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leIntroduction

The present paper is devoted to a study of the infrared (IR)

asymptotica of the vertex functions (form factors) within the frame-
work of perturbative QCD. The solution of this problem is necessary
both for a quantitative description of hard processes and for a con-
sistent proof of the factorization theorem for hadron-~hadron reactions.
Earlier 1 ‘numerous calculations were made for the colour singlet
quark form factor in the lowest orders of perturbation theory (PT).
They demonstrated that the leading (double-logarithmic) IR asympto-
tics of the QCD amplitudes is given by the exponential of the one~
loop contribution. The proof of this property in higher orders of PT
was given in ref. 2 . However, even the firgt attempts to calculate
the nonleading IR asymptotics 3 have shown that the problem is far
from being trivial. The expression for the two-loop correction to the
quark form factor contains nonleading IR logarithms having the same
order of maegnitude as the leading ones included in the exponential and
proportional to the p -function coefficient %%CFN. Thus, there aris-
es the problem of finding the nonleading IR asymptotics in higher or-
ders of PT.

In this paper we demonstrate (using as an example the colour sin-
glet quark form factor) how the gauge properties of QCD fix the IR
agymptotics of amplitudes. We obtain also a renormalization-group
(RG) equation, the solution of which completely describes the IR be-
havior of the process.

In sect., 2 the infrared singularities of the form factor amplitu-
de for two specific kinematics are shéwn to factorize into a separate
factor. The properties of the IR factors obtained are considered in
gsect. 3. There we also compere it with analogous QED expressions. In
gect, 4 we formulate the RG equation for the IR asymptotics of the
form factor and discuss its general properties,

2. Pactoriasation of the Infrared Singularities

Consider the amplitude corresponding to the colour singlet (e.g.,
electromagnetic) quark form factor. It is characterized by the fol-
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2
lowing kinematic invariants: Q  -momentum transfer squared, P2

andcfsquared 4 -momenta of initial and final state quarks, ( pZ
~-wm' ) and ( qz- ml) -virtualities (offshellnesses) corresponding
to them. (In some gauges there appear also gauge condition related
séale, €.8e (pﬂf/nl in the axial gauge n A;kK) = 0). In what follows,
we conglder two specific cases of gsymmetric kinematics;

a) Pz—-W\Z: qamzz o, Q% > m*
form factor,

b) P’.v,‘Z: ‘12-‘/"2=—'ﬁ"‘rf‘~§m, Qx> m*

shell quark form factor.

- the on-mass-shell quark
- the near-mass-

Using the well-known methods of analysis of asymptotics of Feyn-
man diagrams/4/ it is easy to establish that the contributions res-
ponsible for the leading 1/Q? contributions to the form factor have
the structure shown in fig. 1a. The three types of subgraphs, viz.:
hard (H), collinear ( Z%, and Q@ ) and soft (8) are characterized
by the momenta ascribed to its internel lines. It is convenient to
introduce the center-of-mass reference frame in which the momentum

Kp 1is specified by the components: Kf': (Kg, K, E;)*{ In parti-
cular, by definition .

PZ
'5?;'

2

(P 8 9= (55.-4-.9) 1)

Pf«‘
and let in the frame chosen the relation
be fulfilled. .

The hard block (H) describes the short-distance interaction with
momenta

P> P, -7 44

K 7 Ja?. (2)

It has two quark external lines (twist 1) and an arbitrary number of
longitudinally polarized gluon lines (twist O) with momenta collinear
to that of one of the two quark lines. (In a gauge from the contour
gauge class 5 the gluon potential Aa' is a linear functional of the
field strength (S;b and 1ts twist effectively equals 1. The hard
block in this case has no external gluon lines for the lowest twist
contribution).

The collinear blocks JP and ;Q of diagram 1a describe the
jets of quarks and gluons whose momenta are collinear to the vectors

vfHere the light cone variables KIH=7% (K, £ky) are intro-

duced.

FF or C{,~ » regpectively. The momentum K# of any particle of
the jet JF s €.8., has the following components

Kr.: (t> >‘2, /A) \/EI ? KZ: xaazl (3)

: 2,02,
where A ~ /g is a small parameter determining the virtuelity
of the collinear quarks and gluons,

According to the dimensional counting of refa./4'6/ for the soft
block S there are two IR singular regions in the momentum space
corresponding to

a) the regime of (homogeneously) soft momenta
Kf":(}" A,A) Ve, (4
2 2 2 2
where X'~ ( PT - m Y/@% = ( q - m;_ Q2 is the boundary scale
separating infrared and collinear regimes;

b) the Glauber regime of the IR gluons/G/:
2 .
Ky = ( 2% 2% 2) Vs, , (5)

2 2 2
where X'~ ( P7 - ™" )/@% ; i.,e., the gluon in this case has ea-
sentially the transverse vanishing momentum.

Our task now is to study the contribution of the infrared regi-~
mes (4), (5) to the form factor emplitude. To this end we perform
two transformations of the original diagram 1a. First, we pick out
the effects due to the radiation of collinear gluons from the hard
block (fig. 1b). Then within the resulting diagram we factorize out
the contribution of the soft subprocess S (fig. 1c). We use here
the following properties:

&) the radiation of a collinear gluon from the hard block is
damped by powers of P%QQZ provided that the gluon potential has ef-
fectively twist 1 (or can be represented as a linear functional of
the strength tensor);

b) to yield a singular contribution to the emplitude, a soft
gluon with momentum Kﬁ satisfying eq.(4) must be emitted in a qu=
ark-gluon or three-gluon vertices inside the collinear blocks, while
the fgzrgfluon vertices are damped by, at least, the first power of

K MR
r\

In region (4) such a triple vertex insertion reduces (up to (Jk)

terms) to the original propagator of the collinear quark or gluon



(with momentum Pp ) multiplied by a scalar factor 2Pn.  where p
is the polarization index of the soft gluon. Hence, the radiation of
the soft gluons from the collinear block J@ is damped by powers

of ( PZ-\“Z) if the gluon momentum satisfies eq.(4) and the gluon po-
tential is subjected to the axial gauge condition

P. A (k)= 0. (6)

Begides, as it is shown in ref./S/, in the axial gauge (6) there
exists & linear relation between the potential and strength tensor,
and, consequently, the fulfillment of eq.(6) is sufficient to damp
simultaneously both collinear (eq.(2)) and infrared (eq.(4)) regi-
mes of the gluon momentum*,

Consider now fig. 1a and sum over all possible insertions into
the hard block vertices of the gluons collinear to the external mo=-
mentum P, .As is shown in Appendix the result of such a summation
is the following modification of the hard block propagators. The
quark propagator in the lowest twist approximation becomes.

S, (x-g) = Eg(x,m) S,(x-g) EJ 1y, %), 7
where
~ N N~ ~ a a -
Ep(x,00) = Pexp(iy idse P. Ar(xfps))' A/‘:Af‘ A%, € >0 )

is the gauge transormation operator for the axial gauge (6)/5/. The
modification of the gluon propagator in the general case may be writ-

ten as
v ~ MY, BT
pfx-y) = Epln) B (x-g) Eg 9,%) (9)
where Egp results from eq.(8) if one uses there the matrices of the
adjoint (gluon) representation of the gauge group instead of the

fundamental (quark) one. Similarly, one has for the "ghost" propaga-
tor

~ i ~+
D(x-g) = Eplx) Dx-g) Epty=2), (10)

a
If the original gauge field Af is taken in a "ghost-free" gauge,
then the function DY in the r.hes. of eq.(9) will coincide with Ig_
~ uy ~
Otherwise, fD}‘L and D are the free gluon and ghost propagators,

* Peculiarities of the Glauber regime (5) will be considered at
the end of this section.

respectively, taken in the gauge resulting from the original one by
transformation (4.9), e.g., an o« =-gauge transforms into the back-
ground field gauge (see Appendix). Taking into account eqs.(8)-(10)
and also the possibility to insert a collinear gluon into a three-
gluon vertex inside the hard block one observes that all the P -ex-
ponentials (8) related to internal vertices of the H «=block are

cancelled and in some cases the gauge condition for the hard-block
a

related g%gon field A i8 modified. Uncancelled remains the expo-

nential Ep(X,0e) corresponding to the external (with respect to

H ) quark with momentum collinear to 34 . Graphically, this is
depicted in fig. 1b by a dashed line connected with gluon lines* the
momenta of which, by construction, are in the collinear regime (eq.

{2)).

The gluons collinear to the external momentum q and radiated
from H can be treated in a similar way with two natural modifica-
tions in eqs.(7)-(10). First, P ~must be substituted by G - Se-
cond, the propagators wa and D in the 1l.h.s. of eqs.(9),(10)
are subsgtituted by 3" and P , whgle in the r.h.s. of these equa-
tions there appear free propagators M and D taken in a "doubly"
transformed gauge. As a result, there appears the P -exponential

é;_(x,oo) (see fig. 1b),

After performing these transformations (valid only for the lead-
ing 4/QZ asymptotics) one picks out the hard block contribution

2
thaw((a/flf)
Q"  and the scale Hc separating short and long distances, In

depending only on large transferred momentum

the lowest twist approximation the function M ,,. 1is gauge inva-
riant 4 . Hence i1t does not depend on the above-mentioned change
of the gauge in eqs.(9), (10). The remaining part of the form factor
amplitude conteins a mixed combination of collinear and soft blocks,
It may be viewed as a diagram describing the propagation of the jets
JP ’ C@ in the "external" field of'IR gluons belonging to the

eqs. (4), (5). Incorporate now expressions (A.3) and (A.8) for pro-
pagators of a collinear subprocess in the "external" field of the IR
gluons. ’

~

Note that the transformed potential A present in these ex-
pressions satisfies the axial gauge condition (6). Hence, the ampli-~
tude for the emission of a gluon in the homogeneously scft region (4)
is demped. As for the Glauber region of momenta (5) (to be studied in

*A more detailed discussion of properties of the P -exponenti-
als is given in ref./8/.



more detail in a separate paper), for it the same is true provided
that the original field AF was not obliged to satisfy the axial
gouge condition nrﬂh(x)=‘0 with a gauge vector nu having

n-=0 (1)

in the frame we chose. Thus, just as in the preceding case, all the
effects due to the emission of the IR gluons by collinear quarks,
gluons and ghosts are accumulated in two P -ordered exponentials
appearing at the end-points of the corresponding propagator.

In addition, there exists a possibility of inserting the gluons
into the dashed lines (see diagram 1b) of the PT -expansion for the
P ~ordered exponential:

~ ol nyo-es -€S, .
EP(x,oo)=ZQ3) st.,e ujds,‘@ Olsrms) .. 8(S,-S, )
e (12)
A(pfl Af‘(x*ps,)) Ly Av(xfpsn))

to which there corresponds the factor 0(5‘H Si) . After summa-
tion over all possible insertions this factor is modified in the fol-
lowing way
.o X - R (s N
608, = S) 7 Epxeps =)0 ~8)E, (xeps;, ) (13)

i q 1

or, graphically,
. 5; S‘ ~{ 5.’ 5.‘4-1

[ B —— “"é»'{"..’.{”“‘ ’

Following the method of ref./7/ it is eafy to obseArve once more the
cancellation of all the factors Ep ’ EP and Eq ’ Eq (ta-
ken in appropriate representations) associated with the internal ver-
tices of the collinear subgraphs AJP and J, 2 respectively. The
uncencelled are left the factors E;(;loo) . E (c,x) | .
Eq (1,08, Eq (c,00) associated with the end—points of the
collinear subgraphs. The ultimate result - the disgram with contri-
butions of all subgraphs factorized - is shown in fig. 1c.

Introduce the notation for the amplg.tudes related to the col-

linear mm&fu(# ) 2) and soft ”msou({;; ‘T m;} subprocesses,where
K is the parameter splitting the collinear and soft regimes of
the gluon momentum. It should be noted that My .4 , mmew
6

and 7”5:4.-6 ere matrices with respect to spinor and colour indices.
However, from the colour singlet nature of the external potential
and the structure of diagram 1c it follows that they are also colour
singlets. Thus, the final. factorized expression for the quark form
factor amplitude may be written in the following forms, depending on
kinematics: .

a)for p%= q"=m? we. have

_ c @t < P fe Q%
M= M, Ry )m,m{( ) wdp) " ) ¢ Svu( ;,,)'f- 0%,

where A  has the meaning of the IR regulerization parameter (e.g.,
fictitious gluon mass), end

2
fr Q —rt, = o
Mope( 51 ) = <1 T Eg(0,0) Bpco,00) 1), (15)
The notation <ol..10>, indicates that the integration region

for the S -subprocess 1s confined to regimes (4), (5).

2.2 2 2
b) For p-w=q-m% —f—'»m the amplitude taken in the momentum
representation is

m= fd'se P Jdye™ mc(q)(’tc ﬁcv‘)m;,m((%i:)ﬁwew(%n,ﬁct)
*Moope (fief, pia ), "
where
Mege(faf, e 1) = <OIT By, =) E 0,00 B0, By (£, Ie3e

Now we pick the free<quark propagator out of the collinear sub-
process amplitude

ﬂc H‘ Kz
wgq,)( f‘cf) (2 )4 e Su('() ?ncae(F)( Eﬂ > —’-) ‘
The next step 18 to introduce the « ~repregentation for S (k).
Proceeding analogously to ref./ (see § 13) we find
L a* ke P2y 1
m ‘?&_m we[q) f‘ f‘ )777;.‘1,,4( ) CC{LP)(}-(IQ FL) P -m .
oo m " L) (17)
T(p-m (q—m %)
'jdc(?z—ml)e Jdc’ (? mso_g,(‘ZPo'/*m: 270"'"’/0) ’

~

where



T (c,oa E (—20’ -’°)f°> \

Moy 7P R0 25 )= <CIT Ey (274 ) B () Bl ) P " (18)
Note tpat eq. (18) describes the IR asymptotics of diagram 1a with
nonampu,tated external quark legs. It is necessary, therefore, to
pick ou? of eq.(17) additional IR singularities associated with these
legs. only then eq. (17) will correspond to asymptotics of the quark
form faCtOT.

pyom eqs.(15),(17) it follows that all the IR singularities of
diagram 1a in the kinematics we are interested in are contained in

the exponentials path-ordered along the contours 2a,b and averaged
over tpe PT vacuum,

3. Renormalization of the IR Factor

consider now the dependence of the IR factors obtained in egs.
(15), (18) on the dimensional parameters. For the contour averages
(15), (18) there are two of them: the length of the contour (fig. 2)
and the parameter /.(,Q separating collinear and soft regimes of
the mowente i the original diegram la., It is apparent from fig.2
that tpe contour length is inversely proportional to the IR regulator
(ficti'ﬁious gluon mass for fig. 2a and quark virtuality for fig. 2b)
and, hefice, it determines the maximal wave lengths (softness) of the
IR gluohs belonging to the S subprocess. At the same time, for
the "copbour integrals (15), ’18) Vf*m gervea as & scale the minimal
wave lgngths~(max1mal momenta.) of the gluons, i.e. N is the
cut-off for these integrals. Thus, the IR asymptotics of the quark
form sgctor is related to the UV properties of the contour integ-

ralg syudied in refs./ 0, H/

ppe infrared factor (15) depends on two-dimensionel parameters

R and A introduced via the regularization schemes for the UV
a,n‘d g ®ingularities, respectively. The integration contour in eq.

(15) (#ee fig. 2a) is closed at infinite and it is smooth everywhere

except for the point O where there is a cusp characterized by
the externdl angle 7 defined in the Minkowski space
chg= Ez“a‘ (19)

-,

»

“ yence, the renormalization .properties of eq. (15) (and, at the
geme time, 1ts dependence on [ ) are described by the following
RG equuﬂ.,tion

8

3 ) , 2
(f““ é_l“-uz * 'F"Lg) 3_3 ‘ EASP(QJ)) 7”59# ( 'i;\f > .(:,—l; ): 0., (20)

where \—wsP(g,a) is the gauge=~invariant cusp anomalous dimension
depending on the only characteristics of the contour: the cusp ang-
13/10’11 . We present here our two-loop result for ‘._Cusr\ in the M§

scheme obtained in ref, 8 :

Musp (9:2) = Escp (vethy-1)

J
+ (! S)CFN[i +(£_;_42)(gc{-ha-«)— c%ina'jdxxcﬂ\x (21)
y
Ahx- -1 p shr
_ =3 gh2y fux X& AL

+ cth Jja(xx(z x)cthx - 4 sh zrj T MO J
Hence forth we use the asymptotic form of I cusp in the limit of
large cusp angles ¥ »> | (or &% > m? )/8/

‘_,_usp (g,3)= bn % (ds) ChQ, + O(@n‘-'%;_)
(22)

o

N

E|
»

I
|

Q1: 1 az: — - ]

’

w
G
N

where C, 1is a "maximally non-Abelian"/12/ colour factor in the
n-th order of the PT expansion over .dg , and .y are some nu-~

merical factors (in the lowest orders of PT Cp = <N

Solving eq.(20) we use the boundary condition on ')')7&“1R (fi\rq QZYB/

R QF
Moopul ,(7 , ;») =1 for  Rr=2 (23)
with account of which we find
Kie
R Q%Y _(dt )
?ﬂsqﬁ(f;—,m—h)—exp( )5\ T Fwsr(g(%har) . (24)

In the kinematics Pz—m2= qz— m’s - pm: the integration con-
tour (fig. 2b) is not closed, and this leads to new UV singularities
in eq.(18) compared to eq. (24). The RG equatlon (20) must be substi-
tuted in this case by the following equation 1

. a |
(f"“%ﬁf’('a)ﬁ *2Mend (G ) r“*SP(g'a))mwé(‘ZUPT"Q' 20qpe)=0  (25)

that contains the additional contribution to the anomalous dimension,
the end-point anomalous dimension. In the Feynman gauge and MS ~sche-
me it is'equal to .



' 2
lend 09) =~ 52 = () pnr... : (26)

end 2

(see ref./12/). To solve eq.(25), one should know the relevant boun-
dary condition. Note, that the contour shown in fig. 2b has a finite
length, ‘and relation (23) does not hold for it. Our calculation of
the infrared factor (18) to the order o in the MS -scheme and
Feynman gauge gives*

711 ( Z’TP[‘MQ,Q"’C?/-‘,Q) - “‘5C [(achha 1)?”\( {-(“QQ f oo ‘/FQ_—)
mm@m( ki Spaaqat )"7cékarjd)(xdhx 27)
- cthy jaxxd;hx 2],

where ¥ = 0.5772... and the y angle is defined by the relation
sh(a-7 / ,
sh7 Vg

In the expression for diagram 1a (egq.(17)) one deals with the
integral of eq.(27) over the parameters o , o' , and the mein con-

tribution is due to regions close to the points 0'=cj=|9fm‘|‘1|q1nff‘

2 2 . = a2
fef @y . Tptm®)T ir'iqim?)
'mw‘“((P—{F)“ —f’_‘)’ Jdc(P_m J“q (q*m e mx“{{ ('ZVP/‘WI, 26'q/"‘uz)
. %2 (28)
=1- % { (1ycthy- 1)6,.*"“" 2*7(.{"\8]4)(;((“‘1)(]

one can mini-
mize the magnitude of 7NSQ“ . So, let us introduce the concept of
the effective length of the contour 2b/14/. Define it to be equal to

" By an appropriate choice of the renormparameter [{nr

the inverse of H‘Q for which
lQP Q*
m H Q ) Cq.

Soft\pZm®) P . (23)

fa® legy.

From eq.(23) it follows that for the contour 2a one has
. .

Legr.m /2 (30)

*In addition to the IR asymptotics of the form factor we are in-
terested in, eq.(18) takes into account also the additional IR singu-~
larities of the external quark propagators and that is why it is ga-
uge~dependent.
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to all orders of PT. For the contour 2b wé find from eq.(28) the va-
lue Le;{ in the one-loop approximation (&nd in Feynman gauge):
1z
} Jp* C(hzidxx%kx—f
= ex v
e IpTmy P Lycthr-1

(31)

This relation can be considerably simplified in the 1limit Q2>7PQ
1
1 2,2\
Lege.™ jmmmy (QPD. (32)
Teking into account the higher orders of PT in expansion (28)
of eq.(31) will modify eq. (32) by the o, -corrections. However,
from purely dimensional considerations it follows that the effective
length of the contour 2b to all orders of PT is a function of the
cusp angle ¥ and it lincarly depends on the dimensional characte~
ristics of the contour O~ o'~ IP%—MZI-1 (see eqs.(18),(28)),
il.ea:
1
Np? &\ %
Legg =z $0), S0 = (5] otw) - (33)
with acéount of the boundary condition (2a) we find the solu-
tion of the RG equation (25) and substitute it into eq.(28):
2 2 [
feP  @® dt /-
Meogil Grmeys )7 P - I (e (§141,2) 72 Teng () (34)
/Le
4

Observe that eq.(34) satisfies the following infrered LRG equa-
tion

( f(“l P

i
<LQ{;.5E +b(8 ’Dg (4451(9 ?)‘_2 h'f(cj)) suu. Z» P ) G (35)

4., Renormalization Group Equations for the Infrared Asymptotics

Amplitude (14) for the on-shell quark forquactor contains all
the IR singularities in the factor M. (%, &)
explicit form (eq.(24)) one can obtain

6? 8 - 6( Qm 7”;0;{( 'Q Q )
2 RN

Using its

rmp(g(x),zr)- (368)



e

Thus, the IR asymptotics of the form factor in this kinematics is
described by the RG equation

? 2 NS
<—>\D~§+ (5(‘3)03 rws‘,(f};V)Jm(;‘u;-.):O' _ (36D)

The validity of eqs. (36) is supported by calculations of the lead-
ing IR asymptotics in the lowest orders of P’l‘“s/
the first term of the o expansion for T

corresponding to
in eq.(21). The

cusp
nonleading two~loop IR asymptotics calculated in ref, 1 comple~
tely agrees in two limiting cases ¥ — oo (Qz > m?) and
70 (Q%<m?) with the limiting values of the two-loop [ csp

from eq.(21).

In the case when quark momenta are slightly off-shell ( Pz—-m"':
s gqim? = SpmL RS m ) all the IR singularities of amplitude
(17) are centained in the factoxr msag (eq. (34)). However, to get
the form factor amplitude from eq. (17), one should extract externsl
free quark propagators from M

M = M= (G-m) M (p-m)

and subtract from m ‘the additional IR singularities of the non-
amputated propagators $(p) and S(q)

27)):
ﬁ—’m}:= 7TL/mamp., mamp=_‘f’2_

(see the footnote to eq.

d S
“f’ m)llo m:-rm .

‘Differentiating 7  with respect to

Al _ M)
o(()mf-( A Gap

using the explicit form of eq.(34) and incorporating the dependence
of the effective length Le;_p, on W ( Le.g‘_” 1/{.( , 8ee eq. (33))
we get .

d o M _ y o

d?m(u. I_Cusp (9 e ), 7) * 2 Tand (90171 . (37)

To find an equation for M , we utilize the results of
our analysis of the IR properties of the quark propagator Sp)
in Feynman gauge 4/. A1l the IR singularities of the quark propa-
gator can be extracted into a separate factor givem by a PT-vacuum
~averaged P «exponential, path-ordered along the straight-line

12

i 2 -
segment between points 0 and 2p.lp-m o As a result, mump
satisfies an equation analogous to eq. (37) /14

dbams,,
Z_ amg % . 8
Lo 27, (g “/Lé}}.)) , (38)
where Lep{‘. ig the effective length of the above contour equal to
) Vet
! LS = (P“m'(}:#ct , C(:e‘P(g*O("‘S“'

Uniting now eqs.(37) and (38) we get finally our equation for
the quark form factor:

dbam
O(OMH‘:: rcusr(g(i—g) a)"Z end (3(L_ )> el “‘1(3( L“’ ) ) (39)

Substituting into the r.h.s. of this equation the quantities
defined earlier we obtain

' Al Me_ m's—qpc (yothy-1)« (J\))c L—+.—L4harfotxx%x

o 9)1
‘* _ - —)(1&‘15 -1)- C‘U\a:[dxx cthx + cth 7JAxx:Zf <) cthx (40)

s our equation (40), obtained in the MS -scheme, differs (by

H o f 23,
i (“een [- 2 (scthy-0) -+ SathE]
obtained within the MUM~scheme,

from the results of ref.

Consider the Q%> w® limit of eq.(39):
(/
alome B g e (BN o
A ev‘r‘ P me 36 12 J v e (41)
3 & '
f0(wl, b =)
and note the two properties of eq.(41): the nontrivial argument of

the effective coupling constant and absence (in the first two orders
. 2
of PT) of the logarithmic contributions proportional to sz%z

' and higher powers of en Q « On the other hand, two-loop cal-
L . culations performed in refs /17,18/ produce a slow-convergent expar-
\. sion

(X
. d b e

e b S 1 (0o’ X 00 0

Q?
PR =, 6" 2 ). 42)

. Comparing eqs. (412) and (42) we conclude that in higher orders of

PT the “sn(t*\em’(% ~terms ({<k ¢n) of expansion (42) are propor-

13
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tional to the @ -function coefficients and their role is to modify
the argument of the coupling constant.

These important properties of eq.(41) are preseryed in all or-
ders of PI, Indeed, from egs.(39) and (36) it follows that the beha-
M gna 49M  g£or @2 5> m?  ig determined by the

viour of gl

4 J* A mn . . .
asymptotics of the cusp anomalous dimension (see eq.(22)). Substitut-
ing eq.(22) in eq. (3%) we find, for .example, that

()m'n? = o (/L e W 2 e
some S (el o 0 g oeeg) @)
i.e., that the expunsion paremeter in eg.(43) is (Vg ) . Eq.(43)
can be immediately generalized for QED, where C, =1, C, = O for

o2 2yt () ™ o (0) and eq.(43) reproduces the well-known ex-
ponentiation property of the one-loop IR asymptotics/19/. For QCD
such an exponentiation is absent, but one can conclude from eq.(43)
that truncating the PT series in the r.h.s. of eq.(43) one neglects
in its solution only the terms of an order of 0O( A (T/LQ#@)) hav-
ing "maximally non-Abelian" colour structure .

5 Conclusions

In the present paper we studied the infrared asymptotics of the
colour singlet quark form factor within the framework of perturbati-
ve QCD. The use of the gauge properties of QCD enebled us to per-
form the factorization procedure for contirubions of vaious subpro-
cegses and to single out all the IR singularities of the process
into a universal IR factor. It has been shown that this factor is
given by & PT-vacuum-averaged P-exponential, path-ordered along
gome definite contour of fig. 2 type. The specific form of the con-
tour is unambiguosly fixed by kinematics of external quark lines. We
demonstrated that there exists a one-to-one correspondence between
UV and IR singularities of the contour averages present in the ex-
pression for the IR factcrs., This fact enabled us, first, to prove
the epplicability of the RG methods to the IR problem under study
and to formulate the appropriate RG equations, the solution of which
describes the whole IR asymptotics of the form factor and, second,
it epabled us to demostrate that the anomalous dimensions of the in-
frared RG equations coincide with an appropriate combination of the
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cusp and end-point anomalous dimensions of contour averasges, the
two-loop properties of which were studied earlier in refs./8’12/.
Third, this approach to the IR problem allows one to find an ambit-
rary nonleading IR asymptotics of the form factor, modifying in a
nontriviael way the argument of the coupling constant in the lowest
orders of PT and estimating here the magnitude of the PT terms

not teken into account, In particular, we reproduced the existing re-
sults for the quark form factor and supplemented in higher orders of
PT on the basis of the performed. one-loop calculations,

Pig. 1a) Feynman diagram for color singlet quark form factor, con-
taining hard (H), collinear ( %3 and J? ) and soft (S)
subgraphs.

b) Diagram Fig. 1a) with factorized contribution of hard
subgraph. n

c¢) Diagram corresponding to totally factorized form fac-
tor emplitude.

o]

(BN *

. N B i
P q-. 25P N Zqu
Qa) )
Fig. 2. The integration contours in the Minkowskl space determined
the infrared asymptotics of the quark form factor for on-
shell (&) or off-shell (b) external momenta,
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APPENDIX

Here we consider the properties of the propagators of quarks,
gluons and "ghosts" in an external gluonic field, defining them as
solutions of the Dyson-Schwinger equations illustrated graphically
in fig. 3.

. The quark propagator S(x,«d,‘A) in the external gluonic field

Af& satisfies the following equation:
. R e < ) -

(fe g a7™m) S oy ) = -5 y). (1)

We shall look for its solution in the form
-~ ~ : +
S(xy; A = Eplxoo) Slx,y;A) By (g,%2), (A.2)

where EP(X,DO) is defined in °q'(8),:, After substituting eq.(A.2)
into eq. (A.1) we get an equation for S
AU ~
(ot rg )30 -m) S (xy; 4) =-5(x-4) »
po Ty 9 J (A.3)
where

A ELtneo) (Ao 5 3.) Bt o0)

is a gauge-tra.t}\sformed gluonic potential satisfying the axial gauge
condition P /‘qu: o] /5/. Hence, if S(X,IJ;A) is the propa-
gator of a quark participating in the hard or collinear subprocess

JP «» then the contribution of those terms in the solution of

eq. (A.3) which are proportional to A, (k) with moments x, in the
collinear or IR regimes, respectively,has a power-law supp'ression.
Thus, in the lowest-twist approximation we have

g(x,\d;M: So(x-g) [4+ o(VQZ)J .

Substituting eq.(A.4) into eq.{A.2) we reproduce eq.(7).

(A.4)

v
The gluon propagator DH (x,‘j;l”
field /-"lr satisfies the equation:

i
(HV"(X' AL Ar«(‘dﬁv(”)bvf;(""{i? A)= ~91uf=5<><-y>, x>0,

in the external gluonic

(A.5)
where
VR " ) ol adc _ ¢
[‘[rw (x;M=c]rN(J>2) -4 ‘_‘D‘H.DJJ.Q__%ZQ-; , 6/‘“’
al Q acl | ¢ { ¥

Df‘ .;ar*s rgf A, Gt g‘fj’r,}v]
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and the gluonic field satisfies the gauge condition

A

(x)=0.
Aﬁ(x) Ah ) (4.6)
Selution of eq.(A.5) 1is looked for in the form
~ ~ ~ 4
Duy(rig A= Ep(x,00) D, (X, A By 1y, >9) - (A7)
Then %2“" ie a solution of the equation

(l‘lrw(x;ll") .- Zﬁm ZV“‘))BV,,(*%’“' ~Gup FX-g,x2C, (a.8)

where the following notation is introduced:

EF‘
N\

Comparing eqs.(A.5) and (A.8), we conclude that Dv‘J is the gluonic

propagator in the gauge Z’L‘ A .= 0 1n the external field of the

gluons A such that p{kAU = (0 . Hence, in the lowest twist appro-

ximation (in a complete anafogy with eq.(A.4)) the solution of eq.

(A.8) is

(x) = é:u,oo)/.\r(&) EPM,W)' (A.9)

fw(x,td; A) = 50}”0(—9) (1« 0(‘/542)} ; (a.10)

~ MV
where D: is a free gluonic propagator in the gauge

Ar(x)Ar(x)QO (A.11)

obtained from eq.(A.6) via transformation (A4.9). Im the class of the
simplest gauge conditions (A.6) (with Ar«(x] not depending on Al“ )
it can be shown that the absence of "ghosts" in this gauge implies
that
B = A, (%) ‘BHV(K“ ) = DW(‘X- )

poo T aptth e d o g3 (4.12)
In the « -gauge, €.g., AF(K)E O , and with account of eq.(A.9),
the modified gauge condition (A.11) has the following form:

('b’*- ig Er‘(x))/ll(xﬁo,gﬁrx): 5 EF

f ~r
(x,0) 2T EPfx,oo) (4.13)

i.e., it i3 the background.field gauge.

If gauge (A.6) is not a .ghost free one, then the ghost propaga~
tor D (x,y,A) (see fig. 3 ) in the external gluonic field Al‘
satisflies the equetion

Ar{x)ﬁr(x)m(f.ﬂ)A§= -2 (x-g). (4.14)
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HudpakpacHas acuMnroTHka neprypbatusBHerx KXII.
BepuiiHHbie GYHKIIMH

HayueHa HHPpaKkpacHas ACHMIITOTHKA CHHIJIETHOIO MO IBeTy KBap-
KkoBoro éd¢opmbpakTopa B paMKax meprtypbaTuBHo# KXI. HadimeHa ee
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Tuka ¢opmbakTOpa MOrnomaeTcs HOBBIMH HEIIOKAJIBHBIMH OObeKkTaMy -~
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BaKyyMy TeOpHH BO3MymeHHiHl. BHO KOHTypa OZHO3HAuyHO ¢HKCHpYyeTCH
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M Ha ee OCHOBe ChOpMYyTHpPOBAHO DEHOpMI'DYNINOBOEe ypaBHEHHE OJiA
HHbpaKpacHOH ACHMNTOTHKH KBapkoBoro ¢opmbakropa. PemeHus sroro
ypaBHeHHA CpaBHHBAWTCHA C pPESYJIbTATAMHM BBLIYHCIIEHHMH B HHU3MHX I[MO-
pAOKaxX TeOpHH BO3MYmMEHHH.
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The infrared asymptotics of the colour singlet quark form
factor are investigated within the framework of perturbative
QCD. The deep connection between infrared problem and renorma-
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nentials) averaged over the perturbation theory vacuum., The
form of the contours is uniquely fixed by kinematics of the
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the ultraviolet and infrared singularities of corresponding
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equation for the infrared asymptotics of the quark form factor
is formulated, The solution of the equation is compared with
the results of the lowest perturbation theory calculations.
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