained. Their experimental check
would make it possible to examine CP and CPT invariance of the
new (supersymmetric?) interaction. In Sec.IV relations between
the energy distributions of the final leptons are obtained. It
is shown that measurements of the energy distributions would
allow one to answer whether the particles produced in ete” an-
nihilation are of a Majorana or a Dirac type.
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2. GENERAL FORMALISM

Here general expressions for the cross sections and the spin-—

density matrix to be used further on will be derived.

Let us consider the production of two electrically neutral
fermions (y and x”) in the collision of polarized electrons and
positrons:

et+e” - x +x. (1
We shall assume that x” is heavier than y and that process (1)
will be identified by an observation of a Z+E"—pair from the

decay: '

X‘-.x+£++f—. (2)

Thus, a signature for process (1) would be the lepton pair from
decay (2) and a "missing" four-momentum (taken away by x-—partic-
les).

First we shall calculate the cross section for process (1)
with a subsequent decay of x” in the general case of polarized
initial e* and e~ .No assumptions specifying the interaction
will be made.

The matrix element for the process
et reT — ¥+ x (3)

x +2t+ 07
can be written in the form

<f|8 <"1]i> = Nlﬁ2 e E(—pz)Mlu(Pl) x
q21+M2—iMI“ (4)

x @m* 8(Qy+9-p; -Py)-

Here p; and pp are the momenta of the initial particles, q is
the momentum of ¥ produced in process (1), p'l,p:‘a and ¢, are

the momenta of the y’ decay products {7, f* and “x,q,=p;+p;+q,
is the momentum of x’, M,(q,, 4; p,, pp) and M, (pP{, P5,Qp:qy)
are matrix elements of processes (1) and (2), M and " are the

mass and total width of x", N = NpleququNp,l Np; is
. . 1 1
a normalization factor (N, = —— —n)
(@n) V2p

A

The Dirac spingrs u(pi) and y(-p ) are normalized as follows:
i(py)uly) =2m, u(-pp) u(-pp) =-2m, m is the mass of the
electron. Note that in eq.(S% only the spinors of the initial
electron and positron are written explicitly and the instabili-
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ty of y* is taken into account in a standard way adding —iMI" to
M? in the denominator of the propagator of ¥’.

As soon as T <«M, the "narrow-width" approximation takes
place:

1
(qi +M2)2 L M2

= E’%a(q%.mz). (5)

Also, the following relations hold:

8(a,+a -p,-p,) @i+ M?) -

8 ’ d dal
= [op]+p; +qy~-q,)8@Q, +a ~p, -p,) ral
Q10
where q10=\/M2+ﬁf . Using eqs..(4)-(6) we obtain the follo-

wing expression .for the .differential cross section of process

(3):
Qo = N° 2 Te(Hy Aa) M, (b, ) W, p(p ) Ay M)
@ N

QX S, B, 3
x (2m) 4 L 8(pj+ Pyt g=-a,)8@+ qy ~p - py) —— dgdqydp’dp, .
M 24,

Here A(q ) = 3 u'(ql)ﬁr(ql) is the projection operator,
r

(p,p )2_m4 .
j = ! 5 AL is the incident flux and
(2m) P1oPeo ‘

t =’ 1) - 4 -1’ () .
p(py) rEr'u pu @)e /v plp,) tZr’u (P u (9)p o

(8)

are the spin-density matrices of the initial particles (p(rlr)
is the probability that the helicity of the electron is r, ect.).
Eq.(7) may be written in the form:

do =do , 4T , 310 (9)
X X M



Here

l —
dax’ = - Tr(Mlp(pl)Mlp(-pz)A(ql)) X
4y (p,py)2-mt
. aq, . dq (10)

x (2m* 5@, +q ~p, -py)

@m?3 2, @m3 2q,

is the differential cross section for process (1) for polarized
et and e~ and

1 - 4 . ,
dr}(’ = —-2—:1——-- TT(M2 p(q 1) M2 )Y(nm) B(p1 + Py + U, ..ql) %
10 - hnd (ll}
1 dpl 1 dpz 1 dqz
x 3 3 3
(@m® 2] @n® 2y @M 21,

In the last expression

Al@) M, pp M, p(-p YA, .

1

pla)) = =
Tr(Mp(p DM p(-p,) N )

is the density matrix of y* produced in process (1) for polari-
zed ete” beams. Eq.(11) implies that dI'_- is the partial width
of ¥’ —=decay (2) with the density matrix of x’ given by eq.(12).

So, if the width of the unstable particle ¥’ is much less
than its mass in the general case of pnlarized incident partic-—
les the cross section of the sequential process (3) is the cross
section of process ete”->yy’ times the partial decay rate
of y’ with polarization determined in the former process. Re-
call that by definition [ is the total decay width of x " in its
rest frame, so MI/q,y is the total gecay width of y* in a frame,
in which the momentum of x° equals g, d['_., 1is its decay rate
in the same frame. X

Note that eq.(9) is a direct consequence of the fact that
the amplitude of process (3) is proportional to

E(QQUI(QI))(u'(ql)fppz)Mlu(pl)). A generalization of this re-
T

sult for an arbitrary process in which one or several unstable
particles are produced is straightforward. Equation (9) for un-—
polarized and transversely polarized initial particles has been
obtained in refs.’9 10/, However, the authors of these papers
have used a complicated spin-algebra which makes it difficult
to understand the physical meaning of this equation.

We shall finish with the following remarks:

1. Making use of eq. (10) the density matrix p(a,) may be
written in the standard form:

4

@) = = u@pu’ (ap,. (13)

It
where

@M p® M, plpy) o (gy)
Pur = —r = R . (14)
ST (a,) Myp(p ) M, plogy Ju” (@)

vadently,-p" >0; X Py = 1. The quantity py 1s the probabi-

lity for x” to be produced in a state with helicity r. Also
we have: ’

Tt p(ay) = 2M.

'.2. The density matrix of a spin 1/2 particle has the follo-
wing general form:

1 .
PAy) =5+ iy y&HA@ ), (15)
where
o Ii%e%a P
@ Trp - (16)

tit;he polarization vector ( f-q1= 0). Making use of the iden-

q._4q
Ma P17 g h@,) = Mg+ 2 B ) 1y (17)

and eqs.(10), (14) and (15) we obtain the followi 1
for the polarization fa: » "8 Hpression

qlaqlﬁ) TriY5YBM1P(p 1)ﬂ1 p(-p E)A(q 1)

b = Gapt — ! (18)
TeMyp(P IMp(-p o)A y)
3. The density matrix pl-p,) is’
plpg) =-Cppy)c 7L, (19)

Here p(pg)'is the density matrix of the positron and C is the
charge conjugation matrix for which:

Tn=-1
CyaC =Vq (20)
Eq.(l9) is readily obtained from eq.(8) using the rela-
tions

ul (p,) =C@ N7, ul (py) = ~@fEnTc,

.




where ur(pg) is a spinor, which describes a positron with a mo-
mentum pp, and a helicity r. For the density matrix of the po-
sitron we have

1
P@,. £,) = 5L+ iygvE ) AG,) (21)
where £, is the positron polarization vector (£g- P, = 0). From
eqs. (19)-(21) it follows that
plby. €g) = = 3-(L+ iygyE,) Al-py). (22)

In our case ' pyg >>m, Ppgg >>m, where Pyo and Pgg are the
energies of the electron and positron in the ¢c.m.s. We shall
give now an approximate expression for the electron and posit-—
ron density matrices in this case. Let us denote by 20 the po-
larization vector of the electron in its rest frage. e longi-
tudinal (along its momentum) ¢, (1), transverse &, (1) and time
fO(D components of the polarization 4-vector in the lab.system
are respectively

N

- & pyy - 5 Ipy |
5" (D =-~—HT—-—k1. &, (1) = €2(D), 50(1) =§‘[’|(1) — (23)
where ;1 = _J;L_, From eq.(23) we obtain

Ip1‘

- P 2 P 2
W2 emtay By, g oz emia. B,

" 2p 2 2P10 ‘
. (24)

Using eq.(24) up to terms linear in m/p,.
approximate expression for the electron 3ensity matrix/11/

~ 1 : 22
p,, £°(1) = E—U.—fi(l)ys + iy y-E2 (AP ). (25)
Analogously, for the positron spin-density matrix we have:
Plpy . €°@) = = 2L+ £5@) v+ by gy E22) Al,) (26)

where §§(2) and fiﬁﬂ are the longitudinal and transverse po-—
larizations of the positron in the rest frame.

3. ‘POLARIZATION CHARACTERISTICS OF THE PROCESS ef+ef+x+x’
AND POSSIBLE TESTS OF CP AND CPT - INVARIANCE

Consider the production of two Majorana particles y and y’
in a collision between polarized electrons and positrons. The

6

we find the following

matrix element for the process may be written as

<x’ (ql.SI)X(Q.s)[S—1|e"(pl,rl)e+(p2,r2)> =

(27)
~To LB |

=1iNu “(p, )M, (q,,5,4.8;pyPy) u -0y (2:r)48(q1+q ~P;-Py),
where q gnd 84 specify the momentum and helicity of y’, etc.
From CPT-invariance and unitarity of the S -matrix (up to terms

of an order of the fine structure constant @) we obtain:
Ml(ql-sl.Q.S: P1» p,."‘,) = UCPT 75M1(q 1:"81- q,-8; p2- 91)75 ] (28)
where n.,n is a phase factor. Note that in the right-hand side

of this equation py is the momentum of the electron and py is
that of the positron. From eq.(28) one finds:

.

812,5 Ter '(ql,sl,q,s;pl.pg)p(Pl-Alv f;,-)Ml (ql,Bl.Q.S:ppPg)P(-Pz. Az’ g;) =
(29)

-3 Trm PoD) P grrgs ~E5 )M gL

S @p819.8:Pgp) P(PprAp, - & 109p8,:4,8:05.P ) PP X €7D,

where the density matrices p(p,,\,gl), p(._p'}\'gl) are given

by equations (25) and (26), respectively, and A= ERA),

= 1.2, From eqs. (10) and (29) the following relation for the

differential cross section of process (1) in the c.m.s. is ob-
tained:

> - -
o L 5>, k’,k) = ¢ -5 +; (k7 =k) (30)
1 1 ) L ’ ’
'\151"\2‘52 ""2"52'")‘1‘51
-+ -+
- p - q
where k = 5:1_, k’ = -er~- Note that in both sides of this
lpll ‘qli

equation the first (second) argument is a unit vector in the
direction of momentum of x’ (of the electron), and the first
(second) subindex is the polarization of the electron (positron)
Relation (30) is illustrated in figs.(la) and (1b).

.

\X’

J’
a, CPT ~
9
- et e N -
A 1 - A =1 o 3 - e
A M 51 P, 3§2 P -7 f1 &-Az ;
X '&1 ‘x _61
a b
Fig.1.



First we shall consider longitudinally polarized electrons
and positrons®, From eq.(30) we get:

SV v (3D

Here 6 is the angle between the momenta of the electron and X °
in the c.m.s., the first (second) subindex denotes the longitu-
dinal polarization of the electron (positron).

The differential cross section o, (6) has the following

)\1 (77—0).

10Ag
general form:

0)\1,)\2(0) =00 + A0 _(0) + Ao (O + X A0 _, (). (32)
Evidently, the terms linear in A ; and A, appear only when parity

in process, (1) is violated. Substituting eq.(32) into eq.(31) we
find:

00(0) = 0, (m=0), (33)
o, 6 =~0 (m-6), (34)
o_, (6 =o0o_ L =0). (35)

Relations (33)-(35) are a direct consequence of the assumption
that ¥ and x are Majorana particles. The first one has been ob-
tained and discussed in detail in ref.’3/, We see that in the
case of polarized incident particles additional relations arise.
To determine o_(f) and o_(0), it is enough to measure the
cross section of process (1) when either of the beams is polari-

zed. Indeed, let us define the asymmetries:
ay (0 -0 (6 a (0) ~a, (O

A9 = A,0 A0 L , AL = 0,A 0,~A _L (36)
0)\ 0(0) 'i-d_)\ 0 (0) A 0’0,)\ (9) +(IO,_ }‘(0)

With the help of eqs.(32) and (36) we obtain:
) o, ()]

A_(0) = —nr, A+(0) = e (37)
7, 7, C)]

Fromxeqs.(33), (34) and (37) one gets:

A+(9) = -A_(n-0). (38)

To determine o_, (0, it is necessary to measure the cross—sec-—
tion of process (1) when both initial beams are polarized. Let
us difine the asymmetry: ’

*'Longituclinally polarized e+e— beams are expected to be ob-
tained at SLC/!®.

8

1
L

. . o 1 UAI’)‘B(G) - 0)\1"_)\(29) -o__)\v)‘e(e) +a_)\1’~)\ 2(0)
0= i ——(39)
+ /\1)\2 (7)‘1’)‘2(6) + UA 1’_)‘é0) + 0_}\1 ’)\2(6)'5' U;Al ,_Az(e)
From eqs.(35) and (39) one finds
A_,0)=4A_,(-0). (40)

So, if ¥’ and x are Majorana particles, from CPT~invariance
and unitarity of the S-matrix (to the lowest order of a) it fol-
lows that the differential asymmetries obey relations (38) and
(40). Now we can readily obtain also relations between the in-
tegral characteristics of process (1). Upon integration of eqgs.
(33)-(35) over 6 from 6, (a value of the scattering angle fixed
by the experimental set-up) to p/2 it follows:

F B

- F.B _ __F,B F _ B
Oy =0y v Oy =~02F, g =0’ , (41)
where
. 17/2 B IT—GO
o, =R [ o, (0)sinfdd, o7 =2r [ o, (6)sinfdd. (42)
- 0o - n/2 " ‘
The ag‘,B and UE’E are defined in a similar way.

The quantities o F:B,oF.B and of;B may be found if one measu-
res the asymmetries Ai'B, AF-B and ‘Af;%efined analogously to
eqs.(36) and (39). For example,

UF.E)!\ o F,B

F.B 0,0 "% ,-A ¢

e T T Y (43)
Z%on "% -

We have:

+ = e, - =, —y T T (44)
OF,B O,F‘,B O'F‘B
0 0 0

From eq.(41) it follows that

F.B _ B,F . F _,B

A~ _—A+ : A_+ —A_Jr (45)

Finally, for the total cross section of process (1) from
eq.(32) we obtain

axl’/\zzao + Ao +A,0 +)\1)\20_+ , (46)
where according to eq.(34):
o, =-0_ (47)
From eq.(47) one has

- - 48
A =-A_, (48)

where the integral asymmetries A, and A_ are defined in a si-
milar way as eq.(36).

.



The main relation (31) and all relations between the measu-
rable asymmetries (eqs.(38), (40) and (48)) which follow from
(31) are a direct consequence of the assumption that x and y*
are Majorana particles. Would it be possible to check this as-
sumption by investigating these relations experimentally? To an-
swer this question, consider the processes:
e++e"+N’+N, e++e—-»N’+N, (49, 50)

where N* and N are electrically neutral Dirac particles¥. Suppo-
se the processes (49) and (50) are identified by an ob§erv§piog,
of a lepton pair from thedecays N+ N +f7+ € and N’ -N + ¢ +0 .
The number of events with a lepton pair and "missing" momentum
in this case would define the sum of the cross-sections of pro-
. cesses (49) and (50):

N7+ N g
o 6 = o :

7‘1*’\2() AI,A2(0)+”A1,A2(0)’ (51)

where § is the angle between the momenta of the electron and N~
or N”. cPT-invariance and unitarity of S-matrix imply

N’ E' : -
o 6 =0 (r=0). (52)
Aphg “AgrA
So, the following relation for ¢7§’*XN’ should hold:
- - 172

- N'+N N’+N’
o @ =o (m~9). (53)
ApAg ~Ag,=Ay

Comparing eqs.(31) and (53) we come to the conclusion that the

cross, section for a production of a pair of Dirac particles in

a collision of polarized et and e~ obeys the same symmetry re-

lation as the corresponding cross section for a production of a
pair of Majorana particles*¥.

Thus if the production of two neutral fermions in e'e” anni-
hilation is detected by an observation of 2%~ pair and "mis-
sing" momentum, by measuring the cross section of the process
in the general case of polarized initial beams it is impossible
to distinguish the production of a pair of Majorana particles

* . . . .
A possible example 15, N and N” being a heavy and a light
neutrino in a theory with lepton mixing.

* . .
Note that this conclusion refers to the general case of lon-
gitudinally as well as transversely polarized beams.
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from the production of a pair of Dirac particles*: Supp?se now
that the interaction responsible for process (1) is Clenvarlant.
In this case the following relation for matrix M,, defined by
eq.(27), holds:

-1
N T,. . , . , ’
Ml(qpsl'q,s;plv p2) =UCPY4CM1(QI:_- Slvq v 5; pg,pl)c )’4 ’ (54)

where p’ =(-5,1p0) and ngpis a phase factor. Equation (54)

leads to the following relation

-> > - -
o 2, 2L &K =0 o 2 (k% k). (55)
Alff’)‘zf'?f( ) “Ap€y s -M i€y
‘ X This is illustrated in Figs. la and
cP / lc. From eq.(55) for longitudinally
Qy polarized e* and e~ eq.(31) follows.
e” et Let us emphasize that 'if CP-invarian-
FL _ﬁ'_xigl ce holds, eq.(31) is an exact one.

1 This is true both for Majorana and
Dirac final particles. If it would
be established that relations bet-

Fig. Ic. ween the measurable asymmetries
(such as eqs.(38), (40), (45) and
(48)) that follow from eq.(31? do
not take place,this would mean that the new (supersymmetrlc??
interaction is not CP-invariant. What can one say ab?ut CP?—ln-
variance under these circumstances? From the above dls?us51ons
it is clear that if deviations from the relations obFalne§ ap—
pear to be small (<O (a)), no conclusions about'CPT~1nvar1ance
can be made. If a considerable (> 0 (a)) violation ?f th?se re-
lations would be observed this would mean that CPT-invariance

is violated. ) . ] .

Suppose CPT-invariance holds. To check CP—1nva?1ance in thlS.
case it is necessary to investigate process (1) with transverse-+
ly polarized e* and/or e ~. For example, cons%der Ai=Ap =0,

$= 0, ft# 0. 1In this case the cross section has the ¥follow-
ing general form: ‘

e -b’ -'J, >
a1 =, (0 ”m'(")‘ff ‘Ko, @6 -m, (56)
1!

*If the produced neutral particles may decay into'a pa%r.of .
different leptons (for example, e+u" or e"u+) t@en 1§enF1f1cat10n
of the process by observing such a pair would,.ln pr1nc1?1e,
allow one to distinguish between a Majorana pair production and
a Dirac pair production. This follows froq the fact that, f?r
example, the decay rates of N’ N.Fe++.KU are gpt ggual in
the general case to the decay rates of N +.N +eT 4 p (We' )
thank Dr. F.Niedermayer, who draw our attention to Fhls possibi-

lity). 1




<> -
- k xk’
where n = ——
-» >,
[k x k*|
tion plane. It is easy to see that CP-invariance implies

is a vector perpendicular to the produc-

o, B = 0. (57)

>

Let the vector ft be perpendicular to the production plane gtzz

nd I . > . g
= fﬁno s Where fiy is a unit fixed vector perpendicular to k and

P

k’. For the left-right asymmetry we have

0y -0
L R
Arg= ——0 1 (58)
¢7L+0R fJ}: .
Wperg o, 1s the cross section for production of ¥’ to the left

n = no)* and ¢, is the cross section for production of y” to the
right (0 =-—5O). From eqs.(56) and (58) we get:

ALR= Uln. . (59)

So, if the asymmetry A, g does not turn out to vanish, this would
signify CP-violation.

4. ENERGY DISTRIBUTIONS OF THE FINAL LEPTONS AND POSSIBLE
TESTS FOR MAJORANA NATURE OF X AND x'

Now we shall show that the study of the energy distributions
of the final leptons makes it possible to distingish the case
of Majorana pair production from Dirac pair production (process
(1) ffom processes (49) and (50)).In accordance with egs.(9)-(11)
the probability to observe, at an angle § in the c.m.s., £~

with energy E and % with energy E° is given by the following
expression:

do (6; E,E’) = 0 (6)dOW _, (E, E')dEdE", (60)
Apdy Apdg x

Here WX,GL E’) = dr/rois the partial decay width of process (2)

for an unpolarized Majorana particle y’* (I is the total decay
width of v’ in its rest frame). Hereafter the first (second)

argument of the function WX,GLE’) will denote the energy of
£,

* ~ . . . .
Evedently the energy distributions of f+ and {~ do not de-
pend on the polarization vector of x’ .

12
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CPT-invariance and unitarity of the$ -matrix implies that
w ,(E,E’)::Wx,(E’,E). , (61)
X
From eqs.(60) and (61) it follows that

d @; E,E’) =do 6, E",E). (62)

o
Apdg
On the other hand from eqs.(3!) and (60) we obtain:

AsAg

(6; E, BE") =deo A(n»@; E,E’). (63)
M

du')\l’)\2

[t is easy to prove that relations (62) and (63) are not true
for processes (49) and (50). Indeed, when Dirac particles are
produced, we have:

-A 9

N,+§’ ’
(6, E,E") =
TAphg (64)

, W N dE
- [UANl,)\ 2(6) Wy B B v o) ) (W, (B, B dQE"dE

d

d
1
where, according to CPT-invariance,

WN,@.EW==WW'E',E% , , (65)
In the general case UKNp}‘ 2(()) # a)i’)‘g(e) ) fl’nd WN..(E, ) =
#W_,(E,E%) and the measurable quantity oflfyz(G;E.Eﬁ does not
obeg relations (62). Thus, experimental verification of relati-

ons (62) and (63) would allow one to check'whether the }epton
£"~pair originates from the decay of a Majorana or a Dirac
particle. From eqs.(62) and (63) one can easily obtalg a number
of relations specific for production of Majorana particles for
the integral quantities., We have

) S (66)
do}‘b}‘z(E) = du)‘lvAE(E) ’ .
(£) (1) ) (67)

dU}\l,Az(E) =d0'_A2r_)\I(E) »
where the function

(=) - 6)dQ [ W(E, E*)dE ] dE
wxpkém —[raAvA; d

. describes the energy distribution of £~ from the decay of y’.

Let us define the asymmetry

N . -NT
)\1’}‘2 AIIA’2

(68)

- +
N)\l,)\z * N)\ly)\g
13



where Nh Az( Al ) is the number of events in Wthh the ener-

gy of £ is higher (lower) than the energy of et For example,
we have:
- Ema.x E .
N =[a aQ [ dE [ WE,ENGE’. (69)
Apdg Aphg mp m,

It is easy to show using eq.(62) that for Majorana particles
we have:

Ay ap=0. (70)
For the Dirac pair production in the general case Ay , #0.
b4

Also, it is not hard to convince ourselves that for the Dirac
pair production the following relations take place:

+) =)

da/\ A, (E) =do_y AE. (71)
+ -
Ny AN, (72)

Evidently, for nonpolarized beams (or when A;=-X, ) relations
(66) and (71) coincide, eq.(67) becomes an identity and eq.(72)
implies that Aggp = 0. So, by comparing the integral energy
distributions or by measuring the asymmetry (68) we can get in-
formation about the nature of particles produced in process (1)
only if polarized e+ and/or e~ beams are used. In all the rela-
tions obtained above integration over the whole solid angle had
been carried out. In conclusion we shall also write down the
relations between the spectra of final leptons produced in the
forward and/or backward hemisphere characteristic of the Majora-
na particle. prbduction. We have:

F.BQJ

/\1’ (73)

de FG)  (E) = do B (®). (74)
Aphg ~Agu=h

Here doiffzzﬂﬂ) describes the energy distribution of ¢%( ™)
’
from the decay of y* produced in the forward hemisphere, etc.
Note that eq.(74) for Ay = Ag = O has been obtained earlier
in ref.
‘Thus, studying the spectra of final leptons one would have

the possibility to get information about the nature of the neut-
ral particles produced in e*s~ annihilation.

We would like to thank Dr.S.T.Petcov for useful discussions
of the questions considered here.
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