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1. I n t r o d u c t 1 o n 

The present paper is devoted to a study of the infrared (IR) 

asymptotics of the vertex functions (form factors) within the frame­
work of perturbative QCD. The solution of this problem is necessary 
both for a quantitative description of hard processes and for a con­

sistent proof of the factorization theorem for hadron-hadron reactions. 
Earlier/ 1/ ' numerous calculationa were made for the colour singlet 
quark forro factor in the lowest orders of perturbation theory (PT). 

They demonstrated that the leading (double-logarithmic) IR asympto­
tics of the QCD amplitudes ia given by the exponential of the one­

loop contribution. The proof of this property in higher orders of PT 
was given in ref./ 2/. However, even the first attempts to calculate 
the nonleading IR asymptotics/3/ have shown that the problem is fer 
from being trivial. The expression for the two-loop correction to the 
quark form factor contains nonleading IR logarithms having the sarne 
order of magnitude as the leading ones included in the exponential and 

proportional to the ~ -function coefficient ~,CfN. Thus, there aris­
es the problem of finding the nonleading IR asymptotics in higher or­
ders of PT. 

In this paper we demonstrate (using ~s an example the colour sin­
glet quark form factor) how the gauge properties of QCD fix the IR 

asyrnptotics of amplitudes. We obtain also a renormalization-group 
(RG) equation, the solution of which completely describes the IR be­
havior of the processo 

In sect. 2 the infrared singuleritics of the forrn factor amplitu­
de for two specific kinematics are shõwn to factorize into a separate 
factor. The prbperties of the IR factors obtained are considered in 
sect. 3. There we also compare it with analogous QBD expressions. In 
sect. 4 we formulate the RG equation for the IR asymptotics of the 
form factor and discuss its general properties. 

2. 1aotor1aat1on oi the Infrared S1ngularities 

Consider the amplitude corresponding to the colour singlet (e.g., 
electromagnetic) quark form factor. It is characterized by the fol­

fiht"heãlidt'kiÚ~ ~HCnrr'-yt I 

, ml~"B~ fZ!tc~eJ!OBfiUOn 1. 

6vtsnf..!CTEKA ~ 



lowing kinematic invariants: Q 
2 

-momentum tranai'er squared, p2 
and ./squared 4 -momenta of initial and final state quarks, ( p~ 
- VI'Il ) and ( Cf 2 - Vl1z..) -virtualities (of~shellnesses) corresponding 
to them. (In some gauges there appearalso gauge condition related . ~
 

scale-, e s g , (pr'\{/n2- in the axial gauge I1 4r-(K) .. O). In what follows,
r 
we consider two specific cases of symmetric kinematics: 

"2 2- 2. 2. 2 2­
a) p- Vl1 = q - Vl1 ~ O, Q ) Vh - the on-mass-shell quark 

form factor, 
"2 2. 2. 2. Q2. 2­

b ) P-W1 "9- W1 =_~YY1, f ~ Yh, > n1 - the near-mass­
she11 quark form factor. 

Using the well-known methods of analysis of asymptotics of Feyn­
man diagrams/41 it ia easy to establish that the contributions res­
ponsib1e for the leading 1/Q2 contributions to the forro factor have 
the structure shown in fig. 1a. The three types oi' subgraphs, viz.: 
hard (H), col1inear ( J p and J q ) and 80ft (3) are characterized 
by the momenta ascribed to its internal lines. It ia convenient to 
introduce the center-of-mass reference frame in which the momentum 

kf< ia specified by the components: 'r = (k.+, k_~ k;,. t). In parti ­
cular, by dei'inition. 

p2. ~ q2 
Pr-= (P-t- ' 2 P+ ' O ) qr-= (2q_ .Cf-, O) (1) 

and let in the frame choaen the relation p+ "> p_ ~ q_ '7 q + 
be fulfilled. 

The hard block (H) describes th~ short-distance interaction with 
moroenta 

1(,.. ~ --J Q 2 . (2 ) 

It haa two quark externaI lines (twiat 1) and an arbitrary number of 
longitudinally polarized gluon lines (twist O) with momenta co11inear 
to that of one of the two quark lines. (In a gauge from the contour 
gauge c1ass/5/ the gluon potential Ao.. is a linear functional of the 
field strength c:1;.v and i t s twist ef{ectively equals 1. The hard 
block in this case has no externaI gluon lines for the lowest twiat 
contribution) • 

The collinear blocks J p and Jq of diagram 1a describe the 
jeto of quarks and gluons whose momenta are co11inear to the vectors 

..*Here the light cone variables k.,..=....L t « ·to k ) are intro­_ V2 ~- 3.
duced. 
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P,.. or qf'­ , respectively. The momentum k r of any partieIe of 
the jet .Jp , e.g., has the following components 

kr- = (t ) À"2, 'Â) {Q2. , I< Z = X2.Q 2 
, (J ) 

, 2. 2 

where À '" P/Q 2 is a small parameter determining the virtuality 
of the collinear quarks and gluons. 

According to the dimensional counting of refs./4 , 6/ for the soft 
block S there are two IR singular regions in the momentum spaee 
correspond1.ng to 

a) the regime of (homogeneously) soft momenta 

ler- ;:: (Â, Â, Â) ~. (4) 

2 2 2. 2. 2 2­
where ').. .... ( p - m )/Q = (q - yn }/Q<- is the boundary scale 
separating infrared and eollinear regimes; 

b) the Glauber regime of the IR gluons/6/ : 

I(r = ( ')..2., ),2, ;\) VQi, (5) 

2 2; 2 
where 'X ( P - M )1 Q'2. ; i. e., the gLuon in this ease has es-I'.J 

sentially the transverse. vanishing momentum. 

0Ur task now is to study the eontribution of the infrared regi­
mes (4), (5) to the form factor amplitude. To this end we perform 

two transi'ormations of the original diagram ta. Firat, we pick out 
the effects due to the radiation of eollinear gluons from the hard 
bloek Cfig. 1b). Then within the resulting diagram we factorize out 
the contribution of the soft subprocesa S (fig. 1e). We use here 
the following properties: 

a) the radiati~n of a eollinear gluon from the bard bloek is 
damped by powers of P

2
/Q2 provided that the gluon potential has ef­

fectively twist 1 (OI' can be represented as a linear funetional of 
the strength tensor); 

b) to yield a singular contribution to the amplitude, a soft 
gluon with momentum kr satisfying eq.(4) muat be emitted in a qu­
ark-gluon OI' three-gluon vertices inside the eollinear bloeks, while 
the four-61uon vertiees are damped by, at leaat, th~ first power of

14,6/ .
kr- • 

In region (4) Bueh a triple vertex inaertion reduces (up toO(k) 
terms) to the original propagator of the collinear quark OI' gluon 
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(with momentum p~ ) multiplied by a scalar factor 2p~ where f 
is the polarization index of the soft gluon. Bance, the radiation of 
the soft gluons from the collinear block J p is damped by powers 
of (p2_ mZ) if the gluon momentum satisfies eq.(4) and the gluon po­

tential is subjected to the axial gauge condition 

p i(CK)=:O. (6)
r I 

Besides, as it is shown in ref./5/ , in the axial gauge (6) there 
exists a linear relation between the potential and strength tensor, 
and, consequently, the fulfillment of eq.(6) is sufficiant to damp 
simultaneously both collinear (eq.(2» and infrared (eq.(4» regi­
mes of the gluon momentum*. 

Consider now figo 1a and sum over alI possible insertions into 
the hard block verticeD of the gluons collinear to the externaI mo­
mentum p,.... As Ls shown iu Appendix the resul t of such a summation 
is the following modi.fication of the hard block propagators. The 
quark propagator in the lowest twist approximation becomes. 

.... - t-
S;) (X - <a )-> Ep (x" ~) ~\-' (x. - 'ô) Ep ('1, .xl ) , (7) 

where 

Ê (;, uo) = Pexp.( ;~ ~s 0 -\Õ:-:'p,... Âr- (»:.. PS)), íir- = A; E -> O (H),').0-)p 

i8 the ~auge trffilsormation aparator for the axial gauge (6)/5/. The 
modification of tlie gluon propagator in the general case may be writ­

ten as 
UV "-.J f-lv '"'-"t­ (9)1)-;.,1' (X-~) --

"J

EpeX,OC}) J) (x.-y) Ep lLJ,'>O) , 

"-' 
where ~p results frorn eq.(8) if ohe uses there the matrices of the 
adjoint (gluon) represento.tion of the gauge group instead of the 
fundamental (quark) one. Similarly, one has for the "ghost" propaga­

tor 

'" '''' -...J .t-
D()( - ~) -> Ep ( X, oo J) ( x- ~) Ep C~) ~) • ( 1 O) 

a. 
If the original gauge field A"" is taken in a "ghost-free" gauge-,

"'~v I ~vthen the function n in the r.h.s. of eq.(9) will coincide with ~ . 
_~ ~ o 

Other~ise, n and Dare the free gluon and ghost propagators, 

* Peculiarities of the Glauber regime (5) will be considered at 
the end of this section~ 
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respectively, taken in the gauge resulting from the original one by 

transformation (A.9), e.g., an ~ -gauge trffilsforms into the back­
ground field gauge (see Appendix). Taking into account eqs.(8)-(10) 
and also the possibility to insert a coll~near gluon into a three­
gluon vertex inside the hard block one observes that 0.11 the P -ex­
ponentials (8) related to internaI vertices of the H -block are 
cancelled/7/ and in some cases the gauge condition for the hard-block 
related gl~on field A; is modified. Uncancelled remains the expo­
nential E p (X, 00) corresponding to the externaI (wí, th respect to 

H ) quark v4th momentum collinear to P . Graphically, this isr 
depicted in figo 1b by a dashed line connected with gluon lines* the 
momenta of which, by construction, are in the collinear regime (eq. 
(2» • 

The gluons collinear to the externaI momentum Cft and radiated 
from H can be treated in a similar way with two natural modifica­
tions in eqs.(7)-(10). First, p~ must be substituted by q~ . Se­

~v . ]) ,cond, the propagators V and in the l.h.s. of eqs.(9),(10)o 

are substituted by 1S fAl} and JS ,while in the r.h. s. of these equa­
~L4" ~ tions there appear free propagators J) I and 1) taken in a "doubLy " 

transformed gauge. As a result, there appears the P -exponential 
--t
E'I (>\1 00) (see figo 1b). 

After performing these transformations (valid only for the lead­
ing 1/Q2 asymptotics) one picks out the hard block contribution 

? Tr!. ha...-d ( Q.~f; ) depending only on large transfarred momentum 
(.l. - and the scale fc separating short and long distances. In 

the lowest twist approximation the function 7nhQr~ is gauge inva­
riant/4,7/. Rence it does not depend on the above-men~ioned change 
of the gauge in eqs.(9), (10). The remaining part of the form factor 
amplitude contains a mixed combination of collinear and soft blocks. 
It may be viewed as a diagram describing the propagation of the jets 

Jp , J q in the "externaI" field of .IR gluons belonging to the 
eqs. (4), (5). Incorporate now expressions (A.) and (A.8) for pro­
pag,ators of a collinear subprocess in the "externaI" field of the IR 
gluons. 

AV 
Note that the transformed potential Af present in these ex­

pressions satiafies the axial gauge condition (6). Rence, the ampli­
tude for the endssion of a gluon in the homogeneously scft region (4) 
ia damped. As for the Glauber region of momento. (5) (to be studied in 

*A more detailed discuBs10n of properties of the P -exponenti­
aIs is given in ref./8/. 
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more detail in a separateApaper), for it the sarne is true provided 

that the original fi!ld A~ was not obliged to satisfy the axial 
gauge condition nrAf(~)='O with a gauge vector havingnt 

-> 
nT -= O (11) 

in the frame we chose. Thus, just as in the preceding case, alI the 
effects due to the emission of the IR gluons by collinear quarks, 
gluons and ghosts are accumulated in two P -ordered exponentials 
appearing at, the end-points of the corresponding propagator. 

In addition, there exists a possibility of inserting the gluons 
into the dashed lines (see diagram 1b) of the PT -expansion for the 

P -ordered exponential: 

...... ~_ n'''' -ES. '''' -E'S"
 
Ep (x..) 00) ;= L l~8 ) jd~, e '" JdS º g (,S2- 51) " () (Sn. - SI1_1)
rt 

~:O J U 

(12 ) 

·(P". Â,..J><+PSt)) ... (P" A.,(>(i-PSn)) 

to which there cor-responds the factor GCs i ..-( - Si ) • After sununa­

tion over alI possible insertions this factor is rnodified in the fol­
lowing way 

" = =~ G(S. -.s)->t.:>(~.pS .:.><0)0(&. -S)c.(~(.ú·ps. 00)
~ • -f i: t ....., , H f I , , (1 J) 

or, graphically, 

s~ ~-'T1 s ~ S;~1 
\---+----1 

1- 1;l-~ .~ T- -l 

Following the rnethod of ref./7/ it is eaSy to observe once more the 
cancellation of alI the factors Êp , E. p and Êq ,E (ta­q 
ken in appropriate representations) associated with the internaI ver­
tices of the collineu.r subgraphs Jp and J tf ' respecti veLy , The 

" + :::
~cancelled ar~ left the factors E p (~, 00). E-p ( C I C\(j) 

Eq {YJ ,0() ) , E9 (C,.:>C ) associated wi th the end-points of the 
collinear subgraphs. The ultimate result - the diagrarn with contri ­
butions of alI subgraphs factorized - is shown in fig. 1c. 

Introduce the notation for the amp~tudes reIated to the col­
• Ih-! (~e p2) "'n1 /{rQ. ~)

Lãriear- 1I1eu(?l P) ~~' Fi and soft lI(sú~il~"9~"''' subprocesses, where 
, /{ IR is the pararuete.r splitting the collinear and soft regimes of 

the gluon momerrt.um, It should be noted that m harei , 7n<..oelf'} 
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and ~s~f are matrices with respect to spinor and colour indices. 
However, from the colour singlet nature of the externaI potential 
and the structure of diagram 1c it follows that they are also colour 
s±nglets. Thus, the final, factorized expression for the quark form 
factor amplitude may be written in the fo~lowing forms, depending on 
kinematics~ 

a)for p2:. 92.,.W1 a we. hllve 

JL 2. 2. . 1. /-( L
'lll:.1)( rm (~q)m (Q) m (f'-.:. p ) 'U. % (jlQ. Q) O i )
( q cae<q) ""/1/ fiz harJ fi: úJt.tp) fi,Q.' FeL (p) /fi !>CJf.1 ~ , ;-.. .t- (Qi , 

where Â has the meaning of the IR regularization parameter (e.g., 
tictitious gluon mass), and 

rm ( t< IR Q 2. ) < I'T E-+ . );:- ) I '" 
/fts0ft ~ ';;~ = O Cf {o).;.o Cp (a,O<) O/,R' (15 ) 

The notation <O/' •• (D'>tQ indicates that the integration region
 
for the S -subprocess is confined to regimes (4), (5).
 

'2. 2. 'l. 2. 
b ) For p-m:. 'i- m '" - f'UYI the amplitude taken in the moruentum 

representation is 

4 -LPt j 't iq,~_ ~< ) éQ 2. ) iii (f-c. t)m=Jei. te d... tr e 'me.cec,q) (;:( ) /-l.c.'7 '"»zhard -';2 CO(!(P) /.4 IR ' ~c. 
r ./Q r ('C I - ( 16 ) 

·1nSC.t-4:(flf~~'f'R~) , 

where 
...... ......+ .- ..... 

m~Ctí-{ (~IR~,~ IR~) == (olT EqC ~, 00) E W,O<:J)t p (01<'0) E (tioc) /c)'Rq p 

Now we pick the free~quark propagator out of the collinear sub­
process amplitude 

- ~c. ) Jilc: L/(f 111 (f-<é.. Jt(.2)
1rlC<:le<p)(Fl/~'~et = (2't)4 e ~(l<). c..Je(f') ~Q'fit . 

The next step is to introduce the ~ -representation for S~(k). 

Proceeding analogously to ref./9/ (see § 1J) we find 

1 /'<c q lo ) Q 2. t<c p.l. 1
 m= .... -m 1n ab n)(Ji 'u" "fnita.rd(I:(Z) 'l77cd.if) (17 ,t;J D
 q "1 ,,/1. r:c I c. , -IR "c r-
yn 

00 ~(1'(P~Y't'I")~ , lo. io"'('l~ \'\1') (17)'Z. I 

'Jd(J'(r~""'~")Q JdO' (q-rtl)e ?n~o.ç4:(-2po-f'~' 2'lrJfll~) 
o c , 

1'Ihere 
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, ,'+..... .-.. + ' 
lh1 (_~P(1"J.{,~. '2q cr-1f'lIR); (alT E, (2'1"q /~.») E (c,"") EplO,./X.l) Ee (-2crP,./X.l)/o>/R· (18)a 
II1Sq+l..: ", <t -, '" 

Note U,.at eq, (18) describes the IR asymptotics of diagram la with 
nonamp~tated externaI quark legs. It is necessary, therefore, to 

pick o~t of eq.(17) additional IR singularities associated with these 
legs. Only then eq.(17) will correspond to asymptotics of the quark 

form f&ctor. 

Ft"0m e qs , (15), ' (17) i t follows that a.Ll, the IR singularit í.e's of 

diagr~ la in the kinematics we are interested in are contained in 
the exponentials path-ordered along the contours 2a,b and averaged 

over t~e PT vacuurn. 

3. RenOrmalization of the IR Factor 

c~nsider now the dependence of the IR factors obtained in eqs~ 

(15), (18) on the dimensional parameters. For the contour averages 
(15), (18) there are two of them: the length of the contour (fig. 2) 

and th& parameter {-{IR. separating co Ll.Lne ar and soft regimes of 
the morpenta ízf the original diagr'am la. It is apparent from fig.2 
that t~e contour length is inversely proportional to the IR regulator 
(ficti~ious gluon mass for figo 2a and quark virtuality for figo 2b) 
wld, h&uce, it determines the maximal wave lengths (softness) af the 

IR gluOn s belonging to the S subprocess. At the aame time, for 

the 'córJtour integraIs (15), (~~) '/f'R serves as a scale the minimal 
wave l&ngths-v(maximal momenta ) of t he gluons, i. e. f/R Ls the 
cut-off for these integraIs. Thus, the IR aaymptotics of the quark 
form f~ctor ia related to the UV properties of the contour integ­

d ' d' f /10,11/rals sv u ~e ~n re s. • 

Tre infrared factor (15) dependa on two-dimensional parameters
 
P-IR and:::\ introduced via the regularization schemes for the UV
 

~d IR singularities, respectively. The integration contour in eq.
 

(15) (pee figo 2a) ia closed at infinite and it is smooth everywhere 
except for the point O where there ia a cusp characterized by 

the ex~ernál angle r defined in the ~linkowski space 

CPo,)
ch,.".-.=.~ • (19 }U vp-ql. 

/Hence, the renormalization·propertiea of eq.(15) (and, at the 

sarne t~meJ its dependence on ~'Q ) are described by the following
 
, /11/


RG eq~at~on : 

H 

'O '.) 
"- ~()-t- r ( )) /}), 'f<tR Q2.) (20)

( rI/~ a~ IR ~'l.J ';) ~ (Usp ~ I '"5 IIIS~f{ ( ~ ) ;-~:. O, ' 

where rWSp(~l~) is the gauge-invariant cusp anomalous dimension 
dependin, on the only characteristics of the contour: the cuap ang­
le/10,11 • We present here our two-loop result for l~s~ in the MS 
scheme obtained in ref./8/ ' 'r 

rCusp ( ~ I ~) ::: ~~ CF ( 1" c-l hõ - 1) s 
-+ C~)2CFN[~ +(1l- i42.)(lC+h~-f:-dh~ldMd-hx. (21) 

z J1' Ih" 'h J' x:dh)<,-I () d, õJ+ d h ~ dXX(l-x)C-t X - 2 s 2~ d.x. ~-z- ~ -h- . 
o <J ~h".-~h)( ~ ~ 

Rence forth we use the asymptotic form of ro..,:sp in 'the limi t of 
large cusp angles .~?") t (or Q2 '7) m2. )/8/: 

r- Q Z 00 ols)Yl., cQ2 
LUSp (8.~) - ~ -z L (.7F c., Qn + O(e'fJ -J 

V'1 n=1 VI1 
(22 )

61 ,,'1.­
a1 = 1 , a 2 ~ ~.- 12 ' 

where c;l1. ia a "maximally non-Abelian,,/12/ colour faetor in the 

n-th order of the PT expansion overc(s , and a. Yl are some nu­
merical factors (in the lowest orders of PT C;'I, ~ CF N n-1 ). 

Solving eq, (20) we use the boundary condi tion on 'm. (~IQ.,3..2.f5/: 
SCl+'l: Ao lt'I'­

% (/,<IR Q2..) (23)II/~0-fi ~' m~ =.1 tor ~IQ::: ?>. 

with account of which we find 
f'lll~ 

f.('f) Q2. (+ )
7fl 5'4-i ( ~ ' f'tI,J::: eKp - ~ / <J(f), õ) (24)di- reus

In the kinematics p~n/::: q~m2.=_p...m' the integr~tion con­

tour (fig. 2b) is not closed, and this leads to new UV singularities 

in eq.(18) compared to eq. (24). The RG equation (20) must be Bubsti ­
tuted in this case by the following equation/ 11/: 

(~" ~r': ~(S)~ T2 fe.J ('} ) + fa.s.c'il,a~11Iso+/-2<7p~'R, 2 <:r'q f' IR) =o (25 ) 

th~t contains the additional contribution to the anomalous dimension, 
the end-point anomalous dimensiono In the Feynman gauge and MS -sche­
me it is'equal to 
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to alI ardera of PT. For the cbntour 2b wé find f'r-om eq.'(28) the va­

A 
lue Le.f-Ç. in the one-loop approximation (ánd in Feyrunan gauge):r. to ) .: -.~ - 1... (.~s)2. I (26)end 9 ? CF /. C' CF IV ;-, . ,

_IT "O 1t" ri/., 

(see ref./ 12/). To solve eq.(25), one should know the relevant boun­ L = ..[f7. ex (dh1 ~dxx.f<hX - t ) 
e.ç.ç. Ip:'ml./ P i~cth~-1 • (1)dary condit~on. Not e., that the contour shown in figo 2b haa a fini te 

length, -ánd relation (23) does no t hold for Lt , Our calculation of
 
Thia rel.ation can be conaiderably simplified in the limit G/ >:> p2
the infrared factor (18) to the order ~5 in the MS -scheme and
 

Feynman gauge gives* :t:

1 ( Q' p2) 1/4 (J2 )Le.ç.ç.: Ip~mtl

o( [ h n 2 2rE .~)rn (-2cr'P~I12 2rr'QI-I,~):~- ';:-cF (~c+ ~-1)'íM(-I-<'R.e (JeY'l/p c.{1. 
l 

s0H /., II I ~ 

Taking into account the higher orders of PT in expansion (28)
1 e 2 2~Ec I 2) h J h (27),- z f d h:r 't1 (- ~ IQ Q ( p-:r +q(f) t- 2d ó' d)( x c..+ x of e q, () 1) will modify e q, (32) by the ~~ -corrections. However,

l4 o 

- d ..hõ 5,(\(xc{hx - 2 J , from purely dimensional considerations it follows that the effective 
-1 length of the contour 2b to alI orders of PT ia a function of the 

cusp angle õ and i t linearly depends on the dimensional char-ac t e>where Õ E = 0.5772 ••• and the ~ angle ia defined by the relation 
. I:z. <.-1riatica of the contour 0'," 0-"" Ip-m t (see eqs.(18),(28»,

sh(-a--l)__ ;J p2(f2 • i. e. : 
~ h~ - \ qZ<5 ' .. 

2 '/~ 
L _..Jf2 

I 
+(3') =- (~2) .. O(Q'~)

In the expression for diagram 1a (eq.(17» one deals with the €.ff -Ip~th~l ..f (3') P (J3)~~ <X> 

integral of eq.(27) over the parameters ~ , ~' , and the main con­

i l 1 With account of the boundary condition (2a) we find the solu­t~ibution is due to regions close to the points o- ~ (5'= 1f'::I'\o1l.I-} Iq~ l'l1 ­

tion of the RG equation (25) and substitute it into eq.(28):2 2 Z "" . L"')'''' , , 1. 1.)
~I~P Q.) J ,ertp-m J' ,'1'cq-M 

2. L 2. ~IR. m!>OH(<1-'I\'Il)~1 P" ;; do-ep:mL)Q c1O"(ql_ml.)Q 1J7~<4.{(-2~p~IR,26Iqfll~) 
P'~ P Q.) (f df )'( 

U o 2 2. ~ÍJ. (28) 7ns~+{(<.f:"m2.)7.' p1. = ~x;p -tJT(íW\;r(8(f),a-)t-2rel1c{(~If») J. (J4) 

VLe+f, 
= 1- ~~ CF [( t ~ d.h tr- 1)er,~~: l. r1. - 2 ~ 2 c~ \, 3" 14 J( x ({~ xJ. 

Observe that eq.(J4) aatisfiea the following infrared lW equa­

tion 
By an appropriate choice of the renormparameter flR one can mini- II 2 2 '1. 
mize the magni tilde of rn ~a+t • So, let us introduce the concept of (Leff.~Le.+{+p(<a)~8 + r~~i,(9,0')f- 2re"d{'J)}';;JsuH(:~~~L/:' ~)'" O, (J5 ) 
the effective length of the contour 2b/ 14/. Define it to be equal to
 

the inverse of ~/R for which
 

\.(2. L. 
( ..!-.IR. 

p2. Q), , 
~ 1 . 4. Renorma11zat10n Group Equations for the Infrared Asymptotics?n so·H "-p:' Wl'f 'p" I (23)

~1A. '" 1( Leu. 

" Amplitude (14) for the on-shell quark form factor contains alI 
From eq.(23) it follows that for the contour 2a one has 

the IR singularities in the factor fi!. l>"H ( ~, ê-~), Using i ta 

Le.tt. ~ 1/ À (0) explicit form (eq.(24» one can obtain 

() IX /) ryn (pllt Q<') 
~~_~ =. cI.. ~ ~cH A )~ = r ( "\ ) ) . (J6a)J
*In addition to the IR asymptotics of the form factor we are in­ I d. ~ ~ d ~).. Cu.\;f g(", ) õ ' terested in, eq.(18) takea 'into account also the additional IR singu­


larities of the externaI quark propagatora and that ia why it ia ga­

uge-dependent. 
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Thus, the IR asymptotics of the forro factor in this kinematics is 
described by the RG equation 

• ('O ~ . .\ ÀZ Q,' 
- Â ;>; .+ (-'(~ ) 9 ~ -t rw.StJ ~ I l' )) m(~) ~ .. }= O, ()6b) 

The validity of eqa. ()6) ia aupported by calculations of the lead­
ing IR asymptotica in the lowest ordera of PT/ 15/ corresponding to 
the firat term of the 0(5 expansion for Ir :,> in e q, (21 ). ThB 

, "'t /16/
nonleading two-loop IR asymptotics calculated in ref. comple­
tely agrees in two limiting cases õ->oo (Q.2,>':>m2.) and 

!'" .... O (Q2« m2) ri th the limi ting values of the two-loop r 
'Usp

from eq. (21). 

In the case when quark momenta are slightly off-shell ( p~ ~ 2.", 

'1 2- 1'\'\2. .::. - for, , p. ~ YrI) all the IR singulari1;1es of amplitude 
(17) are contained in the factor 1ns~~ (eq.(34». However, to get 
the form factor amplitude from eq. (17), one should extract externe.l 
free quark propagators from rn. : 

·m -> iii. :: Ul-m) m Cp-m) 

and subtract from ~ ·the addi tional IR slngularities of the non­
amputated propagators S<p) and S <q) (see the footnote to eq. 
(27»: 

- 2. 2.. d. Sip)
?n. ~ m r-'::' 'm /m a mn. , Ynam h .::.. - ~p-Vl1 ) ( Z. .t..) I 2 -, ~ .-(

r ,.. r o f-WI f-Y\1 --I .. 

·Differentiating·m with respect to ~ 

fZ.pZ. 2. 

ei. e., m. = J em m$o.f-l ((~)2-) ~) 
d. e.. ~ d e~t< 

using the explicit form of eq.()4) and incorporating the dependence 

of the effective length L e.f.{'. on f ( L~.ç{'."'" 1/~ , aee eq. ()))) 
we get 

ç(~ m re.u.s.p ( <ã( 1/Le.u. ) ' J") + 2 '-~nd (ca{1/ L ef+') ) ' ()7)
d. emr 

To find an equation for?n~ ,we Utilize the resulta of 
our analysis of the IR properties of the quark propagator se?) 
in Feynman gauge/14/. All the IR singularities of the quark propa­, 
gator can be extracted into a separate factor given by a PT-vacuum 
-averaged P -exponential, path-ordered along the straight-line 

12 

.., ,-1 
segment between points O and 2.f}lp":..m~1 . As a result, 1nump 

satisfies an equation analogoua to eq. ()7)/14/ . 

cÁ ª'" -rn ~mp 
.I n = 2 r (Q n/L (S) ») , ()8) 
~ '(Jvl f e 11.c( (J e~'f. 

(5)
where Le~1~ is the effective length of the above contour e~ual to 

L(>,) = v~ C ::.L _ 
~.ç. i p2:.. m 2.1 1 r C' f C I - e ..... p ( 2 to O(<XS ))I • 

...' 

Uniting now eqs.()7) and ()8) we get finally our equation for 
the quark form factor: 

J ~mF_ (.. 1) (- { . , .\ 
d ~ f - re.u.sp 8 lLef(,), ~ ~ 2 re Hcf ~ (Le.y)) - 2 re hd (~( L';;+r?) ()9) 

Substituting into the r.h.s. of this equation the quantities 
defined earlier we obtain 

in 2 ~ 
"'1:M7Y1F o(s(l-l} " {<Xs.(I4.'>\ (~ 11 I/ J" Ih-----0-- -= .~ C (~Ctf1ã-1) t- \..--=-.1 ) CF'" Lz-t" ,~c'tn3'" <-{),X, X 
d V'Y\f ,"lT" F ". Y (ç, 

. +(u- ~O!)(rcthõ-d·- dhoJd)()(CthX+c.-l:h1.J'jdX)«(Ir-'C) c..-thX (40) 

, .r J( d:hx - f e ;J, '( ] 3> 'J 

- 2 ~h2;f J:<>< lo 1. h -- t o: 01..<,11-<») •
.;) ,.h.r-j.hl\ ~hx I 

OUr equation (40), obtained in the MS -scheme, differa (by 
(oI!)~F"'[-if(õ"c.thQ-f) ... f4;r-l:hf] ) from the results of ref.l 17/ 

obtained within the MOM-sch~me. 

Consider the Q2. '» 'm 2 limit of e q, ()9) ; 

. (W11)"4· I'NI'"\ 114\)2
d 011 ml= "",;(t,-Q'- ) e Q2. (<X~(t\.~ J) '[·67 "7I"L] e Q7.. 
-;---,r--- :=.. CF 1'\ - -to C Iv --- - 1'1--- (41)
<-{\JI1r r, 'tl1 L .".. F 3(,12 ml. 

1 () o Q2.)
 
+ o(oi", , Vvl Y\'J" •
 

and note the two properties of eq.(41): the nontrivial argument of 
the effective coupling constant and absence (in the first two ordera 
of PT) of the logari thmic cont r.í.but Loris proportional to e-, 2 Q Z. 

() , »1"2­

and higher powers of IM ~2- Ou the other hand , two-loop cal­• 

culations performed in re~s./17,18/ produce a slow-convergent expan­
sion\: 

cf ~ 1?!.f.= ~)C e.., Q2 + ~ f~!)2c ",tn2 Q).. t- 0(0(2 Ch QL O( ~o Q2). (42) 
c.:( ~ ~ "lT" F m2. 24 ~ 11" F \'112.. S V\-11. I S ('h' 

Comparing. eqs. (41) and (42) we conclude that in higher orders of 
n o I("Q~

PT the 0<5, (r) Ctn ",,1. -terma (1< I< ~ Y\) of expansion (42) are propor­
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'I
 
" 

tional to the ~ -fuhction coefficients and their role is to modify I 
I ~ 

the argument oi the coupling constant. I 

These important properties of eq.(41) are- preser~ed in alI or­
ders of P~; Indeed, from eqs. (39) and (36) it follows that the beha­
viour of ~F and d. e., -m for Q.2 '» m '2 is determined by the 

e.tt:M/-,- d~>.. . i.
asymptotics df the cusp anomalous dimension (see e q, (22». Substitut­
ing eq.(22) in eq. (3') we find, for ,example, that 

cf. e\1 'rnF Q(-& U / L e H . )) rl . e.,Q2- _O(e.,OQ.2..) , (43)L ( --Tí--' C 11 a l'l V\1 2. -e- ~ ..
c:l~f 1'\ "O i 

Le., that the exponsion parameter in eq-.(43) is cJs.(1;L.e-{{.). Eq.(43) 
can be immediately generalized for QED, where C 1 = 1, C l'\ = O for 

n, ~ 2, ri. (~/Leu.) ~ eX (Q} and e q, (43) reproduces the well-kn own ex­

ponentiation property of the one-loo; IR asymptotics/19/. For QCD 
such an exponentiation is absent, but one can conclude from eq.(43) 
that truncating the PT series in the r.h.s. of eq.(43) one neglects 

in i ts solution only the terms of an order of or 0(5 (1/ Le+~,» hav­

ing "maximally non-Abelian" colour struct~e • 

5. C o n c 1 u s ~ o n s 

In the present paper we studied the infrared asymptotics of the 
colour singlet quark form :(actor within the framework of perturbati­
ve ~CD. The use of the gauge properties of QCD enabled us to per­
form the factorization procedure for contirubions of va~ous subpro­
cesses and to single out alI the IR singularities of the process 
into a universal IR factor. It has been shown that this factor ia 
given by a PT-vacuum-averaged P-exponential, path-ordered along 
some definite contour of figo 2 type. The specifíc form of the con­
tour is unambíguosly fixed by kinematics of externaI quark lines. We 
demonstrated that there exista a one-to-one correspondence between 
UV and IR singularities of the contou~ averages present in the ex­
pression for the IR factcrs. This fact enabled us, first, to prove 

'l,
the applicability of the RG methods to the IR problem under study 
and tó formulate the appropriate RG equations, the solution of which 
describes the whole IR asymptotics of the form factor and, second, 
it enabled us to demostrate that the anomalous dimensions of the in­.. " 

frared RG equations coincide with an appropriate comb í.nat í.on of the 

14 

cusp and end-point anomalous dimensions of contour averages, the 
two-loop properties of which were studied earlier in refs./8,12/. 

Third, this approach to the IR problem allows one to find Wl arbit­
rary nonleading IR aaymptotics of the form factor, modifying in a 
nontrivial way the argument of the coupling c:onatant in the lowest 
ordera of PT and estimating here the magnitude of the PT terms 
not taken into account. In particular, we reproduced the existing re­
sults for the quark form factor and supplemented in higher orders of 
PT on the basis of the performed. one-loop calculations. 

H 

~ .f 
b)a.) 

Fig. 1a) Peynman diagram for color singlet quark form factor, con­
taining hard (H), co-llinear ( Jp and J~. ) and soft (S) 

aubgrapha. 

b) Diagram Pig. 1a) with factorized contribution of hard 
subgraph, ' ' 

c) Diagram corresponding to totnlly factorized form fac~ 

tor amplitude. 

lÃ
I 

:'p q.... 
0.) 

Fig. 2. The integration contours 

o

-A 
~\ 

2.dp 2C5'qr
\' h) , 

in the Minkowski space determined 
the infrared asymptotics of the quark form factor for on­
abell (a) or off-shell (b) externaI momenta. 
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APPENDIX 

Hera we consider the properties af the propagatora of quarks,
 
gluons and "ghosts" in an externaI gluonic field, defining them as
 
aolutions of the Dyson-Schwinger equationa illustrated graphically
 
in fig. 3.
 

The quark propagator S (x, tj ; A) in tlE external gluonic f'ield
'" 

satisfies the following equation:At<­

ei 'd õ ~ +. 8 ÂI õ f-<- m ) S t«, 'á; A) := - h ( >( - 'j ) . (A. 1)r 
We ahall look for its solution in the form 

~ 'v ~ +
 
S()(,~iA) ~ Ep()('oo) S(><,'d;A) E (~,~),
p (A.2 ) 

" 
where EpCx,Oo) ie defined in eq.(8)~ After Bubst1tuting eq.(A.2) 
into eq.(A.1) we get an equation for S 

( ~ dríJ r t- 'à Á/'~ r - m ) S(><,Ij i 4) - S( x - ~) ,i: 

(A.) 
where
 

A U Af " ') .....
Ar- ()().: Ep(X,oo)( A,/)() r ~ '+ Ep()('oo) 

is a gauge-transformed gluonic potential satisfying the axial gauge 
condition Pr- 11;: -= O /5/. He~ce, if S (x, ~j A) Ls the propa­
gator of la quark participating in the hard or collinear subprocesB 

Op ., then the contribution of those terms in tha aolution of
AU 

e q, (A. 3) which are proportional to A,.... (k) wi th momenta K r- in the 
collinear or IR regimes, respectively,has a power-Iaw suppression. 
Thua, in the lowest-twist approximation we have 

s(x, '<J í A') = So (><. - d) [ 1 + O( 11Q Z ) J. 
(A.4) 

Substituting eq.(A.4) into eq.1A.2) we reproduce eq.(7). 

Th~ gluon ,propagator Dt"·I,\)(X.lj i À) in the externaI gluonic 
f.ield Ar- aatisfies the equation: 

(n~\I L«, A) .. li- 6,('1() L1 v (X ) ) ])Yp(><' ti; .4).= -gffb(X-~)J cx->O, (A.5) 

where 
ai, . \ 2. ~ ( ~.s ~c c
nr\l (Xi A) =; 8~J]) -2: [:D DJ - - ~·f E;],l-lV
t' v +:2 .~,
 

"Do.~ ._..Ô 'ba.e .ç Q.C~ Ac
 r - r ~~ ,... ~ flJ = ff [])r,"J)v J 

and the gluo~ic field satisfies tho gauge condition 

" 
LJ,...<x) Ar-c'<):o. (A.6) 

Solution of eq.(A.5) 18 looked for in the form 

--...... ...,~

Df/X, '<1/ A).: EpCxJoo) Df'J ()('7j, A) Ep 1';1,:><J) • (A.1) 

Then 'DfAv ia!l aalution of the equat í.on 

(ll,.-.v(Xi AV) '" ~ :1f'4()()6v(X))Dvf()('~iA). -flrf t(X-~J,O<-"C, (A.8) 

where the following notat1on ia introduoedz 

rv "'+­ '""-J 

L\r(l() = Ep(x/~o) L1 r ()<) Ep(x',iX»' (A.9) 

Comparing eqs.(A.5) and 
propagator in the gauge 

~U 

gluons Ar. such that 
xímation (in a complete 
(A.8) is 

."v 

(~8b we conclude that DV[J ia the gluonic 
.1~!~, = O 1n the externaI field of the 

Pr- A =- O . Hence, in the lowest twiat appro­
anarOgy with eq.(A.4») the solution of eq. 

DPV(!(/~j 4): ])!v()(_~) (1i" O(~/Q2)J ~ (A.10) 

'"D ~\Iwhere is a free gluonic propagator in the gaugeo . 

J,..(l() Âr(X)'=--O (A.11) 

obtained from e q, (A. 6) via transformation (A. 9). Err the cLaas of~the 
simplest gauge conditions (A.6) (wi th L1 ~ (><) no t depending on Ar ) 
it can be shown that the absence of "ghosts" in this gauge implies 
that 

"-' .-v tAv fJY 
~I(X)'= L1 l X) , Do ('<-~) =-])0 (X-'d)' (A. 12 ) r 

In the c<. -gauge, e. g., il,...()() '= 7J~ " and with account of e q, (A. 9). 
the modified gauge condition (A.11) has the following form: 

f< "J~)rv rv~; -::t /'{"-'"
( 'O - L~ 8::> (x') A,..(x,)=O, iS [x):. ~ Cf (X,Xl) OI Ep(x,O<J) (A. 13) 

~ 
i.e., it is the background.field gauge. 

:1 If gauge (A.6) ia not a ·ghost free one, then the ghost propaga­
tor D (x, ~', A) (see figo j ) in the external gluonic field ÂrI satief1es the equation

I 

'Dr(X)J)r(X)'D(x',CjjA)=' -"b{X-~). (A.14) 

16 
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Using the ansatz 

"J "J ...... + 
J)(x}'<Jj A).:: Ep(x,oo) D(x'lji A) E 

p 
(I;j}oc)	 (A. 15) 

we	 obtain the equation for D : 

Lrf(x) 'D ()( ) D(x,~; A) = -S(X-~). r (A.16) 

The solution of this equation is the ghost propagator corresponding 
to the modified gauge (A.11) in the external gluonic field ~. 
Hence, in the lowest twist approximation we get 

D(x, Ijj A)= 7)(x-<a) [t+ O(1/Q2.)j 1 

where D(x- ~) is the ghost propagator in gauge (A. 11). 

~ ~~--L 
~:~+,L~~ 

~~~~~
 
Fig. 3. Graphical D~son-Schwinger equat ion for quark, gluon and 

"ghost" propagators in the externa! gluon field, respecti ­
vely. 
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