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l. lntroduotion 

A oon5istent description of matter supermultiplets is a necessa­
ry ingredient of the future supersymmetrio phenomenology. For such a 
description the knowledge of corresponding off-shell representations 
i5 of á vital importanoe. Ind~ed, only on the latter supersymmetry 
ia réalized-linearly and 2ndependently of a particular action. This 
in turn allows a straightforward construction of ,enerai interactions 
(for Nal supersymmetry, sea for example refI 11,2 ). 

Generally apeaking, there oan be several off-shell representa­
tions of the sarne on-shell matter multiplet· which may and do lead to 
different self-couplings. An important problem arises: which off-shell 
extension provides us with the most general self-oouplings? The main 
purpose of the present paper is to give an evidence that the comple­
te solution for the case Na2, c1.= 4 (or, equally N=l, d. =6) is 
achieved within the harmonic superspace approach 131 which opened 
new avenues for the off-shell treatment of theor1es w1th extended 
supersymmetry. 

ltis instructive to begin by recalling hoV/ the above problem 
is solved in N=l, cL =4 supersymmetry. N=1 matter (two spins O and one 
spin 1/2) can be described by a chiral mult1plet qp(~L e)or by a- o<. )
tensor multiplet G(:X,e;e), G-= G- ,1:> 1).,<:G=O or by a complex li­
near multiplet LC-X,e1e), ,]),]).,(,L=O , etc.Csee, e s g •• ref.l41 

the Appendix). Variant off-shell descriptions differ in the1r au­
xiliary fields and (sometimes) in their way of represent1ng phys1cal 
fields. For a ohiral mult1plet the general self-1nteraction 15 rather 
familiar 151 

SC/J= ~ix J4 e K (CP 1q»)tnd4.x:i.1f e}\ 4J) -t HC),IS", q>:~l) 
where K(CP l<P) and "PCet» are general functions of their argumenta 
(the genera11zation to several chira! multiplets is obvious). Any 
self-1nteraction of other N=l off-shel~ matter multiplets are known 
to be reduced by a duality transformation to the generic form 
(1,1) (see, e.g•• refs. 12,61 ). For instance in the general N=l 

tensor multiplet action (w1th an arbitrary function 1 ): 
~ G-= \J4x d..4e ~ (G-) (lI.), 1)2G=-:D2 G- =' o CC) (l.2) 

, -..i-l---­
®b'M:1!iitil:'Uii~1i tmCMYlI 
SUlet'àBf:,lli er.C.l'1e!i\)R~U~ ,_.fl._ .. __~,., 8.<!1. I 



we may implement the constraint (f) with the help of a Lagrange 

multiplier 

(1.)) 
~SI; X = ~J4xd.4e[5(G)+ (1)2X +1)

2X )G-J. 
VarYi'ng X we come back to eq. (1.2). Varying G- instead, we ob­
tain an algebraic equation ~'(G-) ':: ":1)2X - '])2X which can always. be 

solved for G­
(1.4)

G= G- (nZ X -+ 1)Z X ) 

provided -S ia nondegenerate ( 1//(G) r!- O) • Substituting it 

into eq. ( 1. ) gi'l es 
(1.5)+ (CP + f)G(~+~)} ,Sq>= ~J4xJ4e{5(G(~+q;) 

where <p ='1?X (~~D2X) 1s a	 chiral superfield. So, the general
 
mUltiplet (1.2) actually ar-e equi­
self-interactions of N=l tensor
 
chiral multiplet ones (l.l)with
valent to a restricted olass of 

J? (CP)= Oand 
(1.6)K(<j> 1<p) = )lGCtp+ 1iY) + (4)+ 4» G(<P + <P). 

K (~ )q» dependa only on cp +"45We observe that this partioular
 
Renoe, it is invariant under
 

.ep~ <P+ LCl q>~ cp -La a -= ã -= COi1st (1. 7) 

while general ~(~ )CP)in eq. (1.1) may have no such a symmetry. 
Similar reasonings apply to other off-shell representations 

of N=l matter. So, it is the chiral multiplet that provides us'with 
the most general N=l matter self-oouplings. ~ crucial observation 
is that the corresponding chiral superfield <p lXL 1 $) is an un­
constrained nongauge function on the chiral superspace ([ 4(2 /1,7/. 
As we shall argue the solution of the N=2 problern is g1ven analo­
gously b~ ~n unconst)ained nongauge superfield q,+ ("'d ,U) 
(or éA..2 (~\ U) )X defined as the general function over the 

--~XJ---q:~~nd ~ _hyperrnult1~lets represent the sarne ent1ty in 

the first and second-order formalisms,respectively. 
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IJD 4+~H /)/analytic harmonic superspace til' • A key difference from 
the N=l case Ls that q.+. (~,u) contains an infinite number of auxi­
liary fields and it is unavoidable in view of a simple no-go theorem 
/8/ . 

To end with the N=l case, we recall an important geometric 
aspect of the N=l matter description by chiral 5uperfields. Just in 
terms of th~se superfields the Kahler geometry of N=l matter self ­
-coupling /9/ manifests itself most clearly. Indeed, the Lagrangian 
density K (<P,q5) in (1.1) can be viewed as Kahler potential, with 
<P 1 cp playing the role of complex coordinates. For any Kiihler 
manifold, this potential completely charaoterizes the relevant geo­
metry. Thus, the chiral field formulation visualizes the theorem 
stating that any N=l matter action i5 basically supersymmetrization 
of some Kãhler () model /9/. From the geometrio viewpoint, to oons­
truot the most general N=l matter self-interaotion, one has to take 
the most general Kahler G-model, ohange, in its Kahler potential, 
the complex ooordinates to chiral superfields and ohoose the resul­
ting expression as the Lagrangian density (arbitrary nongeometrio 
terms of the type -p (ep)in (1.1) oan be added). 

~ne study of N=2 matter (four spins O and two spins 1/2 on 
-shell ) began just with eluoidating the geometry which governs its 
self-oouplings. In the remarkable paper /10/ Alvarez-Gaume and 
Freedman have proved that any self-interaction of matter N=2 multi ­
plets yields a hyper-Kãhler cj model in the physioal boson field 
aeotor, and, vice versa, any given hyper-Kahler G model can be 
N=2 supersymmetrized. However, in the N=2 case the geometric 
considerations do not lead immediately to an explioit oonstruction 
of the most general matter self-coupling. The point is that at 
present a complete liat of hyper-Kahler metriosis laoking and no 
general reoipe ia known for oonstruotion of such metrics (in oont­
radistinction to the N=l oase, where any Kahler metrio is defined 
by _.fJOIli!;8 .l.ahler potential l"'\<"CP ,CP) whioh ia the primary objeot with 
no further reatr1ot10ns). Knowing an adequate off-ahell superfield 
formulation of N~2 matter may fill thia gap. 

Till the invention of harmonia superspace alI the attempts at 
such a formulation were undertaken on the bas ís of N=2 multiplets 
wi th a finita number of oomponents. "lhe first off-shell N=2 muIti ­

/11/plet of this sort was found by Wess and de Wit and van Holten 
712/ /11 12/• An analysis of self-intera7tions of this tensor ' N=2 
multiple~ by Lindstrom and Roõek lJ/ allowed them to oonstruct some 
known and some new hyper-Kãhler metrios. However, they noticed that 
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it is imposs~ble to achieve the most general self-couplings of N=2 
matter with tensor multiplets. The reason is that after a duality 
transformation there arises a hyper-Kahler d model with at least 
one Killing vector, in a complete analogy with the discussion of 
tensur N=l multiplet above (see eq. (1.7)l At the sarne time, there 
exist hyper-Kahler metrios with no continuous isometries. 

Another example of off-shell N=2 matter multiplet was found by 
Howe, Stelle and Townsend /14/ in their searoh for Na2 formulations 
of the N=4 Yang-Mills tneory. Unlike the tensor N=2 multiplet, this 
relaxed hypermultiplet admits a minimal gauge coupling. Some further 
relaxed N=2 matter multiplet was disoussed recently by Yamron and 
Siegel /4/ • A common feature of oorresponding actions is an inevi­
table presence of Killing veotors, analogously to the case of tensor 

N=2 multiplet. 
The harmonic superspaoe approaoh enables us to demonstrate 

that this property is not aooidental. We show that aâ L the above 
off-shell N=2 multiplets are naturally described in harmonic super­
space	 by properly con~trained (or somatimes having a gauge freedom) 
analytic superfields. AlI their self-interactions are equivalent 
on-shell to those of tensor multiplets. The very diversity of matter 
multiplets with the finita number of aomponents in N=2 supersymmetry 
is related to the existence of unoonstrained harmonic multiplets with 
ao infinite number of components. We may, e.g., easily construct 
further relaxations similar to those given in 714,4/ with increasing 
(but finite) arrays of auxiliary fields. The most' important point 
is that alI these actions are equivalent to some restricted class of. ~ 

actions of unoonstrained q; -hypermul tiplet superf'Le'Lds 11ke 
actions of the N=l tensor multiplet are equivalent to a restricted 
class	 of N=l ohiral superfield aotions. We prove this with the help . 
of N=2 duality transformations defined by us for the first time in 
/15,16/ • An equivalence to a class of ~+-actions can be proved 
also for other aonstrained N=2 matter actions considered recentlj in 
/8,17/ • At the s~e time, ~+ itself admits general self-couplings 

~hioh	 cannot be implemented with any known N=2 multiplet having 

a finite number of oomponents. 
The paper is planned as followa. In Sect.2 we first succinctly 

recall the basics of the description of matter hypermultiplets in 
harmonio superspace.Then we give their general self-coupling. In the 

9,+-langUage it i5 written down as 

,,' _1- {I f~) I lf«4)(a+ iP J)++Q+ 1)-+-+q+ (1'.++\110 + ~) 
tIJ ) 

(1.8)0- )f:..2. )~':a ttU dJ J...A, J..t\ I YA 1 J.A, 
OI' 

~A'O ..)UL 

4 

/ t.p (+J,J
(for the notntion, see )/ and the text). ~ (1.8) is a four­
-fold t/(i)-oharged function that arbitrarily depends on super­
fields tA (A,:: 1 ,2, ... ) and any degree of their harmonic derivatives 
and inoludes explicitly harmonics ~: ,~-l (also in an arbitrary 
way). Besides, a generalization to nonzero central charges is discus­
sede In Seot. ),5 we show how to describe in harmonic superspace alI 
other N=2 off-shall matter multipleta known previously. Higher rela­
xed multiplets are derived (Seet.)) and are shown to admit no new 
self-couplings (on-shell) as compared with the lower bnes. Sect.4 
introduces N=2 duality transformations. EW means of them, alI the 
self-interactions of N=2 multiplets having a finite number of oom­
ponents (Seat. 4,5) as well as those of higher U(I)-charge analogs 
of úJ -hypermul tiplet (Sect.5) are reduced to a class of ''].: ­
self-interactions (1.8). This olass is distinguished either by 
having at least one isometry (for tensor and relaxed multiplets) 
or/aod by restrictions on admissible degrees of harmonic deriva­
tives. So, eq. (1.8) presumably desaribes the most general self-coup­
ling of N=2 matt~r. The gen~ral functio~ ~(+~) in (1.8) is an 
N=2 analogue of the KShler potential of N=l case in (1.1) and can 
thus be called a "hyper-Kãhler potential". L7sting alI possible 

1 0/,
"'cl(+J.) '5 amount s , according to the theorem of to listing alI 

the hyper-Kâhler metrios. 

2• ..!!!l..2Q.!lstrain~d N=2 matte.!'_'p~plets 

This seotion collects main facts concerning the basic N=2 
matter multiplet (hypermultiplet). It is an N=2 analogue of the 
N=l chiral multiplet. Like the latter, it can be described by an 
unconstrained 8uperfield defined on some submanifold (on the ana­
lytic N=2 Buperspace). This hypermultiplet can be represented either 
in the first-order formalism (q,+) or- in the s econd-corder one (W) • 
We review its properties and general self-couplings. 

Q+ . 
2.1.	 ~ -h~ermult~let
 

- - -n4-4-Z/8

The harmonic s~erspace 11" i8 obtained from the 

ordina.ry NC2 one 1R ,.g by adding a sphere S2. == tJli)'"SU(2)4 , where 

SU(2)A i8 the automorphism group of N=2 superalgebra. Hãrmonics
U:, are coordinates of this sphere (U.+I.. Ui. =. i) and , 
oonsequently, they have SU(2) index l.. and U(i)~charges ±:i • 
There i8 ao invariant subspace in 1rf«+~(S with coordinates 

(~ o ,	 .)_ f......d;t e+c1 151-,;( ± ) .O ) lA. - ~Ã' , ')V ; U i: that t s oalled analytio super­
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flf) -4+2.ILi 
space I~ (see Appendix A) • In the first-order formalism 
the basio hypermultiplet is describe4 by an unconstrained analytic 
superfield t+(~ ,U) which is complex and has U(i)·· charge 
+1. To descend to ordinary fields, one has to decompose it in po­
wers both of Grassmann and harmonio variables taking care of 
the strict U(I) - charge conservation in each term of the expansion: 

9,.-t(b,U)= j-L(X)U: + -S-(I:~k.)U(~ -UjUk)+...
 

+ e+ol.(~ ex) + rjIJJ(:x) u.+(i. UJ)+ ..,) +
 

-t et (de.~&) -r de.OI(J·)'l.l~L UJ) + .. .)+ ... (2.1) 

where we have kept only the physioal fields (isodoublet of soalars 
-f~ (x) and two isosinglet Weyl fermions ~ (eX), ~o('cce)) 

and the very beginning of infinite tails of auxiliary fields 5l\d~)(~) 
etc. Each component field carries indioes of the group 8U(2)A. The 
corresponding free aotion is (the bar denotes an appropriate conju­
gation) 131 

st'e-~VÕ(-~ 101LI i fi.+If+ lj..+ Jc~ J~ (-~ 1cAlA1etC«DHt(,..J (2.2 ) 

• \.;K"}.:. C'N\1 "I l q::\.: <:."",,0 

where we have introduced the notation 

(2.3)CC"a-:= (t.+ ,-t-+), t.+o..:= CC q = E.Q. et.~ · 

Now we can easily verify that after eliminating auxiliary
 
f1elds by the equation of motion
 

1)-t-+ a+ == (u+('L - z. e+cj t41e+2- )CJ--t' = O (2.4 ) 
~ a. 'du: 'à Ál' Q. 

there remairi standard free equations for the above physical fi81ds.
 
The equation of motion (2.4) says that in the oentral basis (see
 
Appendix A) Cf,.+ (~.(Z \u),U) == U~ ct..L (2) == U~ Cf..~ (:x I eu<',· "I e}) ,
 
At the same time the manifest analytioity of ~+ in the analytic
 
basia implies in the central basis
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0= ]); q..+C~. /,{) = Z<])J U; r'/(:2) ~ DJ.' 1J)(z)~ O 
and, analogously 

O-=- D; 'l-+(~ ,U) = u~ 15j uj 'j..J(z) ~ Di" V">cZ)= o, 

So we arrive at the famil"iar Fa.yet-Sohnius 1181 description of 
hypermultiplet. 

The free aotion (2.2) is similar to the massless Dirac action. 
In particular, 11ke the latter it is invariant under a rigid SU(2) 
group, that is seen especially clear in the pseudoreal notation 
(2.3) /15,19/ • 

s 9.-: = ~! cr-+e LA a.f) =- À'lot, A:=O. (2.5) 

This SU(2) group is easily identified with the Pauli-Gursey group 
because it is an off-shell extension of the known internal Pauli ­
Gursey 8U(2) symmetry of an on-shell component construction x) • 

The transformations (2.5) evidently comm~te with the N;2 super­
symmetry and the 8U(2) group of automorphisms aoting on harmonio 
variables ----,... . 
8U~ ~ A·iu~ CAl )=- (A/) 1 A~ = o.

\. L d 
(2.6) 

Besides, the aot1on 52.2) is invariant under N=2 superconfor­
mal group 5U( 2, 2 ( Z) /20 and, in particular, under its sub­
group 8U(2)c whose off-shell real~zation is different both from 
(2.5) and (2.6): 

x) Indeed, the action for free physical fielda 

$= l )J:~x(aa.:1Lô~-fl+~ty,r~;dt~~) 

haa a Pauli-Gursey invar1ance under 

8 -5 ~ ::. c: ~ -}z+ } '5 ~, 6 \fi ::: ~ o( tr-+ ~?J- ') <& de. =-:« de. - ]i r 
j • \-1. .z 
o- ;:; -·l /\:1 ') ~ = - ~:1 
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.' .;,.. I 
s~ t+~ ~ S~t q,~-oL('J)lA-:úJlttt+C{ J S tt~~ tt: (J,0-'~C$,~
 

. h '"') (2.7)
 
~ +-_ .J +. -;-fZ.- +

Sst ~Ct. - -c/L (U J8 lA . + UJ 'O ut ) Cf-a... ' 
• • L i, 

where oL (lJ) are 8U(2)C parameters. It is seen that SU(2)é 
actually coincides on-shell with 8U(2)A 

2. 2. -fY_ -~...Jlill..lWtl 

In the second-order formali8m the basio hypermultiElet is 
described by a real analytic superfield with zero U(l)-oharge. Its 
harmonic decompo5ition 

W(~ ,U)= cJ(x) + úi(i) utlA}+ e+rJ. Ui. rj(X)+ e;u- i crt+··· 
(2.8) 

oontain5 four physical scalara as 1+3, and two Weyl fermions as 2 
-- + ­

of SU(2)A (cf. 5U(2) prescriptiona for the ~- case). The corres­
ponding free action in the absenoe of oentral charges is (now an 
analogue of the Klein-GordQn one) 

(2.9 ). (w1:<:\v.°S'h et> =_1.\ eÁ~(-~)~1\ D++CJ ])++CU 
)
 

W 2i~) <J
 

Again, the equation of motion (now of the seoond orderl ())++)~. 
• O) tells us that only fielda written explicitly in eq. (2.8) are 
phyaical. An infinite tail of unwritten components is auxiliary • 

Paa5ing from ~+ to ~ hypermultiplet goes as follows 
/15,19/ • Let us make a ohange of variables 

(2.10)a +. -=: u: C<) -1- u.-' ..!.++ " úJ =co , -1 + + = ~T+
Y L. L L ) 

in (?2). Then we obtain 

$~~("::;t~Jd(-4)J1{ i (~++~~1--+21+tl)++ev) 
(2.11) 

an~ this ia just the first-order aotion for t() corresponding to 
(2.9). The inverse change is 

8 

- a+ /1- - t- 1,- ()+ l­eu = - U 2. 11 + lI\.j t := '" CV 

(2.1'2)1++: utt+ - ui ~+ = Ú+i~~ 

Again, the man~feBtly N=2 supersymmetric aotion (2.11) has two in­
ternal 8U(2) symmetries (apart from the 8U(2) of 5U(2,2 12)). The 
first i5 defined as x)~ 

\ 

81A\ = A,oi IA±J ) W'<V\)~ WCV11 f\~)) -= ~"'+(11.) · 

The second one i8 the Pauli-Gursey 5U(2) group (2.5) which is written 
down in t erms of W and:f ++ as 

dW::::: - 'À +- W - Â--1-T+ +~ t- '\ 
"\ - -_ I\ll.~1 U!. ~ (2.13)f\ _11 .U.·\ d S'j++-= ~ 1"-\- W + À+- .1+r 

So, there are two completely equivalent ways of describing 
the basio N=2 hypermultiplet. 

2.J. General self-couplings of N=2 hypermultiplets 

Resorting to dimensionality and analyticity reasonings we can 
write down the most general aelf-interaction of any number of hy­
permultiplets in the form 

Sf::. ~ (', <:-4) I .. Y~~)(a O D+Tq D++ã (D;-j~ ." U) - (2.14) 
- j"2 .Y~~ õM cf... VAd"A) " I -~A) (..AI) 

. -...;;(-r'l)
Here we ohoose a ~ -form of hypermul tiplet. Of co urs e , rf..­

must be nondegenerate to oontain the free kinetic term 

~ cf (t4) Ót. (+'1) 
- _ -lO- )S'i+ Õ D++~-t S f+ Ó J)++ 1-to T (2.15 

Otherwise, :;t(t4) is an arbi trary U(I) charge-4 function of 

-----;)-;~~s the diagonal in the direct product of (2.5) and (2.6). 
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harmonics, ~ 
tI

5 and their harmonic derivatives of any order 
(because these derivatives are dimensionless), ~ i5 a coupling 
constant wi th dimension cm1 for d =4) em" for d=2 and cm2 for cl.::. 6. 

In (2.14) we set ~'s to be dimensionless. So, spatial and spinor 
1derivatives (dimensionalities cm- and cm-~ , respectively) are in­

admissible for dimenslona1ity considerations, and in fact they ~ould 

lead to a higher derivative action for physlca1 fields. 
After elimination of auxi1iary fields every ;t~4) results in 

an N=2 (i.e., hyper-Kahler) non1inear sigma model /1
0

/ and hence 
in some hyper-Kãh1er metric. This suggests a new scheme of classifica­
tion of hyper-Kahler manifolds according to the forro of the oorres­
ponding La~~density in (2.14). At present, several examples 
haye been worked out in some detail /21,22/ • For instance, the 
Taub _ NUT manifold can be considered as the manifold ooded in 

the action 

T 
(2.16)SnJ ~ ~2 SJfJoiu [ r D+T~+ ~ ~+)\'í+fl' 

where ) ã.s a dimensionless parameter. The next examp1e is the 
Eguchi-Hanson manifold that corresponds to the action 

S =_1 r d(-~)J,u L(bT~W ) 1. - (~+-I-)'- w-2 J, (2.17)
E~ ~'2.)1 

where ~ ++ -::: ~ tj u·~ li-~ s t and s for a dimensionless parameter. Not e 
that"in this oase the tU description turns out to be more transpa­
rent (the ~ -desoriPt107 is also possib1e /22/ ). The number of 
examples can be en1arged 22/. The above ones, (2.16) and (2.17), 
possess U(2) symmetry having different origins. U(2) of (2.16) i5 the 
product of 8U(2)A and U(I)-subgroup of SU(2)?~while U(~) of (2.11) 
Ls the product of sU(2)pG-and U(r)-subgroup of SUe2)A x • In the ge­
neral case the action (2.14) does not contain any symrnetries U(I), 
8U(2), etc.,besides N=2 supersymmetry. Even the 5U( 2) group of auto­
morphisrns can be comp1ete1y violated by allowing expl1cit harmonics 

---)-­
x Looking at (2.14), it is easy to observe that it is 

impossib1e to preserve both SU(2)A and SU(2)PG for a single se1f­
-interacting q,,+ whi1e this beoornes possible for two and more 

hypermu1tip1ets. 

10 

. f+4)( + ++ -+ ( rt« u)to appear in;;[ 'i- )D q" J ••• D li J ••" • Thia ahoul.d be 

oontrasted with the N-2'matter se1f-coup1ings based on superfie1ds 
having a fin1te number of fie1ds (the tensor mu1tip1et, the re1axed 
hypermu1tip1et, etc). As wi11 be discussed in Sect.4 the Lagrangian 
densities of tensor as we11 as of original and higher re1axed mu1ti­
p1ets are reduced by dua1ity transformations to a particular c1ass 

vi+4) I
of ol' ~ exhib1ting invarianoe under the shifts 

f~+= cowi u+{ b1-t = ~ ú~. (2.18) 

2.4. S~~-!~!::~~~~ 

Now we sha11 br1ef1y discuss an extension of the above pioture 
t~ nonzero oentra1 charges. As we desoribed in the Appendix to /J/, 
the central charge oan be inc1uded into the harmonio superspace 
Boheme by a standard method, i.e.~by adding to (2r'U ) an extra 
bosonio ooordinate X~. 

Th1s entai1s the fo11ow1ng modification of harmonic derivati­
ve (in the ana1yt10 basia when app11ed to ana1ytio superfie1ds) 

D+~ D+ : : n++ -\- t (9+9+ -"8+8+) ~'J.~ • (2.19)
c 

Now ana1ytic Buperfie1ds are a110wed to depend in a general 
way on an additiona1 coordinate X: . To preserve the number of 
phys1ca1 fie1ds, we fO}10W the dimensional reduction procedure of 
Scherk and Sohwarz /24 • Let the aotion (2.14) have an U(I)-sym­
metry commuting with N=2 supersymmetry and possessing a Ki11ing 
veotor G-+ ( 9.-+,-- ) 

õ't+ = 0(&+ (t-+")'o.), (2.20) 

S +where 01... is the U(I)-parameter. Then ::f. A dependence ·of ~ ls 
restr10ted as (~ i8 a ~arameter of dimension of the mass) 

'Ô_ Q+ f' + (2.21)éOX5' 1/ - m lJ • 
A 

After 5ubstituting (2.21) into the harmonio derivativa (2.19) and 
then (2.19) into the action (2.14) we arrive at the theory 1nvariant 
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under N-2 supersymmetry with a oentra1 oharge. In suoh a theory 
the potentia1 terms (in particular, a mass term) beoome possib~e, 

e.g•• for the free theory (2.2) such a prooedure with ç+ ==- L q,.+ 
resulta in a mass term: instead of (2.2) w~ wou1d have 

H~~	 1s cc= ~ae2 ~ J~-~)M. [r D r +2.1\1 (eV-e+9+)l+~+ (2.22) 

Note that N=2 supersymmetry admits general1y two central 
oharges x) • A corresponding extension of the above prooedure oan 

Sbe done a10ng similar 1ines with two additiona1 coordinates X
and X(; instead of X5 and for aotiona (2.14) havãng two U(I)­
-symmetries oommuting with eaoh other and with supersymmetry. 

J.	 H8rmonio superspaoe desoription of off-shel1 matter 
mU1tiP1et;~1t~; finite number of fie1ds. Tensor and 
re1axed N-2 mu1tip1ets ­

In this Seotion we shal1 show how to desoribe the tensor 
multiplets, the re1axed hypermu1tip1et and further re1axed mu1ti­
p1ets in the harmonio superspaoe. Tllere a11 these mu1tip1ets are 
represented by some oonstrained or(and) gauge ana1ytic Buperfie1ds. 

J.1. U-2 tensQr. mu1±iD~ 

T.biB mu1tip1et waa oonsidered in the harmonio superspaoe 
app~oaoh in /15,16/ • Hera we reca11 some re1evant facts. Its 
Buperfie1d strength is a real ana1ytio Buperfie1d L++ C}IU) 

z:rrT~IU) having U(I) oharge +2 and obeying the oonstraint 

J)-t-t L++(-~Ju) =0·	 (J.1) 

~o make a oontaot with the representation of tensor mu1tip1et in 
ordinary N-2 superspaoe /11/, we pass from the ana1ytic basis to 
ihe oentra1 one 2:.:=: (xw.Jgi,e~i.). There the oonstraint (J.1) says 
that 

L++ (}(e,u))U) li~ 11;; L'd (~) . (J.2) 

--~ X)Ha:nonio superspace with both x5 and X6 was discussed 
in /2J/	 . 
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On	 the other hand, the ana1ytioity conditions 

1)+01. L++- = J) ~ L++ = O	 (J.J) 

in	 the central basis become 

(~ j k) -(\ jl() (J. J' )Doi. L (2) = l);;.. L (~) -::=:. O, 

80 we oome to the familiar picture /11/ 

Let U8 return now to the ana1ytio superspaoe and give the free 
action. It is bilinear in L++ 

1. - Lt-Tl I'
[] -z: eM) L J -= em . (J.4)S~-= 1 SdC4ku (L++Y~ '1. 

2'1.-2 2	 ) 

By dimensiona1ity and ana1yt101ty arguments the general N.2 
supersymmetr1c se1f-ooup11ng 1a g1ven by 

(J.,)s«. i J d~~)Ju r-+"! (L++) u) , 

F(+ l() (L++ )where } U 18 an arb1trary dimens1on1ea8 funat10n of 
the f1e1d strengt)l L++ and harmon1os u± hav1ng U(I)-charge 4 • 
Of oouras, the oonstra1nt (J.1) 1s imp11ed, be1ng the defin1t1on 
of	 tensor ~u1t1p1et. 

. Def1n1t10n (J.1) 1a N=2 superoonforma11y covar1ant /20,16/ , 
wh11e ths aot1on (J.4) 1a note The theory with conforma11y 1nvar1­
ant aot1on oorresponds to improved tensor mu1t1p1et and 1t has 
drawn an attent10n beoauae th1s mu1t1p1et can be used as a oompen­
sator for the N 2oonformaI supergrav1ty /25/ • The 1mproved tensorS 

mu1t1plet has been found first in terms of component f1e1ds /25/ 
then.1n terms of Nu1 and spe01a1 N-2 su~erf1e1ds /lJ,26/ and, f1na1­
ly, 1n terms of harmon1a 8uperfie1ds /1 /. In the 1ast formu1ation 
the improved tensor mu1t1p1et aot10n 1a wr1tten down as 

(~++)'2. 0+-1- L+-+- +t­
1-	 == -C,S=~/~ J~-~) eW 

(i -\-~ e-+-+c--) 
2 

(J.6 ) 
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--------------

where 
.L +-t- ,. 4­

C - - -=" ~ ) C--=C t 
" Ut,~-· C \.~ C\.~ = 2­d dU l 

and (see /16/ or Sect. 4), (J.6) is equivalent via a duality 

transformation to the free aotion for tI-+ -hypermul tip1et. At the 
same time, a sum of (J.4) and (J.6) yields a nontrivia1 self-in­
teraction /lJ,26/ • This 8um i5 known to possess an SU(2)-symmetry. 
The present approach allow5 one to simp1y 1dentify this SU(2) as 
a 5ubgroup of conformaI supergroup SU(2 12 \2 ) (which as a who1e 
i8 broken in that case). It i8 reaIized as 

. ) ~ H 
',* + ,/ +i ~ L++ (~d +tJ++ ~ L

~c: L+ ~ Ltr(~IU)-L (-;j;/A) =-8'st. -~ l(iUJD 1.; =-c\;'i ·(J.7) 

t'.l/r- L~+
where dSt i5 of the sarne form as in eq. (2.7) and the const­
raint (J.I) has been used. Thus, this SU(2) has aotually the sarne 
realization on component fieIds as SU(2 )A. 

It is worthwhile to mention the 1mpossibility of minimal Yang­
-Mills coupling for the N=2 tensor multiplet. The reason is that 
th1s' mult1plet inc1údes gauge antisymmetrio tensor f1eld (notoph) 
and its gauge invariance i5 incompatible with the Yang-Mills pne. 

J.2. The relaxed hy~ermultiplet

Howe, 8telle and Townsend /14/ invented the relaxed matter 
hypermu1tiplet which can have a minimaI Yang-Mills coupling unlike 
themnsor multiplet. In harmonic superspace it is descr1bed by 
real analyt10 superfieIds L++(~l(.() and Vl~,v.) • 'l'he constraint 
now comes ~ut as a relaxed forro,of (3.1) 

(J'.8)
(D++) 2 L~+ = O 

The superf1eld \I 18 defined up to a gauge transformation 

V\=V+b++À--, (J.9) 

where Ã-- ia an analytio real gauge parameter. The free aotion 

~"lJlR.

S~Si = ~, ~ d~Ç4).w. [(LHY- + V'lrL-HJ (J.IO) 
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i8 oompatible with gauge invarianoe (J.9) beoaus6 of the oonstraint 
(J.S). 

The dimensionality, analytioity and gauge invarianoe reasonings
 
lead to the following general form of self-coupling
 

s 1- Sd~-ll~ í F.c+4);L++ j)++L++ U) +\J D+-T L++l (J.ll)c: 
\\ST 'J(2. ~ L C) J ' 

where rt+.lt) ( L++) D++ L++) U. ) is an arbitrary U(I)-oharge four
 

funotion of its arguments. Note, that by varying (J.ll) with reapect
 
to V one gets D+-+ L-t--i;. O and thereby oomes baok to the general
 
action for tensor multiplet (J.6) and the oonstraint (J.l). So, as to
 
the one-shell self-interaotions the relaxed hypermultiplet and tensor
 
multiplet aotions are equivalente An advantage of the ,relaxed hyper­

multiplet ls its ability to have minimaI Yang-Kills ooupling. To
 
introduce it, one has to take Yl oopies of superfields L++
 
and V ,put them into a real n-dimensional representation of the
 
Yang-Mills group and, finally, to oovariantize /J/ the constraint 
(J.S) and the gauge transformation (J.9). Note that the requirement
 
of reality is a severe restriotion on a possible ohOioe of the repre­

sentation.
 

So, one saes how simple ia the desoription of the relaxed multi ­
plet in harmonic superspace. To demonstrate the exaot correspondence 
with the original description, one has again to apply to the oentral 
basis. There eq. (J.8) says that 

t+ LO' - L~.:)lce ) (J.12)L = uju; LJ(::c) + S U(LU:ut Ue) (~ 

(the faotor 5 is introduced' here for further oonvenienoe). From 
analyticity of j++ it followB that 

(L 'k:) L lJ'ld~
'D ol un LJ == Doi.(~)e. J (J.IJ) 

J) (i. .r: - O 
""-(~) ­

t -r t ut -l; 1 c f: t + ;t­(the 1dentity u\ U+(' 1/1: u+, «: ) U(e U L1. U ,;Z '3() 1.t.t)+S-Cf~4IJ.iiI1L~U~J
t, ~1V\l2. '-3, r u 

was used). Finally, Bcalar superfield V(2) of HST /14/ i8 

V(r) = Stk V(1(C/ LA )/ U) . 
(J.14) 
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ObvioUS}y, VC~) is invariant under (J.9) and solves the constra­
ints /14 ~ 

= l)cüD~ V=:[ 1)~)1)~\1 V= O,~D~V 
One oan verify a1so that our aotion (J.11) in the oentral basis ooin­

oides with the original one (see Appendix B). 

J.J. !ur!..~~~.hl~~lt'!p1ets 

Now it is evident how to continue re1axing 
ding in this way one obtains a mu1tiplet that is 
by real ana1ytio superfields L+r~,~) ) \/("u) 
oonstraint now is further re1axed (of. (J.8) ) 

(D++)3- L+ +::. O 

oonstraints. Procee­
desoribed as before 
• However, the' 

(J.15) 

and \I is defined up to a gauge transformation (cf. (J.9) ) 

I (J.16)V =V+(n++)2 À(-4), 

,(-~) 
where Â (J,U) is'a real ana1ytio gauge pararneter. The free gauge 
invariant action coinoides with the -first-order mu1tiplet" action 
of Yamron and 8iegel /4/ ( see Appendix B). In analytic superspaoe it 
has again the sarne form as in eq. (J.10) 

S~~ ~J~df)du [(L++t -+ V- 1)++L++]. (J.17 ) 

The general se1f-ooup1ing is given by 

S~S ' ~,~A~-~J.u [Fl(C" )])++C+, urlY+, I.l) -t 

1· (J.lS)
+ V- D++L++ 

B,y varying \I we obtain the constr)int (J.1) and so return to the 
N=2 tensor mu1 tip1et aotion (J.6) x • Thus, what concerns the se1'f­

x) --{b+-+)2.L++One might àdd to (J.18) a term"" V and equa11y 
reproduce the re1axed hypermu1tip1et action (J.1l) and the constraint 

~ I 

1f 

l' 

(J.8~ by va~ying v-- . However, it is actual1~ of no need to oonsiderl ~ rthis modifioation as the modified aotion is reduoed again to (J.lJ ) 
by a redefini tion of the Lagrange mul, tiplier as v..." V - D+· v-- . I

I 

-interaotiºns, alI these theories (the tensor-mu1tip1et, the r~laxed 
hypermu1tip1et, the further re1axed one) ~re equiva1ent. 

One cou1d construot new mu1tip1ets by further relaxing the 
constraint (J.1). TUe first step results in a tensor mu1tiplet, the 
second one in a re1axed hypermu1tiplet, the third one in a further 
re1axed hypermultip1et. Let us specify the n-th step. Here we have 
the constraint: 

(J.19)(D++) \'\ L++ -:::: O 

and we use a sca1ar analytic Lagrange mu1tip1ier \lk(~IU) 
defined up to the transformation ­

v,-V (ty~+)'ft.-i. '\ -2. (h-i.) (J.20) 
k - k+\ /\ {~,") 

The general action is 

S~ ~i~ lrJ.u ~ F(t~l (L , Tj"+Lt+, "') fp++)"'-ir, I.l) + (J.21) 

-+ V 1)++L++ \­

L++ 
The superspin zero superfie1d carries superisospins O, i , ... )

, , 

Y\ - t and , respectively, describes 

(<6+~) I i-+~ -+ .-. -t 2.n-ij =- ~~L +~\1'l 

degrees of freedom. Due to the gauge freedom (J.20) the superspin 
zero superfield v~ real1y contains superispspins 1,2,... n-l 
and henoe furniahes us with (8+8) (n2_l) more field components. 
Thus, the theory arising at the n-th step contains g (2.,2_1.) +&('2~'1._i) 
fie1d degrees of freedom. We have 8+8 for the tensor multip1et 
( Y\:::: 1 ), 56+56 for the re1axed hyp~rmultiplet (n=2) ) lJ6+lJ6 for 

nc4,the further re1axed hypermul tip1et' (n=J)1 248+248 for etc. 
Nevertheless, for any ~ n we obtain theories with equivalent 
self-coup1ings. Indeed, variation with respect to \/., always 
y~elds 1)++ L++: O which leads to a. self- Lntr act f.ng tensor 
mu'ltip1et. A radically new situation arises at iI \1\ .. 00 II when L+~ 

becomes an unoonstrained analytic superfield and V suffers no gau­
ge invariance. Then Fl+lt) ma,y contain arbitrary degrees of harmonic 

.. Fl+If )derivatives of L+ and, furthermore, one may insert into 
an arbitrary dependenoe on V and its harmonic derivatives. Com­
bining L++ and V into a single t+ - superfield by eq. 

~
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(2.10) we aotually come· to the general N=2 matter aotion (2.14). 
This oonsideration sheds more light on the key role of analytic 
superfields with an infinite set of components in aohieving the 
most general N=2 matteF self-ooupling. 

We would like to note that the above relaxed N=2 multiplet ao­
tions can be easily extended to nonzero central oharges by the 
general reoipes of subsect.2.4. In particular, (J.ll), (J.lS), (J.21) 
exhibit an obvious invariance under oonstant shifts of gauge super-
field V~~ V'fI +- \(. One ma,y chooae this invarianoe to 
identify oentral charge with its generator (times a mass parameter) 
and thereby to produoe the mass terms whiah ooinoide with those. 
given in ref. /4/ • 

Finally, we leave it to the reader to oompare simple and trans­
parent analytio superspace actions given here with their lenghthy and 
somewhat ugly prototy~es in oonventional N=2 superspace (see Appen­
dix B). 

4. E!!aliy_tr~~f2trnat!Q~ 

In this sectio~ it will be shown that alI the self-interactions 
of the tensor, the relaxed and further relaxed multiplets are olassioal­
1y equival.ent to some restriated ct.ass of ~+ (or (V ) self-inte­
ractions. 

4.1. Tr~sf~!Bg_1he tensor mu1tip1et 

N=2 duality transformations are direct genera1izations of the 
N=l ones given in the Introduotion (eqs. (1.2)-(1.6) ). We begin 
with the simplest oase of a tensor multiplet. The superfield L++ 
in (J.4), (J.5) is oonstrained by eq. (J.1). One can instead imple­
ment this constraint in the aotion with the help of a Lagrange multi­
p1ier W 

S= ~ Sa~~)tl.u [ F(+A)(C', u) + LU b++Lttl· (4.1) 

Now both L
~ 

and ~ are unoonstrained analytic superfields 
and one may vary them. Varying ~ , we recover the original oonstraint 
(J.l). We prefer instead to pass to 1+ -hypermultiplets by means of 
the change of variables (2.12) 
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- t -~q+L+-t := [{t-/'~,'l. {)J: U. . i., 
1+ - .- (,{+. W "*" Ui. L++ .

l - t.. (4.2) 

We get 

S a U.A~ 1 SI (-li)',l'-F(t4)/ ) (, .)2 i fl+~D-:'r+()+l (4.J)j:: i:l. lA J cw lut~t I ti - ~~+f - ~ 1 li ~ . 

This action certainry is not the general one (see (2,14) ). Indeed, 
it contains no harmonia derivatives in the interaotions terms and 
is always invariant under transformations 

(4.4) 

b1+j; = CDMt Ui-., . 

This invariance implies that the corresponding hyper-Kahler metric 
has at least one Killing vector. 

In partioular, for the free tensor multiplet (J.4) the dual 
action is the free q+ one. Further, for the improved tensor 
multiplet (J.6) we again get the free aation. To see this, on~ 

needs a more sophisticated ohange of field variables /16/ x) ~ 

~+_ ~ -2(,(~C+-M~ -vzu+·S'in!t!. (1.+2t~+C-)iJ2+2u-:c+·~~_ 
-( ~ t. fi 2.. . {2 ~ V2 

~... ~ . ± -t0++ L'+-t +~ c. --~ ~ ...) iA . 0-:­ c\) (',. -= n .
(. ~ - C } \ J '-.) L 

4.2. Transforming the relaxed hypermult~plets 

Once again, using as a Lagrange multiplier some real analytic 
superfield V-- we introduce the oonstraint for the relaxed hyper­
multiplet (J.S) into the action <3,11): 

~~;vf~ i F(+'Ii(LH
, 1)++C',l.I.) -+ V'1:t+t+ + 

(4.5) 

+ V--["b+j2-L t-+ 1· 
X)It i6 worthwhile to note that it is the first direct proof 

of equivalence of an Nc2 improved tensor multiplet to a free 
theory. In the previous studies, this equivalence was proved by 
indirect oomplioated reasonings /25/ • 

19 



Here 'V transforms under the gauge group (3.9) as 

V--'= V-- + i\-- (4.6) 

ln order to malntaln the gauge lnvarlance of the aotlon. Now one can 
oomblne V and V- lnt o one (nongauga) analytl0 superfield W 

w:::. V- DT+ V--. (4.7 ) 

Maklng the same change of varlables (4.2) as ln (4.3) we obtaln now 
a dual fonn of S as 

StJaaes ~~ JfJJ.q { F(")(U+1 t, U"l>'Y) IA) -~ ~+fj' - H+(1r~i 1· 
Agaln, the actlon ls not of a general forme Moreover, lt ls ln facto 
guaranteed to be equlvalent to the aotlon (4.3) for the tensor 
multlplet (on-shell, after el1mlnatlng auxl1lary flelds). and lt ls 
also lnvarlant und er- trarislatlon (4.4) x) '. . 

TOe same prooedure equally applles to the Yamron-Slegel mUltl ­
plet (3.15)-(3.16) and to further relaxed multlplets. AlI thelr aelf­
-lnteractlons turn out to be dual equlvalent to some partlcular self­
-lnteractlon of q-hypermultlplets lnvarlant under translatlons 
(4.4) and reduolble on-ehell to some self-lnteraotlon of ~+ whlch
 
appears ln the dual: descrlptlon of tensor multlplet.
 

5. Some other off-shell representatlons of Nm2 matter 

~l the off-shell 'N=2 matter multlplets consldered above oontalned 
on1y one propagat1ng N multlplet on-shell. TOere ex1st, however,D2 

N=2 repr,aentatlons yleldlng on-shell at onoe severa! suoh multi ­
pleta 78 • We oonslder here alI representatlons of thla klnd and 
demonatrate that their actlons are agaln reduoed to reatrloted clas­
ses of generl0 q+ -aot1on (2.14). Bealdes, we treat, ln an analo­
gous oontext, the representatlons dlsçussed recently ln /17/ (hlgher 

rank.tensor Nm2 multlplets) whlch oan be used to propagate on-shell 
one hypermultiplet. Our bas10 toola are as bafore duallty transforma­
~10ns~_/or the aqu1valenoe redefin1t1ona of typa (2.10), (2.12). 

~ T.hla lsometry reveals ltself already at the leveI of original 
relaxa~ hypermultlplet actlons (3.11), (3.18), (3.21») sea a remark 
at the end of the pravlous Sectlon. 

5.1. The...h~her eu!!!!!:lsQ.!!ll!!L~!..2g-ª--2.!~_-=hn~~ul1ipl et 

Accordlng to the general formula for the superisospln content 
of an analytio N=2 Buperfield wlth the U(I)-oharge Pv /3/ 

1=\~-1)+\'t 
the GU -superfleld (2.8) ls merely the flrst in the lnflnite serias
 
of superfields Wf- k) (k ~O) havlng llc: ~~2 as the lowest
I superlsospin. It Buffices to oonsider the oase of even k= Ze only
 
(see belowJ. Any superfleld of thls sort oan be ohosen real,
r -- /27/
W-2.€ = W-2.f • It MS a aimple free aotlon 

(5.1)

St+~ i SI ç.'4)J .. { . ?-'2f) M+\ 20tH ,.l-2e)( )'1. 
. = s- ~~ CU( W (d/IA) ~J.J J w ~/t4 ] 

The oorreapondlng fleld equatlon 

(':1>++) Z~+'l fI.}-2eJ = O (5.2) 

e
implles that (,V'2 ) oollects .e+1 propagatlng N=2 multlplets. 
(physical components are .4e..~ scalars CV(i,t LU) (~) ,0'0 

W(i1.·, 0-' L2.-i+2) (x) and 2 e.... a Majorana splnors *li.1·: - C·2.t.1.) (~). 
AlI the components correspond~.ng to superlsosplns I "7 t+ i are 
auxl1iary. They are kl11ed b;'eq. (5.2), whlch leadsalso to correct 
equatlons for physloal flelds. One may add the lnteraction terms to{S;V. 

The superflelda CU(-2.e-1.) oannot be real. Instead they can 

be comb1ned, together wlth thelr conjugates, ln pseudoreal doublets 

of SU(2}pç. )
VJ }-2e-J.) = (tJ(-2t-I.).1 (,f}-'2.e-j) '. 

Mak1ng a ohange of~rlables llke (2.10) 

/.1 (-2e-J.) + (-2l-2) "7" • -2e 
W i - ti i lU +- u; IV) 

we aee that uF 2t- f) ls e1ulvalent' to a 
of the previous type ú/- '2 e ,CJ--2e-2.) • So, there ls noI ne ed to oonslder W(-2e-~). 

.1 Let us now demonstrate that the f~rst-order form of the action 
\, (5.1) i8 the free aotlon for a q-hypermultlplet with a oertaln multi ­

lndex of the J~Ull-GurSey 6U(2) - group , namely for Z.·4n1.. ...i2.e~!) 
subjeoted to the pseudoreallty condltlon 

+li1...iz.fH) _ q+ _ c lJJ1 cl.zf+ÚZ eH ~+. . ). 

I 

- '/.. ) - C ..• c; 11~o··J2t·Hq (/"1" t2.f+l. \0;0. 

-- 2e
fAj-2.e -::: (J­

2.f. '2 - 2.e-2.w- -::tJ 

palr of real superfields 
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We atart with the following q-aotion 

(5.3)

Sl+i"" _.!. C.!fV)d1J /-(tr L2.e+1.) -H' '1'. .. 
t ~2 Jq~ ~ 1) t(i.1 .. L2.fH) 

+
It ia easy to oheok that on-ahall tUi" l2.t+i) oarriea the same 
ge+8 degrees of freedom as W(-2tJ in the aotion (5.1). 
To prove the equivalenoo in an explioitly superfield fashion, we 
expand 1+(tJ.., '20tH) in symmetrised produots of harmonios (oom­
pare to eq. (2.10) ): ..' ) e )

.1, , ,) ZeH (f>f+1) \ 4 t'tIl-LIooH 1;-1.2~ti 2.{ -)h+i
flT\ L1" '-2e+i ..Jtii+iJf Z . IA ~.,lt /.L ..• IA Wz, 

-l, = \' . ~.O (2eH.-m)t~! ('.4) 

W2(~-tt1+!) = tU2 (R-'n1+f) 

where numerioal faotors are inoluded for oonvenienoe. Due to the 
oompleteness properties of U:t~ one has 

~ ~-i 1. - - + + rl{t~· .. "2,.e+J
W Z l-,.,.U) ~ (_I) Vf.2.I+í)i U~i·· Ui", U i ....... ·· ti í.l+V ~ .
 

Subst1tuting the aum (5.4) into (5.)) and el1minating nonprop~gat1n8 

superfields by their equationa of motion wo finally reoover (5.1) 
as the seoond-order forro of (5. J). Using the equivalenoe between 
(5.3) and (5.1) and representing CO(-2.e) as'" Úti'''UZ ..+~ >C 

' • ) 2 .. ~ ( '" tf Li'" l.2.f+i one ma,y rewrite any aotion of tu-z.e (wtth an arbit ­
rary self-interaotion) in terms of i' - hypermultiplet, oonfirming 
once ~ore the universal role of the latter. 

5. 2. Co!'l!!gain~lli!:!!!!Q!,!i o-!!!!E!!:!:!.~!.ª-.§..!!!1!L§!!~!:~-E!:!U2ª8ªllBB 

~~~~~~ 

It has been noted in /J,8/ that a wide variety of off-shell
 
N=2 representations with a finite number of auxiliary oomponents
 
ean be produoed by imposing proper oonstraints on harmonio super­

fielda. These oonstraints out an infinite tail of auxiliary
 
superisospins before em71~Ying the equations of motion. One may ,
 
e.g., restriot tu as 8 :
 

(5.5)(])++) KW '= O k:?- ~ 
I 

still preserving the standard form (2.9) of íJ -aotion. Let us 
introduce (5.5) into the action with the help of Lagrange multiplier 

ó'/-2.k:.q.'Vr."UJ (we oonfine our study here to the linearized leveI); 

S - ~.. )J·j-'I!du túJ(p+j\J ... rJ-2k",",,) (p++J W }. (5.6) 

It i5 dlagonallzed by the substitution 
lW'':= 2V + ~(_i)\(+i (D++/k - ) úJ(·2k+'i) (5.7) 

;; z: i,)JftU. [(;i(iy'lw .. ~(_i)k+-l c<'1~lk"'0(b .,.,) 2k.,~-2kW)l (5.8) 

As folloWB from the analysis of the previous subsect, suoh an 
unconstrained aotion propagates {~k-1 ~ k hypennultiplets and 
lt 15 the representatlon oontent of the model with the conatraint, 
(5.5). Needless to say, the action with any self-interaction oan be 

+1 t:
eq,uivalerttly rewri tten via proper ~ S • For J(,-:: J, the general 
act í.on ha s a three-parameter isometry ~..:p 10 - ~(I.S)IA~ u-= , 
W~2)~ t.J"1.)+ J/lJ') (A-i. U"j. ( 1. ~~ -= const), reflectlng the fact 
that in this case c,J ,before performing the duality transforma­
tion (5.7), is eq,uivalent to three tensor N=2 multiplets /8/ X)(see 
Exercise l at the end of this Sect.). By the way (5.8) impli~5 that for 
even k the propagating hypermul tiplets in (,(/f-l k +L,) have the 
kinetic terms of wrong sign and thus are ghosts. +2 

One more example ia a two-fold ohar~ed analytio superfield k? 
cons trained by 

(1)4-+) k R~(!) -= O . (5.'9) 

The oorresponding actlon is 

S ~ A~ Ji~lf~ F(t-4) (~\+Z~ }'t--ttt~ ".(D+>') k_i~~ ~ ) • (5.10) 
~ ~ o 

Generally ~~7) constrained by (5.9) carr1ês k propagating 
multiplet5 /8/ • It immediately follows that the Lagrange multiplier 
for (5.9) is the superfield W~-llc::+~) • So, (5.10) admits a dual 
form in terms af unoonstrained ú.}-'lk-+- 2.). By reasonings of eubsec t , 

5.1, it is a sacond-order forro of the action for q+(i 1 .. · i '2.k-d. 
This class of ~ + - a.ot1o~a Ls distinguished in that '1..+ ent ez-s into 
the interaction terms only in a fixed oontraction w~th harmonios: 

11+'2) + - ~ . a -t;(i 1 .. · (,·l.k-~.J 
K,- (V U(i1 U. t2. .. , U l2k-~) (., • (5.11) 

---j(JFor -h = ), the 4J -hyperyU}tiPlet with the constraint (5.5) 
was disoussed first in our paper ,) , but with an erroneous treat­
ment of the physical field oontent of the relevant aotion. The correot 
oomponen~ oonsideration was given in /8/ • 
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fields. Let U6 f1rst ahow that ('.14) 18 e~u1valent to (5.13). Vary1ngOne may consider also other constrained harmonia multiplets, 
R(+2.) we obta1n e. g., 

(D+T)t-J W(-2~-+-4) Cl O, (5.15 )(/)+"1-j ~~ (di 1-t) ~ O I s I k.~2 
ar 

Un1ess e-2 , th1e equntion haa only null solution
(D+jÁ W(-2f) (ã I ~) =O k~2f+3 etc. W(-2i +~ ):=. O (i :/:2.) (5. 1 6 )

'} 

with actions having the sarne form as in' the oase of unoonstrained wh11e for e'lll 2 the Bolution t s 
superfie1ds. Again these aotions oan be dual transformed to a parti ­

("J = c:J = ~,v;t (~ -:::2)
ou1ar form of generic t+-aotion (2.14) with a proper unconstrained o
 

~,t for eaoh propagat í.ng mu1tip1et. This form is sing1ed out ei ther (th1a 1s 1mmed1ately checked 1n the central basis). Then, subst1tu­

a~ Iby the condi tion that y S enter into i t on1y via a fixed oontrao- t1ng these solut1ons back into (5.14) we recover (5.13) (in the case
 

tion with harmonias ar (and) by restriotions on an admissib1e rank .Q.= 2 we are 1ed a1so to mod1fy S by add1ng a "counterterm"
 
of harmonio der1vatives of ti" . _ L(+4).Wo) • On the other hand,vary1ng w{-ze... .lt) we obta1n
 

~. J. High~~...!~~LN·Lmu1tiplets 
L(+2.e) == (n-+-+) l-i Q(+t) ) (D-HO){ li~l) z: O (5.17 ) 

The 1ast example is the generalized tensor multiplets whose r-: 
possib1e role in deaor1b1ng Na2 matter has been pointed out recently and S 1s rewritten as 
by Ketov, Osetrin, Lokhvitsky and Tyut1n /17/ • These are represented 5 :~A{~)d.u f (/~te1>+·)t-iRr.», "')} ) (:t>+j ~ 1t'l)= O (5.18)in harmonia superspaoe by real ana1yt1c superfields lf'fl) (~I&t) 
conatrained by 

that has to b e compared with eqs. (5.10), (5'.9), Similarly to general 

1$"+ L ~2(l},~) = O (~ ~2) ~(H.) aot1on (5.10)-, aot'1on (5.18) admits a dualform 1n' terms of, 
(5.12) ct"" x)unoonstrained L. S. • (+'2.t) 

The sarne reason1ngs show that the actions of L constra1ned 

(superfie1ds w1th odd U(t) -charges need no speo1al treatmen} by by' more general cond1t1ons 

reasonings ana'Lo gous to those in the oase of superfields w( - k» . ( 1)++)'~ f.+t.e) -=- O 
Constraint (5.12) 1s an obv1oua gener~11zat1on of the tensor N=2 

also reduce to a particular form of (5.10), and hence to a class ofmu1tip1et oondit1on (J.l). However, 1n oontrast to the 1atter 1t 
does not give rise to conserved veotors. The general act10n for t+ -act1ons (a.14) (on perform1ng a dual tran~format1on). 
L(+2.f?J ia as fol1ows Fina11y, several simp1e exercises for the persevering reader. 

i. Show that the free ~ -act1on (2.9) with the constra1nt 
~ =tSJ~-'1)~ (;(+'1) (L~:zt: u) (5.13) C'D++) ~ VJ ,=. O 

,and it must exp1io1tly oontain harmonios already at the linear1zed is equiva1ent to the action for real tr1plet of tensor Nc2 mult1plets 
'leve1. , '" r, (-li)J.. L... +(~j) L~-+ . ""-++ L++(C:j) o

It ia a a1mp1~ exero1se to see that the act10n (5.13) is a ~""'~4~ ~ (~'y".v =:..
 
partiou1ar oase of the aotion (5.10) • To this end, 1et us replaoe I
 
(5.1J) by the fo11owing action i
 

X)With this choice of act1on, there survives only one propaga­

s~~iq:w{I!vJ{Lf2~uJ+~~QQr)e-1é2~Jet+4)1' ting hypermult1plet in Rt+z) , as opposed to the general oase (5.10)(5.14 ) I
 with f such multiplets. ~he reasons are gauge freedom w1th respect 
to R-+~ ~+t)4- Ã~2.) (D~-+)e-'i À{+2) = O as well as the appearan­

0(+2.) (-2e+4)
where ~ and CU are, for the moment, unoonstrained SUper- ce of add1t1onal algebra1c constraints on-ahell /27/1
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ii.	 Sho~ that the free q+ ~ction (2.2) with the constraint 
Cb++)l.. 't~ ~(1)++)~ q+::. O 

is equivalent to an action for a complex doublet of tensor N=2 mult1­

plets S rv Sdf~)k C H L+1 ) l:t"r: =1)++I++'= O. 

iii. Show that the action for 1.e~ ~ real tensor N=2 mul, tiplets 
C- c ,f.I4)J .. L++(C:i... i:1.e+1)L+~ • 1:>-++L-t"-t(i.1.-C2-t~2):= O 
t:' ,.., .J et ~ ~ ( 1.1.'- "'2.t'+2) ) 

is equivalent to the action (5.1) with the constraint 
(lD++)Z~+3 ~~2e)=O 

A hint: exploit decompositions of the type (5.4). 

6.	 QQ.!lQ1~io!l§. 

Thus, we have shown that alI the variety of N=2 matter off-shell 
representations known to date is actually reduced to a single univer­
sal representation with an infinite number of auxiliary components } 
the ~~ -hypermultiplet. A general self-interaotion of. the latter 
encampasses all possible self-oouplings of other mutliplets and 
yields new couplings whioh cannot be fitted within finite-component 
schemes, So, r ,seems to be most adequate to represent N=:2 matter 
and it is a genuine N=2 analogue of N=l ohiral superfield. In fact, 
it meets almost all the reJuirements demanded of "ultimate" N=2 
scalar mult1plêt in ref./4 • It has "an internal SU(2)-symmetry in 
the free action, an internaI U(I)-symmetry that couples to complex 
Yang-Mills, and no global symmetry in 1nteractions corresponding to 
hyper-K~ler manifolds with no Killing vectors" (there are no reasons 
to expect any global symmetry in aotion (2.14) in general case 
except for N=2 supersymmetry). The only thing which does not agree 
with wishes expressed in/ 41 is that f+ has an infinite number of 
auxj.liary fields. However, just this property proves to be crucial 
for achieving the most general N=2 matte~ self-coupling on the basis 
of t+ • An infinite set of auxiliary fields is ,unavoi~able when exten­
ding off-shell a complex form of N=2 scalar,multiplet 8/. 

The universal form (2.14) for off-shell, N=2 matter action . 
looks rather suggestive. It provides,e.g.,a simple general proof of 
finiteness of N=4 supers~etric hyper-Kahler ~ -models to which 
(2.14) corresponds in d=2 119/ • This proof is based on manifestly 
supersymmetric diagram techniques for ~t -hypermultiplet, explo­
its the fact that ~ is dimensionless in d=2 and goes along the 
standard line of proof of the nonrenormalization theorems / 21 • 
Intriguing questions are what is the precise mathematical meaning 
of (dimensionless) "hyper...Kahler potential" ~(+~) ('1,+/ D++ t") .-. "} 

(1)-+~) h. ~ 4',,,,, U) a.nd haw tha la.ttor 10 oonnootod w1th tho pr1mary prin­
cipIes of h1Por-K4hlor goomotry. In f40t tho hnrmonio Quperapaoe I:+q) 
approaoh auagaotD a. naw look ~t thi0 goomotry. T.bo point ia that 
before omplo71ng aqu4t1ono of motion, doponda on an infinite number 
of auxi11a.r;y f101dD oonta.inod in t + • Convo'ntional hyper-Kbhler 

.manifoldo pa.ramotor1~ed by a. finito number of fielde emarge only 
on -shell a.ftor ol1mination of the abovo infinite tail of auxlliary 
oompononte (even with the fermionic oomponents omitted). The latter 
prooeduro amounts to solving a system of differential eqllations on 
sphere 52. rv SV(z) / U(1.) , 

So, the present paper answered many question and at the same time 
raised new problems. The most urgent one seems to establish a direot 
relation between hyper-Kahler geometry and the hyper-Kahler potential 
;f+~) • This would hopefully allow an immediate identifioation of 
the relevant hyper-Kahler metrios by the form of ~+~) and provide a 
straightforward proof that (2.14) i8 indeed the most general N=2 
matter action. 

~!illQ!au 

Here we give the relation between central and analytio bases
IJIof harmonio N=2 superspaoe : 

~ã!"]~ll.:. 

~ l. + 1 \' ~ ~ (,ti:. l~ ­ 1. J L Jt X 1 eol~ I BóL ) lA-~ J ­
-::. _ ~ 'e(
~ ~ '~e·~i.	 t"ôeÕ(~ - Lt9- c. rfd..~1'	 1)~c:Vol. = .- ~ +, rkltõe ~ ,
 

++ ' "Õ ++
D = u+I.·- . ~ Ô 
CôLCI. 

!!!2:!lli~L~!.!

b; 1 1f t ,ê+OI ,(,r!:" g:" e-;;.") "'ler') u\), v-:', e-;, 1 
~ _ V M - o' n.(;.·.<"~e-j) 1,+,1,-: nicnZU±, I\t -e:«. 

A - " ,vt.. 17 u IA " '\) I O' gI. 170( L) V ~ õL I.X 
])-+,	 ~ U+. D~ ,. 2- -l ~ t. CI U+.~ ~ôl:=1 ~- & 

.... l c'ôEf....) J.) ó( L Qlt;l' 

1): :=: Lei b~ ~tot .....2~e-~1ol~ 1)~ ... - ~. - Q,(e-d.iol.éJQ ­

~& ) ~e~
 

I"'-\.~-+ _ &\' e+-~\I.\- +e+ d. 'd -+« ~
tj.-t'.~_ e+ a. u	 - u OV\ v tô)<W\ g-rA +ce --ôl ,., C() 'ôe 
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!~~~!!~ 

Here we establish a rela~ian with the familiar deaoript1on of 
t ensor , relaxed	 and further relaxed N=2 multiplets in terms af uncon.-' 
strained prepotentials 128 t 14 , 4 1 • 

Let us begin with solving the constraint (J.IO). Its solution for 
any ~ can be wr1tten in oentral basis as X) 

L++ ::: (D+y·(f)+)'2. '{-- (:a ,lA),	 (B.l) 

where 

Y-(i!,u) ~ [ :bL~ 1)} ~ ("i!) + J)~ 13<lf4>'(,..J1 k; ((~ (\\:1.) (llo2) 

'f--(~IIJ.) -= [1)lolt~ (~) +D~~ *àteÍ(~)] Lt~UJ ) (~i)= q.~~ {n:2) (B.~n 

"lil.2" - .Ál~l1.l\~~-: ~u.-"I,(~
Y--(2,U) = 1 (~) Ll'i UL2, + l' (i!) ~l~Ul2 L~ J1. +~ .. 

~ V~i·:·iW\-i~~···1\\-~) 1,-' .. ·te.. lA""".- (A+. ('11 ~ 3)
.1. ('Z.) ~ l1 I.n-i ~1 .) \\-1 ,.. 

• A.. .Lj (,.) (B.4)
In e qs , (8. 2)-(B. 4), "PÍ1!) I 't'ol (2)) "{ li o.' d ~-\ (=l) are oonventional 

unoonstrained U -independent N~2 superfields. 
To rewrite alI the aat10ns of seot.J in ordinary N=2 superspace, 

it Buffices to use these formulae, the relat10n between the 1ntegra­
tion measures in analytio and central N=2 superspaoes 

d~ç.'i)d.u (D~) 1.(1-+)2 == JrZ2 Ju	 (B.5) 

and the prepotential representation of gauge superfield 

\] (à (-a,,,,) ,~)	 = ())-+) "t(J5-+Y' X (-In ( r,u), (B.6) 

where X(-'Ü{2,/,() 1s a general harmonia N~2 aup er fd eLd t 

,l-'i) X(ltl~ill'4) - - - - ,li1··L~j1) - - -f; (B.7)"(i!,u): (z) L<;~Ú.t'l/,(~U('l(+ ,,- (iZ) IJt",,·{.(i~Ud1 -f- .. ­

One should substitute (B.l) - (B. 7) into the relevant ao t í.ona, take off 
(D+)'QD+) 2 from one analytio superfield to reatore the full N=2 
1ntegration measure (B.5), and finally integrate over du • As a 

-----X~r oonvent10ns are basioally the sarne as in our previouB 

papers (:i c <'i /-,..,. • 1) ( )()(5-) "" ,r '""-"!. - lI±.. D~
é ~~k-=O k' )	 l-l.J~-:s = -~ U~"J 1 -VcL-'" l o( -

I(.1)-+\ '2.::: 1)lj (A+, u.-\: :: Dall1)~ u....·Lf" ~+y- : Ó)+Y' ~( 
) lJ "" l J ) 
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first 111untrAt1on, lot UD do th10 for tho froo rolaxed hypermult1­
plet aot1on ".10). Dofare u-1ntoRr~t1on, the first and 8eoond terms 
of tho aot1on ~ra g1von by tha tollow1ng oxpreaa1ons 

1 a i \ alI ~\4 \ (}~al~j~}t~&Ia'(1)~)\i)"')l(1)~k~e+~\("tPe) ,.,
S "<>1 de' j	 -a 1~ Dl & ~ ~ ~ 

~ (,C. IA ':' ui<.Ue. (B.8) 
L .) 

(''[ c.1:. ( ai \ (DL~~ci~ 4-iSitt)~<k V(-z (~/U.)) U) • (B.9) 
~ H<>"T ae:1. J	 ,O 

U -integraIs one should make use of the rule 129/To do the 

(B.10)

SI. +l~ -+~~ -, U-, - -1:- R(~~ ." ~~Io\) 
(MA lA ... 1,.( lA li"- L)\ ~ y\~i ~~ ()\'\ 

and take into account that in the present oase only the f1rst term 1n 

(B.7) oontributes to lA. -1ntegral in eq. (B.9). As a result, we 

arrive at the expressions: 

C!.e.J (B.11 )$~ST = ;, ~ J'Li! rq,"'~ 1:>;' 1 ;~ (",) + 

(B. 12)-+ C ..CL~j (t) '" ~ iL~ Dl< e) 1)~ -r... e(i!) 

(B.13)C "li ~ (" J12. ! (~ol.1. - ~ - ~). "" ~ ~ - ~ 't X ( ) 
;::, ~c;r =i, J i! s- 1) 't' ol~.\- 1>.. t·, 1) ~ \<e~) i!JJ 

wh10h up to a normalization, ooinoide ~ith t~ose of 1141 •
 
In the case of "first-order mult1plat" 41 alI the thinga
 

Na2
go even simpler as the relevant bta~O unoonatrained superf1eld is 
an 1soveotor real soalar one 'f. ~1\.2.)(í!) 

L++ :: (t>';)'(D~)'2. Y~~(1) (ia) Lt·i.1~~ (\.\-1)' (B.14)' 

'I'hen the (L ++) 1 torm in tho free ao tã cn (J.17) t s repreaented as 

~ I ! (JI~ i Yi' ( '"" -.. V Ke
t2>'f.s.= i"Lja -C ~ J i!) J)\jJ)l<e 1 (:C)	 (B.15) 

while the term w1th the Lagrange multiplier, before explioit integ­

rat10n over &M} as 
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~~s ~ :'sJI~ !i{'a) ~k- k~I.l~) V(~(ill")/k). 
(B.16) 

Now the U -integral in (B.16) reoeives non-zero contributions both 
from the first and seoond terms in the general expansion (B.7). We 
obtain 
~ 'li i (J l'l. ["\/ /(1 ~ _rÚC. \c \c .)rs	 =- i, J -2 :í l (i!)'D(k DI( Ic ) X 2. ~ l~) +11C2 1 '4, 

(B.17) 

-l-/i.j\~) 1)K. k>-Dk~lc., X(i~ ~ .. I<.J (~) J 
, 

(in this expression, we have changed a normallzation of X S 60 
as to absorb unessential nwnerioa1 factora). Eqs. (B"15), (B.17) 
have to be oompared with the corresponding formu1ae of /4/ • 

The se1f-interaction terms, the further re1axed hypermu1tip1et 
aetions,the ooup1ings to N~2 Yang-Mi11s,the oentral oharge modifioa­
tions, eto.,ean be reexpressed in terma of ordinary N=2 superspaoe, 
proeeeding in a similar mannar. 
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ranbnepMK A.C., MaaHoa E.A., OrMeae~KHH B.M. E2-86-277 
Rpeo6pasoaaHHA AYanbHOCTH H HaM6onee o6~He caMOAeHcTaHA MaTepHM 
a N • 2 cynepcMMMeTpMH 

06CYHIAaeTCA ¢opMynMp0aKa MynbTMnneTOa N = 2 MaTepHM C KOHe4H~M 4MC­
nDM acnoMoraTenbH~x noneH a nOAXOAe rapMOHM4ecKoro cynepnpocTpaHcTaa. 
noKa3aHO, 4TO ace OHM OnMC~aa~TCA aHanMTH4eCKHMH rapMOHM4eCKMMM cynepnonAMM 
nOA4MHeHH~MM CTOpoHHMM CaA3AM MnM o6naAa~MMM HeKOTOPOH KanM6poa04HOH 
cao6oAOH. OnpeAeneHo aaHo N = 2 cynepcHMMeTpM4HOe npeo6pasoaaHMe AYanbHOCTM 
Cera noM<>~biD noKasaHo, 4To ace caMOAeHCTaMAB~weynoMAHYT~x cynepnoneH 
3KaMaaneHTH~ 4aC.TH~M KnaccaM 06~ero CaMOAeHCTaMA OCHOaHOrO aHanMTH4eCKOrO 
npeAcTaaneHHA N = 2 MaTepMH, q+-rMnepMynbTHnneTa~ TaKHM o6pasoM, HaH6onee 
o6~ee q+-AeHCTaMe OnHt~aaeT HaM6onee o6~ee CaMOAeHCTaMe N = 2 MaTepHM. 
nocKOnbKY N = 2 MaTepHA npHaOAHT K rHnepKanepoa~M o-MOAenAM a ceKTope 
~3H4eCKMX 6o30HOa, npaaAOnOAQ6HO C4HTaTb COOTaeTCTayiO~IO aHanHTH4eCKYIO 
cynepnoneay10 na rpaHH!eay nnoTHOCTb 11 

rMnepKanepoa~M noTeH~ManoM
11

, nopaH!· 
AaiO~HM ace· M~CnHM~e 11 rHnepK3nepOBiol MeTpHKM11

• 

Pa6oTa a~nonHeHa a fla6opaTopHH TeopeTH4eCKOH $H3HKH OMRM. 
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Galperln A.S., Ivanov E.A~, Ogievetsky V.I. 
Duality Transformations and Most General Matter 
Self-Coupling inN= 2 Supersymmetry 

E2-86-277 

TheN= 2 matter off-shell representations with a finite s~ts of 
field components are reformulated in the harmonic superspace approach. Thel~ 
list Includes all such multiplets known previously (the tensor multiplets, 
the relaxed hypermultiplet, the further relaxed hypermultiplet) as well as 
newly introduced (higher relaxed ones, etc.). All these multlplets 
are described by constrained (and sometimes having a gauge freedom) analy­
tic harmonic superfields. A manifestly N = 2 supersymmetrlc duality trans­
formation is defined. By means of it all the self-couplings of the above 
superf I e 1 ds a r.e shown to be dua 1 equ iva 1 ent to certain subc 1 asses of ge­
neral self-couplinq of the basic analytic unconstrained N = 2 matter super­
field havinq an infinite number of components, the q+-hypermultiplet. This 
confirms our suqqestion that the most.general q+-action yields the most ge­
neral matter self-couplinq in riQid N = 2 supersymmetry. TheN= 2 matter 
actions are known to produce hyper-Kahler a models in the physical ~oson 
sector. So, the relevant analytic su.perfleld Laqrangian density L + )(q+, .. ) 
can be ref)arded as the qeneral "hyper-Kahler potential" plausibly resulting 
in all possible hyper-Kahler metrics. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 
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