06LEAHHEHHLIA
MHCTHTYT
RABPHBIX
MCCAEAOBAHNA

AYGHa
E2-86-277 ‘

A.8.Galperin, E.A.Ivanov, V.I.Ogievetsky

DUALITY TRANSFORMATIONS

AND MOST GENERAL MATTER
SELF-COUPLING

IN N= 2 SUPERSYMMETRY =~

Submitted to ''Nuclear Physics B




I. Introduction

A consistent description of matter supermultiplets is a necessa—
ry ingredient of the future supersymmetric phenomenology. For such a
description the knowledge of corresponding off-shell representations
i1s of a vital importance. Indqed, only on the latter supersymmetry
is realized linearly and independently of a particular action. This
in turn allows a straightforward construction ofzﬁeneral interactions
(for N=1 supersymmetry, see for example ref,

Generally speaking, there can be several off-shell representa-
tions of the same on--shell matter multiplet which may and do lead to
different self-—couplings. An important problem arises! which off-shell
extension provides us with the most general self-couplinga? The main
purpose of the present paper 1s to give an evidence that the comple~
te solution for the case N=2, dm'4 (or, equally N=1, d.-6) is
achieved within the harmonic superspace approach ? which opened
new avenues for the off-shell treatment of theories with extended
supersymmetry.

It 1is instructive to begin by recalling how the above problem
is solved in N=1, ol =4 supersymmetry. N=1 matter (two spins 0 and ome
spin 1/2) can be described by a chiral multiplet P(x, 6)or by a
tensor multiplet G(:CGQ), G= G— ,b ‘D,(G' =0 or by a complex 1i-
near multiplet L\(I‘ o, o), TD"D"A 0 » etc-(see, e.g.,ref. 4/
the Appendix). Variant off-shell descriptions differ in their au-~
xiliary fields and (sometimes) in their way of representing physical
fields. For a chiral multiplet the general self-interaction is rather
familiar

S¢: e dde K((P)E(S)i-(.gﬁxzf@?(@)‘f H.c :D (P(Ol)

where KGP,(D) and P(@) are general functions of thelr arguments
(the generallzation to several chiral multiplets 1is obvious). Any
self-interaction of other N=1 off-shell matter multiplets are known
to be reduced by a duality transformation to the generic form

(1,1) (seey e.ge,refs, 72,6/ ). For instance in the general N=1
tensor multiplet actien (with an arblitrary function {g ):

Se= \dlzdio §(6) @, T°6=D*G=0 ® 0
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we may implement the constraint (£) with the help of a Lagrange
multiplier

g, = (dxdio[§6)+ X +FX)G). 6.9

Varying X we come back to eq. (1.2). Varying G‘ instead, we ob-—
/ . =237

tain an algebraic equation 'S (6)== 2X -D3X which can always. be

solved for

—_— T - 1.4)
G= G(FX+D*X) (-4

I
provided '5' is nondegenerate ( % (G‘)?f O) . Substituting 1t
into eq. (1.3) gives .

S, = (docdo {56 + (2 PE@DY &7

—a T /RN
where (b :':sz ((PZD X) is a chiral superfield. So, the general
self—interactions of N=1 tensor multiplet (1.2) actually are equi-
valent to a restricted class of chiral multiplet ones (1.1) with

P [ ® 3Y, @.e
K (4,3)= 51601+ @+ HIC@+P)

We observe that this partioular K(¢‘Cp)depends only on ¢+(P .
Hence, i1t is invariant under

.q>_§ ¢+La 5-—)6 —ca , a:a:const Q.7

while general K(@ )(b)in eq. (1.1) may have no such a symmetry.
Similar reasonings apply to other off-shell representations

of N=1 matter. So, it is the chiral multiplet that provides us with

the most general N=1 matter self-couplings. &crucial observation

is that the corresponding chiral superfield (IL,@) isfin2 u1/1I- y

constrained nongauge function on the chiral superspace @ 1

As we shall argue the solution of the N=2 prodblem 1s givgn analo-

gously by an unconstrained nongauge superfield q, (S 1u) .

(or (A) (5‘-7'() > defined as the general functlon over the

-—:—’_J——q??énd /) -hypermultiplets represent the same entlty in
the first and second-order formalisms,respectively.

analytic harmonic superspace @4+2H 73/ . A key difference from
the N=1 case is that q_* (3 \u) contains an infinite number of auxi-
}é7ry fields and it is unavoidable in view of a simple no-go theorem

To end with the N=l case, we recall an important geometric
aspect of the N=1 matter description by chiral superfields. Just in
terms of these superfields the Kzhler geometry of N=1 matter self-
—coupling manifests itself most clearly. Indeed, the Lagrangian
density K ((P)@) in (1.1) can be viewed as Kahler potential, with

playing the role of complex coordinates. For any Kdhler
manifold, this potential completely characterizes the relevant geo-
metry. Thus, the chiral field formulation visualizes the theorem
stating that any N=l matter action 1s basically supersymmetrization
of some Kihler O model « From the geometric viewpoint, to cons-—
truct the most general N=1 matter self-interaction, one has to take
the most general Kidhler 6] -model, change, in its Kahler potential,
the complex coordinates to chiral superfields and choose the resul-
ting expression as the Lagranglan density (arbitrary nongeometric
terms of the type P (Cb) in (1.1) can be added).

The study of N=2 matter (four spins O and two spins 1/2 on -
—shell ) began just with elucidating the geometry which governs 1ts.
self-couplings. In the remarkable paper Alvarez-Gaume and
Freedman have proved that any self-interaction of matter N=2 multi-
plets yields a hyper-Kahler G model in the physical boson field
sector, and, vice versa, any given hyper-Kdhier G model can be
N=2 supersymmetrized, However, in the N=2 case the geometric
considerations do not lead immediately to an explicit construction
of the most general matter self-coupling., The point 1is that at
present a complete 1ist of hyper—Kihler metrios is lacking and no
general recipe is known for construction of such metrics (in cont-
radistinction to the N=l case, viéere any Kahler metriec is defined
by some Eahler potential K(q’ ,@ ) whibh is the primary object with
no further restrictions), Knowing an adequate off-shell superfield
formulation of N=2 matter may fill this gap.

Ti1l the invention of harmonic superspace all the attempts at
such a formulation were undertaken on the basis of N=2 multiplets
with a finite number of components. The first off-shell N=2 multi-
plet of this sort was found by Wess 11/ and de Wit and van Holten
712/ « An analysis of self—interaytions of this tensor /11,12/ N=2
multiplet by Lindstrdm and Rodek 13/ allowed them to construct some
known and some new hyper-Kihler metrics, However, they noticed that



it is impossible to achieve the most general self-couplings of N=2
matter with tensor multiplets. The reason is that after a duality
transformation there arises a hyper—Kahler C; model with at least
one Killing vector, in a complete analogy with the discussion of
tensor N=1 multiplet above (see eqe (1.7 At the same time, there
exist hyper—Kahler metrios with no continuous isometries.

Another example of off-shell N=2 matter multiplet was found by
Howe, Stelle and Townsend in their search for N=2 formulations
of the N=4 Yang-Mills theory. Unlike the tensor N=2 multiplet, this
relaxed hypermultiplet admits a minimal gauge coupling. Some further
relaxed N=2 matter multiplet was disoussed recently by Yamron and
Siegel /4 . A common feature of corresponding actions is an inevi-
table presence of Killing veotors, analogously to the case of tensor
N=2 multiplet.

The harmonic superspaoe approach enables us to demonstrate
that this property is not aooidental. Weg show that all the above
off-shell N=2 multiplets are naturally described in harmonic super-
space by properly constrained (or sometimes having a gauge freedom)
analytic superfields. All their self-interactions are equivalent
on-shell to those of tensor multiplets. The very diversity of mattexr
multiplets with the finite number of components in N=2 supersymmetry
is related to the exlstence of unconstrained harmonic multiplets with
an infinite number of components. We may, e.g., easily construct
further relaxations similar to those gilven in / 4f4 with increasing
(but finite) arrays of auxiliary fields. The most important point
is that all these actions are equivalent to some restricted class of
actions of unconstrained Qf—hypermultiplet superfields, like
actions of the N=l tensor multiplet are equivalent to a restricted
class of N=1 chiral superfield aotions. We prove this with the help
of N=2 duality traensformations defined by us for the first time in
/15,16/ . An equivalence to a class of Qf-actions can be proved
also for other constrained N=2 matter actions considered recently in

8,17/ . At the same time, Qf itself admits general self-couplings
which cannot be implemented with any known N=2 multiplet having
é finite number of components.

The paper is planned as follows. In Sect. 2 we first succinctly
recall the basics of the description of matter hypermultiplets in
harmonic superspace. Then we give their general self-coupling. In the

q,-language it 1is written down as

$=1 &aéauu T LY T L, u2) 0

(for the notation, see >/ and the text), ;f(+€)(1 8) 1s a fou
. L=

~fold t}ﬁl)-charged function that arbitrarily depends on super-
fields qu (A:i‘Z‘n.) and any degree of their harmonic derivatives
and includes explicitly harmonics llz U, (also in an arbitrary
way). Besides, a generalization to nonzero central charges is discus-—
sed. In Seot. 3,5 we show how to describe in harmonic superspace all
other N=2 off-shell matter multiplets known previously., Higher rela-
xed multiplets are derived (Sect.3) and are shown to admit no new
self-couplings (on-shell) as compared with the lower ones. Sect.4
introduces N=2 duality transformations. By means of them, all the
self-interactions of N=2 multiplets having a finite number of oom-
ponents (Sect. 4,5) as well as those of higher U(I)—charge analogs
of () -hypermultiplet (Sect.5) are reduced to a class of ‘Ir-
self-interactions (1.8). This class 1s distinguished either by
having at least one isometry (for temsor and relaxed multiplets)
or/and by restrictions on admissible degrees of harmonic deriva-
tives. 80, eqe. (1.8) presumably describes the most general self-coup=—
ling of N=2 matter. The general function éf¥}4) in (1.8) is an
N=2 analogue of the Kahler potential of N=1 case in (2.1) and can
thus be called a "hyper-Kihler potential®. L}sting all possible

éﬁ@*)% amounts, according to the theorem of 104 to listing all
the hyper-Kdhler metrics.

2. Ungonstrained N=2 matter multiplets

This section collects main facts concerning the basic N=2
matter multiplet (hypermultiplet). It is an N=2 analogue of the
N=1 chiral multiplet. Like the latter, 1t can be described by an
unconstrained superfield déefined on some submanifold (on the ana-
1ytic N=2 superspace). This hypermultiplet can be represented either
in the first—order formalism (¢l+) or- in the second-opder ODG(CL» .
We review its properties and general self-couplings.

+ .
2¢1e q' ~hypermultiplet

{21¥+2]8

The harmonic superspace ]} is obtained from the
ordinary N=2 one TR i3 by adding a sphere S = 8U where
8U(2)a 1is the automorphism group of N=2 superalgebraEJﬂhrm;nics
(/(f-_ are coordinates of this sphere ((,{"“'; uz = i) and,
consequently, they have SU(2) index L and U@)-charges =1 .
There is an invariant subspace in |¥¥i<+&(8 with coordinates

(3 5 W=bg%6",8% i)

that 1s oalled analytic super—~



4+2}4 ,
space qu (see Appendix A) ., In the first-order formalism
the basic hypermultiplet is described by an unconstrained analytic
superfield ﬂ, (fg Z{) which is complex and has [7(1)'~oharge
+1l. To descend to ordinary fields, one has to decompose it in po-
wers both of Grassmann and harmonic variables taking care of
the strict U(Z) - charge conservation in each term of the expansion?

T3 W= Seout + § PG U+
+ 04 (Y @)+ (&'J)(x)uﬂ W+ . )*
+—é}(3_eéf@c)+§a((;)u{c u3)+,,_)+‘“ (2.1)

where we have kept only the physical flelds (isodoublet of scalars
4t CJC) and two isosinglet Weyl fermions Y (X) , .X"((Lt))
and the very beginning of infinite tails of auxiliary fields 5‘1k)(;3
etc. Bach component field carries indioces of the group SU(zzq. The
corresponding free action is (tha bar denotes an appropriate conju-

gation)

Siue xakg( 4)A 4 D—\-ﬂr _.__1&0{5(4)0{24% +aD+r¢La. (2.2 )

{K\;Cw\wtwl:cw

where we have introduced the notation
(et -m+\ Tat*. gqta_ cafqt (2.3)
- <;q' \ q" ) N C‘— = ﬂ— =& 7L€>

Now we can easily verify that after eliminating auxiliary
fields by the equation of motion

D= (il —2i6675 0 ) =0 )

2
there remain standard free equations for the above physical fields.
The equation of motion (2. 4) says that in the central basis (see
Appendix 4) q, (5(2 u) ’L() u+ ZL(Z) u+ CLL (‘x 6 1@d)
At the same time the manifest analyticity of ﬁ[+ in the analytic
basis implies in the central basis

0= 943 0= WD ) £ => D 1P@= 0
and, analogously

0= T3 ¥Gw= wiDiu ¥ > D19 @= 0-

80 we arrive at the familiar Fayet-Sohnius /18/ description of
hypermultiplet.

The free action (2.2) is similar to the massless Dirac action.
In particular, like the latter it is invariant under a rigid sU(2)
group, that 1s seen especially clear in the pseudoreal notation

(2.3) 15, 19/
SCL::L >‘0L 7,6’ (/\ﬁ):‘)‘;, /\::0' (2.5)

This SU(2) group is easily ldentified with the Pauli-Gursey group
because it is an off-shell extension of the known internal Pauli-
Gursey su(2) symmetry of an on-shell component construction x

The transformations (2.5) evidently commute with the N=2 super—
symmetry and the sU(Z) group of automorphisms acting on harmonio

variables X —_— ‘
sut= Adui | (Al)--(A]) A= 0.
(2.6)

Besides, the aotion 52 +2) is invariant under N=2 superconfor—
mal group SU(Z,ZIZ) and, in particular, under its sub-
group SU(2)¢ whose off-shell realization is different both from
(2.5) ana (2.6):

x) Indeed, the action for free physical fields

$= 4 (déoc (22T 05 1 ¥R T+ XFX)

has a Pauli—Gursey invariance under

55 zid§ie pTE BY=idte pR, SR=-X-FY
0(-:"‘.-)\1) P'—"")\i



L= 83{ (iq 0(((‘”5‘ Dﬂ?/a S ‘La- QQ(S W~ (529
2.1
Sstia- —0( JC“JL'"“J’Du )%a.

where o(‘(J) are SU(Z)C parameters. It i1s seen that 8U(2)/
actually coincides on-shell with SU(Z)A .

2.2, _G) —hypermultiplet

In the second—order formalism the basic hypermultiplet is
described by a real analytic superfield with zero U(1)-charge. Its
harmonic decomposition

(3 W)= L)+ DU+ 6™ ey B F..
(2.8)

oontains four physical scalars as 1+3, and two weyl fermions as 2
of SU(Z)A (cf. SU(2) prescriptions for the Q,— case). The corres-
ponding free action in the absence of central charges is (now an
analogue of the Klein-Gordon one)

‘hee_ i (_4) ++ Hw . Cw'lzcwﬁ . . (209)
ESZU = }i;%5*25 6{14 ~I> o ]> 7

Again, the equation of motion (now of the second order!? (t?*j32)~ =
= 0) tells us that only fields written explicitly in eq. (2.8) are
physical. 4n infinite tail of unwritten components is auxiliary .
Passing from ﬁt* to (J hypermultiplet goes as follows
715,19/ . Let us make a ohange of variables

¢ =wwr W ST B, TrasT G

in (2.2). Then we obtain

Shee=tidgOdu 4 (575 25**1)%))

(2.11)

and, this 1s Just the first~order actlon for cJ corresponding to
(2.9). The inverse change 1is

=9t oy 7¥ _ ymatt
tt_ g4 + 74 +ig+ »
4 ’uzi’“iél = utig*, o (2.12)
Again, the manifestly N=2 supersymmetric action (2,11) has two in—

ternal SU(2) symmetrigs (apart from the SU(2) of SU(2,21|2)). The
first is defined as */;

\
W (Slu\)z w(‘s,u), %H('é,n)) = ‘S*Jr('};_u) .

)

The second one is the Pauli-Gursey SU(2) group (2.5) which is written
down in terms of &  and :f'H' as

_ o 0Ty . .
. /A* w % -§+ ) ,>\tt: QE\%) u‘\_" w o (2.13)
S§= 0w + T4 }

8o, there are two completely equivalent ways of describing
the basic N=2 hypermultiplet.

2.3. General self-couplings of N=2 hypermultiplets

Resorting to dimensionality and analyticity reasonings we can
write down the most general self-interaction of any number of hy-
permultiplets in the form

S%’M gd (")Ju ;K (%@A )D**Clh ,DHQ:A )(Dﬁf%w)u) . (2.14)

. (+v)
Here we choose a q/ ~form of hypermultiplet. Of course, ;{
must be nondegenerate to contaln the free kinetic term

A LI
Si+ s DH’T SZ+ 5D++i+ (2.15)

4
Otherwise, ;zf(f ) is an arbitrary U(I) charge—4 function of

x) It is the diagonal in the direct product of (2.3) and (2.6).



harmonics, quS and theilr harmonic derivatives of any order
(because these derivatives are dimensionless), P 1s a coupling
constant with dimension cml for d =4)cmo for d=2 and cm” for J: 6.
In (2.14) we set Q)s to be dimensionless, So, spatial and spinor
derivatives (dimensionalities cm'l and cm" 3 respectively) are in-
admissible for dimensionality considerations, and in fact they would
lead to a higher derivative action for physical fields.

After elimination of auxiliary fields every éﬁuw) results in
an N=2 (i.e., hyper-Xahler) nonlinear sigma model 10/ and hence
in some hyper-Kihler metric. This suggests a new scheme of classifica-
tion of hyper-Kahler manifolds according to the form of the corres-
ponding Lagrangian density in (2.14). At present, several examples
have been worked out in some detall /21,22/ « For instance, the
Taub — NUT manifold can be considered as the manifold coded in
the action

Spue &, 45707y < N7 (o0

where ‘) is a dimensionless parameter., The next example 1is the
Eguchi~Hanson manifold that corresponds to the action

S 1 R

where §+"*= ng([t M% stands for a dimensionless parameter. Note
that*in this case the ¢o description turns out to be more transpa- -
rent (the q, -descript107 is also posgsible /22/ ). The number of
examples can be enlarged 22/ The above ones, (2.16) and (2.17),
possess U(2) symmetry having different origins. U(2) of (2.16) is the
product of SU(2), and U(I)-subgroup of 8SU(2)pcwhile U(%) of (2.17)

is the product of sU(2)pgand U(I)-subgroup of Su(2)a * . In the ge-
neral case the action (2.14) does not contain any symmetries (1),
8U(2), etc.ybesides N=2 supersymmetry. Even the sU(2) group of auto-
morphisms can be completely violated by allowing explicit ‘harmonics

——— —— s S —

x Looking at (2.14), 1t 1is easy to observe that it 1s
impossible to preserve both SU(Z)A and S“(2)PG for a single self-
—intdracting Qf while this becomes possible for two and more
hypermultiplets.

10

i atyt 4+t
to appear in XG )(‘1:',17 ) (D +) q/'""“) « This should be

contrasted with the N=2 matter self-couplings based on superfields
having a finite number of filelds (the tensor multiplet, the relaxed
hypermultiplet, ete). As will be discussed in Sect.4 the Lagrangian
densities of tensor as well as of original and higher relaxed multi-
plets are reduced by duality transformations to a particular class
cf Sf&h)’s exhibliting invariance under the shifts

5‘(f/+= comit U, S@* = eomt U3 (2.18)

)

2.4. Comment on central chargés

Now we shall briefly discuss an extension of the above picture
tg nonzero central charges. As we desoribed in the Appendix to 3/,
the central charge can be included into the harmonic superspace
scheme by a standard method, 1.e., by adding to (5;,“ ) an extra
bosonic ooordinate Xi .

This entails the following modification of harmonic derivati-
ve (in the analytic basis when applied to analytic superfialds)

sy D ’
D++—‘? D+C‘:= -D'\"\‘ + i.(9+9+"9+9+)55(§ . (2.19)

Now analytic superfields are allowed to depend in a general
way on an additional coordinate Xi « To preserve the number of
physical fields, we fo}low the dimensional reduction procedure of
Scherk and Schwarz /2% . Let the aotion (2.14) have an UCI)-sym-—
metry commuting with N=2 supersymmetry and possessing a Killing
veotor &' (g%.)

09" = L 6° (1,*;---)' | (2.20)

s
where ol 1is the U(I)-parameter. Then X, dependence -of @f is

restricted as ( M 1is a parameter of dimension of the mass)

? + (o ‘
0 > . (2.21)
ax? 2

After substituting (2.21) into the harmonic derivative (2.19) and
then (2.19) into the action (2.14) we arrive at the theory imvariant

11



under N=2 supersymmetry with a oentral charge. In such a theory
the potential terms (in particular, a mass term) beoome possibie,
e.8.,for the free theory (2.2) such a prooedure with C¥= i1qF
results in a mass term: instead of (2.2) we would have

S<- L, (a5 RAERERSY (9*9+-'9'+§+>7L+ﬂ . (a2

Note_that N=2 supersymmetry admits generally two central
charges X, A corresponding extension of the above procedure can
be done along similar lines with two additional coordinates Xs
and X& instead of X° and for actions (2.14) having two U(I)-
—symmetries commuting with each other and with supersymmetry.

3. Harmonio superspace desoription of off-shell matter
multiplets with a finite number of fields. Tensor and
relaxed N=2 multiplets

In this Seotion we shall show how to describe the tensor
multiplets, the relaxed hypermultiplet and further relaxed multi-
plets in the harmonio superspace. There all these multiplets are
iepresented by some constrained or(and) gauge analytic superfields.

3.1. N=2 tensor muliiplat

This multiplet was oconsidered in the harmonio supersﬁaoe
approach in 715,16/ . Here we recall some relevant facts. Its
superfield strength is a real analytio superfield zﬂ*ﬂrfjlu) -
= ZTFF?§AO having U(I) oharge +2 and obeying the constraint

D LT () =0 (3.1)

To make a contact with the representation of tensor multiplet in
ordinary N-z'superspaoe 1 , we pass from the analytic basis to
the central one 2Z = ()(‘MIQJ,@&‘L). There the ocomstraint (3.1) says

L (? (2w),u) = U s L9 (z). G2

‘/ x)Harmonio superspace with both Xs and )(6 was discussed
23/ '
in .

12

On the other hand, the analyticity conditions
3+ ¥ _E ) t¥
Ddl. = DQZ_ =0 (3.3

in the central basis become

DS/_‘;WCa) = 5(:( LJK)(Z) =0. (.3")

So we come to the familiar picture /11/ .

Let us return now to the analytic superspace and give the free
action. It is bilinear in Lf+

¢t S Sdgﬁ% ) (z)-ont, [L7)=em” G0

By dimensionality and analytiolty arguments the general N=2
supersymmetric self=ooupling is given by

‘ WA (3.5)
G L G B (0):

where F(—H‘) (/_++, u) is an arbitrary dimensionless function of
the field strength L+4— and harmonics U* having U(I)—charge 4 .
0f oourse, the constraint (3.1) is implied, being the definition
of tensor hultiplet.

~ Definition (3.1) is N=2 superconformally covariant 720,16/ ’
while the action (3.4) is not. The theory with conformally invari-
ant action corresponds to improved tensor multiplet and it has
drawn an attention because this multiplet can be used as a compen-
sator for the N=2 gonformal supergravity 25/ « The improved tensor
multiplet has been found first in terms of component filelds
then .in terms of N=l and speoial N=2 sugerfialds 13,26/ andy final-
ly, in terms of harmonic superfields /1 /. In the last formulation
the improved tensor multiplet aotion is written down as

_a0 )5 @) . AN A
SR ey

(3.6 )

13



where

Ciécwwzﬁf) s, ccy =2

and (see /16/ o1 Sect. 4), (3.6) i3 equivalent via a duality

transformation to the free action for @+ ~hypermultiplet. At the
same time, a sum of (3.4) and (3.6) yields a nontrivial self-in-
teraction 13,26 . This sum is known +to possess an SU(2)=symmetry.
The present approach allows one to simply identify this 8U(2) as

a subgroup of conformal supergroup SU(242\2 ) (which as a whole
is broken in that case). It is reallgzed as

§% LT [P0 L) - -ba LT SLUTI AR WS

where X:Jc LH 15 of the same form as in eq. (2.7) and theé const-
raint (3.1) has been used. Thus, this SB(2) has actually the same
realization on component fields as SU(2 ), .

It 1s worthwhile to mention the impossibility of minimal Yang-
Mi11s coupling for the N=2 tensor multiplet. The reason is that
this’ multiplet includes gauge antisymmetric tensor field (notoph)
and its gauge invariance is incompatible with the Yang-Mills one.

3.2s The relaxed hypermultiplet

Howe, Stelle and Townsend 714/ invented the relaxed matter
hypermultiplet which can have a minimal Yang-Mills coupling unlike
the tensor multiplet. In harmonic superspace 1t is described by
real analytic superfields L++63,u) and Y (34) . The constraint
now comes out as a relaxed form of (3.1)

@fﬂzl++= 0 (3.8)
The superfield \/ is defined up to a gauge transformation
| V=V e DA, (3.9)
where %—— is an analytic real gauge parameter. The free action
Sper = &, (o[ Y A 510

14

is compatible with gauge invariance (3.9) because of the oonstraint
(3.8).

The dimensionality, analyticity and gauge lnvarlance reasonings
lead to the following general form of gelf-coupling

Skg _ ézga%—‘%‘XF(M)(LH)DHLH){O Ry D-\—'\‘L-\—‘l"} - o)

where FGA)( L*"F,Ifk+[f*+)tl> is an arditrary U(I)—charge four
function of its arguments. Note, that by varying (J.ll) with respect
to V one gets D't /"L (0 and thereby comes back to the general
action for tensor multiplet (3.6) and the constraint (3.1). Soy as to
the one—shell self-interactions the relaxed hypermultiplet and tensor
multiplet actions are equivalent. An advantage of the relaxed hyper—
multiplet 1s its ability to have minimal Yang-Mills coupling. To
introduce it, one has to take )] ocopies of superfields 1L++
and V s Dut them into a real n-dimensional representation of the
Yang-Mills group and, finally, to covariantize 3/ the constraint
(3.8) and the gauge transformation (3.9). Note that the reguirement
of reality is a severe restriction on a possible choice of the repre-
sentation, '
S0y one sees how simple is the description of the relaxed multi—
plet in harmonic superspace. To demonstrate the exact correspondence
with the original desoription, one has agaln to apply to the central
basis. There eq. (3.8) says that

y ENY
M- whaf L9G) + 5 uputut o) L0 (=) (3.12)

(the faotor 5 is introduced here for further convenience). From
enalyticity of /*% it follows that

(¢ jk)
Dty L% = Duael
(i Vicew)
Dy LY =0
e ot gt oyt ot 4 + &
Cone saematy W i, i, = W Wit Vi g Ll

(ta
was used). Finally, scalar superfield \/(3)of HST /14/

V(z) = § du Vi3m0,

L‘dlce
(3.13)

(3.14)
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Obvious}y, V(Z) is invariant under (3.9) and solves the constra-
1nts

D::DF,-L\/ = 'Dal'D{s V= ]_‘Dd,’Df;'y] vV=0.

One can verify also that our action (3.11) in the central basis coin-
oldes with the original one (see Appendix B).

3.3. Further relaxed hypermultiplets

Now it is evident how to continue relaxing oonstraints. Procee-
ding in this way one obtains a multiplet that 1s desoribed as defore
by real enalytic superfields [ (3 ), V(},u) + However, the
constraint now is further rels.xed (of. (3.8) )

(D*? L™= 0 (.15
and V is defined up to a gauge transformation (ef. (3.9) )
-4) (3.16)

V=V @A

-4
where X )(},H) is"a real analytlc gauge parameter. The free gauge
invariant action coinoides with the "first—order multiplet" action
of Yamron and Siegel ( see Appendix B). In analytic superspace it
has a.ga.in the same form as in eq. (3.10)

(&) + 2 4+ ) ++
GO a7+ v o] 17
The general self-coupling is given by
) 1*Lo-+ (b-\*) n +
Syo i [FI 1075 0)
(3.18)

N V D-\-+L++

By varying V we obtaln the constrgint (3.1) and so return to the
~ N=2 tensor multiplet actlon (3.6) X/ , Thus, what concerns the self-

R

X) 0ne might add to (3.18) a term ~ V (O*%L*" and equally
reproduce the relaxed hypermultiplet action (3.11) and the constraint
(3.8) by varying V. However, it is actually of no need to consider
this modification as the modified aotion 1is reduced again to (3.18)
by a redefinition of the Lagrange multiplier as VsV - D™V,
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~interactions, all these theories (the téensor-multiplet, the relaxed
hypermultiplet, the further relaxed one) are equivalent.

One could construot new multiplets by further relaxing the
constraint (3.1). The first step results in a tensor multiplet, the
second one in a relaxed hypermultiplet, the thlird one 1n a further
relaxed hypermultiplet. Let us specify the n-th step. Here we have
the constralnt:

A+ LI (3-19)
()L =
and we use a scalar analytic Lagrange multiplier \/ (‘3,“)
defined up to the transformation
FPRVEET 2(u-1) (3.20)
Vh = Vh +<D ) (3:“) ’
The general actlon 1s
-4 -+t
(&) g )( Pt v+ A" ) +
S, g (L v, L) G2
4t
+ V. DL
++
The superspin zerc superfield L carries superisospins O, i,

n-4 and, respectively, describes

(%4-%) [14-3 + ... 4+ Qh-ﬂ = $V\1 “'8“1

degrees of freedom. Due to the gauge freedom (3.20) the superspin
zero superfield V really contains superisospins 1,25... n-l
and hence furnishes us with (8+8) (n?-1) more field components.
Thus, the theory arising at the n—th step contains % (2n%-1) + 8 (22-1)
field degrees of freedom. We have 8+8 for the tensor multiplet
(n=4 ), 56456 for the relaxed hypermultiplet (n=2) 1364136 for
the further relaxed hypermultiplet (n=3), 2484248 for n=4, etc.
Nevertheless, for any finite Y] we obtain theories with equivalent
self-couplings. Indeed, varlation with respect to Vh always
yields D""‘L+ = (O which leads to a self-— 1ntracting tensor
multiplet, A radically new situation arises at ..‘V\xo" when /_'H'
becomes an unconstrained analytic superfield and }/ suffers no gau-
ge invariance. Then FM’ may contain arbitrary degrees of harmonic
derivatives of /J** and, furthermore, one may insert into o
an arbitrary dependence on V and its harmonic derivatives. Com—
bining /t* and V  into a single ?*- superfield by eq.
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(2.10) we actually come-to the general N=2 matter action (2.14).
This consideration sheds more light on the Xey role of anmalytic
superfields with an infinite sét of components 1n achleving the

most general N=2 matter self-coupling.

We would like to note that the above relaxed N=2 multiplet ac-—
tions can be easily extended to nonzero central charges by the
general recipes of subsecte.2.4. In particular, (3.11), (3.18), (3.21)
exhiblt an obvious invariance under constant shifts of gauge super-
field Vh-=; V, + K. One may choose this invariance to
identify central charge with its generator (times a mass parameter)
and thereby to produce the mass terms which coincide with those.
given in ref. 4 .

Finglly, we leave it to the reader to compare simple and trans—
parent analytic¢ superspace actions given here with their lenghthy and
somewhat ugly prototypes in conventlonal N=2 superspace (see Appen-
dix B),

4, Duglity transformations

In this section it will be shown that all the self-interactions

of the tensor, the relaxed and further relaxed multiplets are classical-

ly equivalent to some restricted class of 1+ (or @ ) self-inte-
ractions,.
4.1. Transforming the tensor multiplet

,

fi=2 duality transformations are direct generalizations of the
N=1 ones given in the Introduoction (eqs. (1.2)-(1.6) ). We begin
with the simplest case of a tensor multiplet. The superfield Z*+
in (3.4), (3.5) 1s constrained by eq. (3.1). One can instead imple-

ment this constraint in the action with the help of a Lagrange multi-

plier W ¢

S= ;?z Sd‘é(-q)olu [ F(+A) (L“,u) W D++LH-1 ' .1

4++
Now both ZL and 0) are unoonstrained analytic superfields
and one may vary them, Varying & , we recover the original constrain
(3.1). We prefer instead to pass to 1+-hypermu1t1plets by means of
the change of varilables (2.12)

18

Z++= U+£€'+L W= a—iﬂ‘;’{t

+ . - A4
€C=“M+LW+L(;L .

!

(4.2)

We get

a | b, ALt ot 4o
St p S [ F g -S4 0] 7

This action certainly is not the general one (see (2,14) ). Indeed,
it contains no harmonic derivatives in the interactions terms and
is always invariant under transformations

(4.4)
Scz*i - comt ut .

This invariance implies that the correspomding hyper—Kahler metric
_has at least one Killing vector.

In particular, for the free tensor multiplet (3.4) the dqual
action 1s the free q+ one. Further, for the improved tensor
multiplet (3.6) we again get the free action. To see thils, one
needs a more sophisticated change of field variables /16/ %)

) a4
q*; = - ?_utC*‘cosY-“-_’z_ -z U+L-.S'1‘n\5é (1+287¢) ot 2 M et

. “ e A
ST

2+f— L+t_c+* X

3

ey =1
) d

4.2, Transforming the relaxed hypermultiplets

Once again, using as a Lagrange multiplier some real analytic
superfield \/_- we introduce the constraint for the relaxed hyper-
multiplet (3.8) into the action (3.11):

QA U { FO L, oo ) sV
N V—1j+?zl++ }.

x)lt is worthwhile to note that it is the first direct proof
of equivalence of an N=2 improved tensor multiplet to a free
theory. In the previous studies, this equivalence was proved by
indirect complicated reasonings .

(45)
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Here \/

transforms under the gauge group (3.9) as

Vo VTN . (4.6)

in order to malntain the gauge invariance of the aotlon. Now one can
combine V and v into one (nongauge) analytic superfield J

w= V-DV™

Making the same change of variables (4.2) as in (4.3) we obtaln now
a dual form of 5 as

At [P w0 -y |

X

(4.7

Again, the action is not of a general form. Moreover, it is in fact.
guaranteed to be equivalent to the aotion (4.3) for the tensor
multiplet (on—shell, after eliminating auxiliary fields), and 1t 1s
also invariant under translation (4.,4) ¥/, '

The same prooedure equally applies to the Yamron-Siegel multi-
plet (3.15)=(3.18) and to further relaxed multiplets. All their self-—
~interactions turn out to be dual equivalent to some particular self-
-lnteraction of g-hypermultiplets imvariant under translations
(4.4) and reducible on-shell to some self-interaction of qf which
appsars in the duwal’ description of tensor multiplet,

5. Some other off-shell representations of N=2 matter

All the off-shell N=2 matter multiplets considered above contained
only one propagating N=2 multiplet on-shell, There exist, however,
N=2 reprysentations yielding on-shell at once several such multi-
plets /8 « We consider here all representations of this kind and
demonstrate that their actions are agaln reduced to restrioted oclas—
ses of generio Q+ -action (2.14). Besides, we treat, in an analo=
gous centext, the representations discussed recently in 11/ (higher

rank tensor N=2 mu.ltiplets) which oan bhe used to propagate on-shell

one hypermultiplet. Our basic tools are as before duallty transforma-

giona_%g_/or the equivalence redefinitions of type (2.10), (2.12).
‘x This isometry reveals itself already at the level of original

relaxed hypermultiplet actions (3.11), (3.18), (3. 21), see a remark

at the end of the previous Section,
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we see that akze"‘)

5.1, The higher superisospin analogs of () -hypermultiplet
According to the general formula for the superisospin content
of an analytic N=2 superfield with the U(I)-—charge %

1= \% —L] +n
the (W —=superfield (2.8) 1s merely the first in the infinite series
of superfields L()F-k) (k>/0) having -,[k: ‘5—_,*,:—2 as the lowest

superisospin. It suffices to conslder the case of even k:. ze only
(see below), Any superfileld of thils sort can be o}xg's;?n real,

w2 _ w-ze « It has a simple free action
P44 Cu), [ Cee) 402042 (—2¢) ?J ] (5.1)
S¥ e £ Sdg W )W
The corresponding fleld equation
(—DH-) 2442 (U(.ze) -0 (5.2)

Loe
implies that (WO 2¢) collects e+i propagating N=2 multiplets.

(physical components are 4€+4 scalars @fte- Cae) (%)

w(i{,--- C29+2) (x) and 2.0+ 2 Majorana spinors \)(i“'f' taer) N,

411 the components corresponding to superisospins T - L+1 are

auxiliary. They are killed bfr’eq. (5.2), which leadsalso to correct

equations for physical fields. One may add the interaction terms to(SQ‘l)-
The superfields w(-ze-l.) cannot be real. Instead they can

be combined, together with thelr conjJugates, 1n pseudoreal doublets

of SU(Z) 7 N
he w;('ze—“= /w(—ze-i)) w(—ze-i)).‘

Malkcing a ohange of variables 1like (2.10)

-2¢
Cze-1) L (-28-1)  _ -z0 w =W
ldt- = ”“ w U, W ) m _ w-ze—z

1s equivalent to a palr of real superfields
of the previous type Lo(‘ze ’ w('ze—?‘) . So, therse is no
need to oonsider w('ze"’)’

Let us now demonstrate that the first-order form of the actlon
(5.1) 1s the free aotion for a q-hypermultiplet with a certain multi-
index of the PRauli-Gursey SU(2) -~ group, namely for 2""(;1___.;'2?“)
subjeoted to the pseudoreality condition

i) Ty s ghegaen gt
T gl ) = £ Q)
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We start with the following g—action
£+i i iy ) .
L4 Sg?) Plig-taers) 44 4 .
S 9 x° du ! DY firigenn)

It 1s easy to check that on—shell %&1 tzess) carries the same

$€+$ degrees of freedom as ¢ E2¢) in the action (5.1).

To prove the e‘quivalenoe in an explicitly superfield fashion, we

expand T"(‘i-"z?“) in symmetrised products of harmonics (come

pare to eq. (2,10) ): .

2844 ‘ b ¢ ~i2e41) 2 C-m+d,
(2€+1)! M‘G‘,,U“" Cud (V20 W ( )

qj‘(cnu “a.e-i.i)z \/M ,,2;_ U

w0 (Zerawim T (5.4)

(5.3)

o-m+4)

2

where numerical factors are included for convenience. Due to the
completeness properties of U¥; one has [
_ Hig.. g+
i M@f'“‘“h“‘Em-»:!wuteffi)i e 4)
;}(Qeu !

Substituting the sum (5.4) into (5.3) and eliminating nonpropagating
superfields by their equations of motion we finally recover (5.1)
as the second-order form of (5.3). Using the egquivalence between
(5.3) and (5.1) and representing (J©2¢ as ~ Uyl oy
sTui"' i2e+1) one may rewrlite any action of w—ze (wtih an arbit-
rary self-interaotion) in terms of 2+~ hypermultiplet, confirming
once more the universal role of the latter.

w 26 L

5.2, Constrained harmonic_superfields with several propagating
multiplets

It has been noted in /3,8/ that a wide varilety of off-shell
N=2 representations with a finite number of auxillary components
can be produced by imposing proper constraints on harmonic super-
fields. These constraints out an infinite tail of auxiliary
superisospins before amylyying the equations of motion. One may ,
8.
8e8ey restrict & as :

R
still preserving the standard form (2.9) of () -—action . Let us

introduce (5.5) into the action with the help of Lagrange multiplier
w‘-”""”‘i}z’”) (we confine our study here to the linearized level):

S'- i Sdg"’}du iw@*")% 2R e } - (5.6)
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It is diagonalized by the substitution
W= o + L=kt (D++)(k-2) N (5.7
2

_ R kel (2kee)zeny 2kea (220ay)
S 2, (st [ Ay K

As follows from the analysis of the previous Subsect, such an
unconstrained action propagates Aak-4 = k hypermultiplets and
it is the representation content of the model wlth the conatraint
(5.5). Needless to say, the action with any self-interaction can be
equivalently rewritten via proper lL“s . For = J, the general
action has a three—parameter isometry 7o -» 10 .-g(ij)u“; 3 y
w"z)_; a}'z)+ g(f_\') Uy usj ( g*& = const), reflecting the fact
that in this case ¢J) , before performing the duality transfarma—
tion (5.7), is equivalent to three tensor N=2 multiplets /8/ %) (see
Exercise ¢ at the end of this Sect.)., By the way (5.8) implies that for
even k‘ the propagating hypermultiplets in w("u"“‘) have the
kinetic terms of wrong sign and thus are ghosts. .2

One more example is a two=fold charged analytic superfield R
constrained by

(.D++>k R“Z) - O . (5.9)

The corresponding action is
g =§?$45M)“L“ ) () ~b++é"12 b k“gﬁ‘z))q ) (5.10)
R

Generally R@”ﬂ constrained by (5.9) carriés Kk  propagating
multiplets 8/ + It ilmnedia.{:ely follows that the Lagrange multiplier
for (5.,9) 1is the superfield wg_7_|<+2) . Soy (5.10) aamits a dual
form in terms of unoonstrained w("2k+2) « By reason}nga of subsect.
5,1, it is a second-order form of the action for lz+ (g Cofe=d).

This class of ‘l*.. actlons is distinguished in that cl“' enters into
the interaction terms only in a fixed contraction with harmonics:?

RO uf Ui, Ui,y c[‘“t" fak-d) (3.11)
xj—F“o_r—. k=3, the W —h,ypen?u}tiplet with the comstraint (5.5)
was discussed first in our paper -3 s but with an erroneous treat-—
ment of the physical field content of the relevant action. The correct
component consideration was given in
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One may consider also other constrained harmonic multiplets,

s 8oy
(D-e-rj‘i':',(glu)zo 131 k=2

(D++)/zw(-2(’) (g,fa): 0 ,é > 26+3 , ete.

with actions having the same form as in the case of unconstrailned
superfields. Again these actions oan be dual transformed to a parti-
cular form of generic +-action (2.14) with a proper unconstrained

1? for each propagating multiplet. This form is singled out either
by the condition that if’s enter into it only via a fixed contrac-
tion with harmonios or (and) by restriotions on an admissible rank
of harmonic derivatives of 1j' .

or

The last example 1s the generalized tensor multiplets whose
possible role in describing N=2 matter has been pointed out recently
by Ketov, Osetrin, Lokhvitsky and Tyutin . These are represented
in harmonlo superspace by real analytic superfields ka}@)(;l“)
constrained by

’]5'+L&2e25,ﬂ) =0 (e »2) (5.12)

(superfields with odd (/(1) -~charges need no special treatmen? by
reasonings analogous to those in the oase of superfields a)"k))-
Constraint (5.12) 1s an obvious generalization of the tensor N=2

multiplet ocondition (3.1). However, in contrast to the latter it
does not give rise to conserved veotors. The general actlom for
ZF&Z?) is as follows

g*% Jg("")dn G’(H)(Zé"f“) (5.13)

and it must expliocitly contaln harmoniocs already at the linearized
1ével,

It 18 a simple exerolse to see that the action (5.13) 1s a
partioular case of the action (5.10) . To this end, let us replace
(5.13) by the following action

3 da%*{ HO[ 620, ) 120 ) 48T of 2“’"} " Gas)

+ —2¢+4
where E( 2 and Cd( 2e+4) are, for the moment, unoconstrained super-
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fields. Let us first show that (3.14) is equivalent to (5.13). Varying
R%2) 4o obtain
(DH -1 w(—z“-k)g 0. (5.15 )

Unless e-*Q » this equation has only null solution
w(—zua): 0 (e 42) (5.16 )
while for (=2 the solution is

w:(,)o.—_wnlft (€=2)

(this 1is immediately checked in the central basis). Then, substitu—
ting these solutions back into (5.14) we recover (5.13) (in the case
= Q we are led also to modify 3; by adding a "counterterm"

- /#.55, ) . On the other hand,varying (2644 we ovtain

-4
L(-Q-ZQ) = (D-(-.{-) (4 Q(+Z) X (D++>( E('\‘Z):O (5’17 )
(V
and f; i1s rewritten as

-’g ‘—‘gl’gﬂdﬂ % GG‘D((,D-(--V)?*&QCH)I u)} 7 (ij ¢ ERZ)_,__ O (5.18)

that has to be compared with eqs. (5.10), (539), Similarly to general
EG*) aotion (5.10), action (5.18) admits a dual form in terms of"
unoonstrained i+’S L x .
The same reasonings show that the actions of
by more general conditions

(D++)k L(+zt') -0

also reduce to a particular form of (5.10), and hence to a class of
1f ~actions (2.14) (on performing a dual transformation).
Finally, several simple exercises for the perseverlng reader.
i. Show that the free W =action (2.9) with the constraint

(.:D++)'s W = O

is equivalent to the action for real triplet of tensor N=2 multiplets

g ~§14g‘1)d‘u L**(ip L*(*i_'\) : .D++ ++(CJ) =0

Z({-ze)

constrained

x)With this cholce of action, there survives only one propaga-—
ting hypermultiplet in :232 , as opposed to the general ocase (5.10)
with € such multiplets. The reasons are gauge freedom with respect
to Q"%é*”,\. 7\“‘1’ R ('D""*)e'i X‘”) =0 as well as the appearan—
ce of additional algebraic constraints on-ghell 2 .
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ii. Show that the free * action (2.2) with the constraint
(b—H-)L q-\- =Cb++) Q-\-:O

is equivalent to an actlon for a complex doublet of tensor N=2 multi-
plets R T+
1 “y) U+ A S -
S~ Sdg e LN/[T ) DL =DTLET=0.
2
111, Show that the action for 2¢+3 real tensor N=2 multiplets

S Squ)d“ L*"’(ti la.e«-z)z(‘1 e > D++/_**(51--52£4-z)_,_ O

is equivalent to the action (5.1) with the constraint
B++) 28+3 w(—?.&) =0

A hint: exploit decompositions of the type (5.4).

6. Conclusions

Thus, we have shown that all the variety of N=2 matter off-shell
representations known to date is actually reduced to a single univer-—
sal representation with an infinlte number of auxiliary components ,

. the 1 ~hypermultiplet. A general self-interaction of . the latter
encompasses all possible self—couplings of other mutliplets and

yields new couplings which cannot be fitted within finite—component
schemes, So, 1+ seems to be most adequate to represent N=2 matter

and 1t 1s a genuine N=2 analogue of N=1 chiral superfield. In fact,

it meets almost all the requirements demanded of "ultimate® N=2

scalar multipleét in ref./ 4 It has "an internal SU(2)-symmetry in

the free action, an internal U(I)-symmetry that couples to complex
Yang-Mills, and no global symmetry in interactions corresponding to
hyper-Kahler manifolds with no Killing vectors" (there are no reasons
to expect any global symmetry in aotion (2.14) 1n general case

except for N=2 supersymmetry). The only thing which does not agree

with wishes expressed in is that i*’ has an infinite number of
auxiliary fields. However, Just this property proves to be crucial

for achieving the most general N=2 matter self-coupling on the basis

of i+ o« An 1nfinite set of auxiliary fields is unavoidable when exten—
ding off-shell a complex form of N=2 scalar.multiplet 8/, !

The universal form (2.14) for off-shell, N=2 matter action
looks rather suggestive, It provides,e.g.,a simple general proof of
finiteness of N=4 supersymmetric hyper-Kahler @  -models to which
(2.14) corresponds in d=2 « This proof is based on manifestly
supersymmetric diagram technigues for T ~hypermultiplet, explo-
its the‘fact that @ 1s dimensionless in d=2 and goes along the

standard line of proof of the nonrenormalization theorems
Intriguing questions are what is the precise mathematical meaning
of (dimensionless)"nyper-Kahler potential" X (Q+ Dk*i*
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(3**)™¢*,.,U) and how tho lattor o oconnootoed with tho primery prin-
ciples of hypor=lahlox goomotry. In faot the harmonio superspace I(ﬂ)
approach suggonts a now look at this goometry., The point is that
beforo employing oquations of motion, depends on an infinite number
of auxiliary f£iocldo oontainod in lL"' » Conventional hyper-Kahler

manifoldn parametoriged by o f£inito number of fields emerge only

on -~shell aftor olimination of the above infinlte tall of auxiliary
oomponents (even with the fermionic oomponents omitted), The latter
prooedure amounts to solving a system of differential equations on
sphere $2 ~ SU(2)/ U@).

S0, the present paper answered many question and at the same time
raised new problems. The most urgent one seems to establish a direoct
relation between hyper-Kahler geometry and the hyper-Kahler potential
F*9 | Tnis would hopefully allow an immediate identification of
the relevant hyper-Kahler metrics by the form of ;f+4) and provide a
straightforward proof that (2.14) 1s indeed the most general N=2
matter action,

Appendix A
Here we give the relation between central and analytic bases

of harmonic N=2 superspace

Central basis?
: Mot
— L + - u-‘s
{szedi;ea)uil)-{z P
N ‘¥ .
N . el BN 2\\—(.8,.3&01
Du= u +i 07, Dui=-ggui

2
D++= “+L(bu"‘ =79

Analytio basist

i)&,\m, 9‘;,@%,“&;, 9‘0“5;73 E{Q"\,uﬁ)} 9},9793

en - gaobanad g oheauh, BY B
< UH DYy = . Bty = Ut i "“@%-&

D:L "l Di ) 2 d+216’u?°“‘" D3 a -q)%dﬂ-— Q"\e‘d ¢a&z

R QAW T+ e T8 G
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Appendix B

Here we establish a relat_ion with the familiar description of
tensor, relaxed and further relaxed N=2 multiplets in terms of uncon-’
strained prepctentials /28,14,4 /

Let us begin with solving the constraint (3.10). Its solution for
any ¥1 can be written in central basis a.sx)

Z+*=(D+)1®+ 2 Y’-('Z,u)i (B.1)

where

Yau) = [b“‘]) 3§ (@) yDEDN ‘3’(%)} % “ (w=4) (B.2)

Y (zW = [1.)“*4’ ) +Du N"('l)]u“ ( ) %a (n= 2) (B.3)
Y”(a,u) - \("(4;2) u}4u31+\1(lit1ti ‘)M ut,utz Ji

_,,Yﬁa Lnia'x én3)u \-nAu '“3“;

In eqs. (B.2)-(B.4), ¢(Z),4’u{ (2), \{(L""A“")(Z) are conventional
unconstrained (A -independent N=2 superfields.

To rewrite all the actions of Sect.J in ordinary N=2 superspace,
it suffices to use these formulae, the relation between the integra-
tion measures in analytic and central N=2 superspaces

(e +)254)2 Ve
d500u (0)2 @) = 4% du (2.5)
and the prepotential representation of gauge superfield

V(ztem,u) =006 X200, (8.6)

where x(-q)(z u) 1s a general harmonic N=2 superfield:

X( )= X“i?“a’;")u.,u W, g +)((‘1 “"'* Wiy 4 (B.7)

One should substitute (B.l) (B.7) into the relevant actions, take off
(1)"’)7'(]‘)“)'a from one analytic superfield to restore the full N=2
integration measure (B.5), and finally integrate over du . 43 g

(n»3).

(B.4)

xJ 0ur conventions are basically the same as in our previous

yapers é‘-\) 25‘( = SL'( ) (bi‘£> =(_&)P(,5') D&LS : -b- = u’\. D ol

(7= D0y = W05y, ()= O ok
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first d4lluntration, lot uo do thio for the f£ree relaxed hypermulti-
plet aotion (3.10). Doforoc u-intogration, the first and seoond terms

of the aotion are given by tho following oxpressions
I 1
S« £ 1%l 0H BT R -
1

* uiubukue_ ) (B.8)

6L . & G (0 ETE) (Vg te0,0). o
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To do the Wl —integrals one should make use of the rule

N N —- - (\1
Sd,u u*u___u*\n ut‘a-"ufn = h-\".\- §

and take into account that in the present case only the first term in

_g‘.v‘) (B.10)
wn

CB.7) contributes to (A -integral in eq. (B.9). As a result, we
arrive at the expressions:?

SW;T ’zg [q/dub /-\‘)(\\') * cc) (3.11)

9 (44) = is.'D(‘J DKQ) ‘D‘L‘YM(—") + c.c (B.12)

4 SJIZ ( Lo{ ‘.- ):D D XQKQM) ) (B.13)

which up to a normalization, ocoinocide with t?osa oz 714/,

In the case of "first-order multiplet” all the things
go even simpler as the relevant b(gsio unconstrained N=2 superfield is
an isoveotor real soalar one t1t2) (=)

i Y i
Then the (/.44.)2 term in the free aotion (3.17) is represented as
by \ 1 . ~ 744
R

while the term with the Lagrange multiplier, before explioit integ-
ration over d.M ) as

(h‘]). (B-14)|
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S‘is o du \[)(ﬁ) gn{u ucu )V(S(z w) a)

(B.16)
Now the | -integral in (B.,16) receives non-zero contributions both

from the first and second terms in the general expansion (B.7). Ve
obtain

W 2 kz 3\( '-)
S - 500 [ V0D By R
(B.17)

N Y( SU Dkiklﬁkskq X (5 ) (2) ]

(in this expression, we have changed a normalization of >< S so0
as to absorb unessential numeriocal factors). Eqs. (B.15), (B.17)
have to be compared with the corresponding formulae of

The self--interaction terms, the further relaxed hypermultiplet
actlions, the couplings to N=2 Yang-ﬂills,the central charge modifica~
tions, etc.jcan be reexpressed in terms of ordinary N=2 superspace,
proceeding in a similar manner.,
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Fansnepws A.C., MBanoe E.A., OrmeBeuxuin B.H. E2-86-277
Npeofipa3oBaHMA AyanbHOCTU W Hanbonee obune caMOAEHCTBUA MATEpuUM
B N = 2 cynepcummeTpumn :

06cyxnaeTcA GOpMynupoBKa MynbTuUnneTos N = 2 MaTepuu C KOHEYHLM 4Yuc-
NOM BCNOMOraTeNbHHX NONEW B NOAXOAE FapPMOHWUECKOrO CynNepnpoCTpaHCTBa.
Noxkasano, UTO BCE OHW ONUCHBAYTCA AHANUTUYECKHUMU FAPMOHMUYECKMMM CYNEPNOMAMK
NOAUMHEHHBIMW CTOPOHHUM CBA3AM unu O6nagaoumuMu HEKOTOPOW KanuGpOoBOUHOR
csobopoit. OnpepeneHo asHo N = 2 cynepcummetpuuHoe npeoGpa3zopaHne AYansHOCTH
C ero nomowsl NOKa3aHo, 4TO BCe CaMOAEMCTBUA BLIWEYNOMAHYTHX cynepnonew
IKBWBANEHTHH YACTHBM KNAaccam obuwero caMoOAeCTBUA OCHOBHOrNO aHaNMTUUECKOro
npeactasnenwwA N = 2 maTepun, g -runepmynbtunnerta. Takum ofpasom, HauGonee
obuee q+-neﬁc73ue onucuBaeT HanBonee obuee camopenictBue N = 2 MmaTepum.
Nockonsky N = 2 MaTepuA NPUBOAUT K rUNEPKINEPOBLIM T-MOAENAM B CeKTope
du3nueckux 6030HOB, NPaBACNOAOGHO CUMTATh COOTBETCTBYOUWYK AHANUTUYECKYN
Cynepnonesyl NAarpaHxeBy NNOTHOCTHL ''FMNEPKINEPOBHM NOTEHUMANOM'', NOpox-
[R3A0WMM BCE MuCNUMuE '‘runepKaneposu MeTpuku'',

PaboTta swnonHeHa B JlaBopaTopun TeopeTuueckon oduauku OUAK.

Tpenpunt O6beaMHEHHOro MHCTHTYT2 SXEPHRIX MccnenoBanMil. dyGua 1986

Galperin A.S., lvanov E.A,, Ogievetsky V.I|. E2-86-277
Duality Transformations and Most General Matter
Self-Coupling in N = 2 Supersymmetry

The N = 2 matter off-shell representations with a finite sets of
fleld components are reformulated in the harmonic superspace approach. Thein
1ist includes all such multiplets known previously (the tensor multiplets,
the relaxed hypermultiplet, the further relaxed hypermultiplet) as well as

- newly introduced (higher relaxed ones, etc.). All these multiplets

are described by constrained (and sometimes having a gauge freedom) analy-
tic harmonic superfields. A manifestly N = 2 supersymmetric duality trans-
formation is defined. By means of it all the self-couplings of the above
superfields are shown to be dual equivalent to certain subclasses of ge-
neral self-coupling of the basic analytic unconstrained N = 2 matter super-
field having an infinite number of components, the q*-hypermultiplet. This

- confirms our sugqestion that the most general q*-action yields the most ge-

neral matter self-couplinag in riaid N = 2 supersymmetry. The N = 2 matter
actions are known to produce hyper-K3dhler ¢ modéls in the physical oson
sector. So, the relevant analytic superfield Lagrangian density L + )(q+,..)
can be regarded as the ageneral ''hyper-Kdhler potential'' plausibly resulting
in all possible hyper-K3hler metrics.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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