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1. Introduction

The problem of the quark confinement in its contemporary formu-
lation is based on the deep inelastic scattering experiments., It has
been found that the inclusive croses sections, i.e., sums over all
hadronic states may be described with the help of the imaginary parts
of the quark (parton) diagrams '). From a field-theoretical point of
view the quark hadronization implies zero probability for the colou-
red-particle creation. This statement may be considered as a model-
free definition of the confihement. '

However, nowadays. the interpretation of the confinement problem
- its criteria and mechanisms, is rather dependent on the model choi-
ce. The most popular criteria are the existence of a linearly-rising
potential between the quarks and the increésing of the Wilson-loop
areas In their formulation, the Schwinger model - two-dimensional
masslesgs quantﬁm electrodynamics, has played an essential rola/1’
Recent calculations of the coloured particle Green functions have
made the confidence in their strictness doubtfu1/3'4/. It was found
that they are compatible with the existence of poles in the quark
Green function, Calculation of these poles.is one of the standard
methods used to determine the:'elementary excitation spectrum in QFT

2/.

and statistical physics. The existenceé of a pole is interpreted as
the .presence in this spectrum of a particle with quark quantum num-
bers. From such a point of view the absence of a pole may be consi-
dered as a confinement criferion that coincides with the model-inde~
pendent one mentioned above, i

In the present paper we discuss the confinement problem in the
Schwinger model in this context. However, the fermionic mector of
the model is insufficiently studied due to some difficulties:

.

*) Quark diagram hadronizetion has been called the quark-hadron dua-
lity principle which is now the QCD«phenomenology basls and is used
suctessfully in various sum-rules derivation.
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1) The bosonization of the theory leads to some additional
effects which have to be separated from the dynamical ones;

2) The Green functions are not gauge-invariant, so the results
concerning them dépend on the gauge-condition choice;

3) The existence of infrared divergencies requires the corres-
ponding regularization scheme,

To elucidate points 1-3 we first consider the free-fermion bo-
sonization in the two-dimensional space-time (section 2). Then, we
propose a gauge-invariant method for quantization of the Schwinger
model and calculate Green‘sz furctions (section 3). In section 4 the
topological degeneration of dynamical variables in finite~-volume
space~time ig discussed and it is shown that this degeneration may
cause the quark confinement in the massless QE]?_”.

v

2, Bosonization of the Free Fermions

Bosonization provides an adequate method for the deucrigtion
of two-dimensional field-theoretical models with femione How=-
ever, considering the equivalent bosonic-theory properties, one usual-
ly does not distinguish bosonlzation effects from the dynamical ones.
To do thic we ahalllbeginvwith a brief review of the free-fermion
bosonization in two dimensions. In this case the Lagrangian is

- i wx)//*a ¥ia). (1)

In quantum theory with such a Lagrangian there appears an ano-
malous, term in the current-component ‘commutator

[Jja(") /51(]{/

i <1+ P O

As ie known, the physical reason for this anomaly is the filling
of all negative-energy states, i.e.,the Dirac sea 7,8
A simple substitution

J’/“ (x) = ,;: D 96(1) (3)

trensforms relation (2) into the scalar field ¢(*) comutator. Then,
the current conservation law takes the form of the massless D'Alem=-
bert equation

B oz~ ;) (2)

LY ',/A' :0 = 3/49 SD :Oo
2 fo = ¢ /4¢ ¢
Thus, the theory (1) is equivalent to the free massless scalar
field one

; Lowt 3 (%4)"

There is only this scalar particle in the spectrum; fermions
apparently disappeared. An analoﬁous gituation in the Schwinger model
hag been interpreted in papers as a manifestation of the confi-
nement that takes place there. Following these papers, one might
conclude that the free fermions are confined too. Such a conclusion
igs obviously wrong, s0 we need a correct description of the fermions
themselves in the bosonized theory. In other words, we have to fiand
the functional dependence of the spinors Y (x) on the field(ﬁ(x)

The axial-current component <7€a(xJ is proportional to the ca-
nonically conjugated momentum for the field (ﬁ{l)

JSa(x)' L 9, P(=) = I’“ Tr(x )+

So, the following relations take place:

[150l @{H;g))} L[, f(49)]= i;f &4 (464)
that lead us to the equation on L#’ﬂh) H

[gse, ()] = A Mm d($1)= STx-g)p, 4 (419).-

Its solution has the form

1-0/;- 4)(’1)
Yx)= e It

X (x)

~'/5/r¢(’-)

+ t +

(‘r (:x): 1% % (‘.X) )

where X(x) ig a function that does not depend on the field*$(x4 .
An additional requirement for reproducing the free two-point fermion
Green function in this language may be used for defining X(x) :

o {FA(x-Y) _

{em) iy = ¢ (X (0 XCy) >

(nere A,(x-Yy) 1is Green's function of the free massless scalar
field). This task may be achieved if we put

E) /Ev)fJffi) .
X(x)= e Xolx),

where 2, {X) 1is a free massless scalar field quantized with an inde-
finite meirics and Xo(x) is a free fermion field. Thus, the fer-
mion Green function may be obtained from the generating functional
with the action:



) Sb: jdzx"ce >

Lom § (W) -5 (00 2) 4 iUl o ko + Tb + 3,20
+;[in7ry:(4>+z)ko o~ e-cﬁr,yf(mz)%.

(4)

+ Xo

3. The Schwinger Model - Gauge-Invariant Variables and
Green's PFunctions

Let us now turn to the Schwinger model - two-dimensional
massless QED:

£=~%5&w?’w* (7’("(;’”/**2//4’4/4)* (5).

}t ‘:DIM—AL)‘?)U’A/L& , /u,J:O,'{-

It is well known that the Green function properties depend on
the gauge choice in an essentisl way 9/. So, congidering them, it
ie convenient to formulate the theory only in terms of gauge-inva-
riant quantities.

In the lagrangian (5) the gauge field component A, is not a dyna-
mical one. So, we shall eliminate it before quantization of the theo-
ry with the help of the corresponding equation of motion (for instan-
ce, a constraint equation)

£s 5 '
_670:0 = 042,40:?130'41*'940 €6)

Y 5:3&’?1_02(1)
Substitution of the formal solution of (6)
1 . .
A, - a—z(a,BLA1+€Jc> M

1

x = (2% x").

in (5) leads us to the following Lagrangian in terms of the variables

AT(AY s T (A)
~ 1.9 2 4.y
a@=f(3c/‘f>z*lq/fﬁa/*(ﬂ‘ef (9» J'oj)l:acl\("‘i‘rl), (8)

where

A:(A\) z {,(A)(A,,} tE B,)[L'"(A) = (4- 4 ?)L,':L D1)A4

‘YA - LY.

m
Q

(9)

The operator ﬂ,(ﬂ) ig determined in accordance with solution

(7):
L) eapf-ic (du ki d,| = expeiedi'a]

so as to ensure an U(1)-gauge invariance of the variables (9)

Al:A1+ 97)(1) Aql (A‘):A‘IJ(A)'
1 e .—7
TS I ) = (ALY

We would tike to emphasize that the physical variables (9)
(which are subsequently used in thie paper) are hardly fixed by the
dynamices (i.e., by the constraint equation) and by the requifrement
of gauge invariance. The Lagrangian (8) itself formally coincides
with the one in the Coulomb gauge

WA =0, WdoA, = D A,:0, (10)

1e€ey

1 { -
"(1 (AI)(},T): "[;Ca-,{e‘(A’(*)‘ (H)l

— P 4 2
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So, the Green-function generating functional which follows from
€11) will reflect their gauge-invariant content.

As is known, the equivalent bosonic action for (11) in terms
of the scalar field $(x) (3)

T 2 .
([ () L et 4]
ée,‘gdxlllk")/“é)‘z 7,—4>

points out the existence of a neutral particle with mass m-= 8/495

in the spectrum of the model. Taking intc account fermionic degrees
of freedom as well, we find the total action in the form

STt 7] = ' [0 4)- £ (0, 3)% 25 g2s

+ie%ﬁﬁ(¢+l)% v Xee ¢ 1



The corresponding generating functional for the Green functions
is then written as

Z19.9.7] § 2403 0% 9%, exp (1 3,,). (12)
Thus, we find for the fermion two-point Green function

Glay) - .J_Z_[zﬂ/ :

£4() 890 | 5 -0 (13)

- %pg_l-}’ [Am(x-y)-ao(x-y)]i Gvo(x-y) ,

where Go (x- ‘af),is the free-fermion Green function and A4, (x-y)
is the massive scalar field one. The asymptotic behaviour of func-
tion (13) in the momentum space is

G = £ GG o~ P
(PP""’Q P* ’ Pp’eo (PE+'_£)5/4, (14)

(see Appsndix A and also paper’ ''/). It follows from (14) that the

probability to find a particle with quark quantum numbers is not
equal to zero

YI' sl PSR F 0,

ﬁ"ﬁo
despite the linearly rising potential between the "quarks". Note
that fhe snalogous quantity in QED3+1

v[" - @%ﬁ (F-m)G(p)

equals one in the frames of the same minimal-quantization scheme
) /12/
D,,A.i— . .

So, the validity of W®ilson's criterion (an existence of a 1li-
nearly-rising potential) does not lead automatically to the confi-
nement. This was first realized in paper /3/; here we only give an
example with an exactly solvable model.

4, Topological Degeneration of the Vacuum and of the Dynamical
Variables in a Pinite Space-Time

The starting point for the minimal quantization of gauge theo-
ries hs the construction of dynamical gauge-invariant varisbles by
an explicit solution of the constraint equations. However, a mathe-
matically correct formulation of a consistent quantum theory may be

[\

presented only in a finite volume space-time (remind that all physi-
cal observables in the field theory are normalized just in this way).
The transition to a finite space-time

T
-T2 xy & —
2 - T 2
—&t_—x"—&

is crucial for our further considerations because of the nontrivial
consequences of the functional ambiguity in eq.(8) which has not
been taken into account. This ambiguity is connected with the solu-
tion of the corresponding homogeneous equation - the zero mode G
of the operator [T

2EG(x)=0 (15)

that has to be included into the general solution for A, . Choo=-
sing G(x) 4in the form

G )= L 26 () , 16y
we are led to the following expression for AO:
A4 : 1 “n
Ao: 5} (3430A4+ €90>* e ap)r

where A(lj gatigfies

bf'ao)(x):o ’D'L)(x.):(’)- (18)

In this case the additional term in (17) {when compared with
(7)) may be regarded as a dynamical analogy of the Gribov ambi-

/13/%)

guity
Zero mode G(;L) changes gauge—invqriant variables (9):
") o)) - A0 e P2
(4)) :3(A)(A4+E’c>,)9 O) =40+ 2 .

(L{/I)) - !?()> L,[/ I)

*) i igui {gtence of gauge transfor-
The Gribov ambiguity is based on the exis g

mations which 1ea§g invariant the gauge-condition equations. In our
case Gribov's equations for the gauge 10) coincide with the dynami-
cal equations (18) for the function A(x) s



where the operator 3(')) is determined in the same way gas fL{A) *)

g+ expic §dat 32 s empiinea]. (20)

The boundary conditions for the phase g (A) have to reflect
the absence of sources in the space, so the relations

am ?"",(’L) = 3 '{ )
CAEL7AN (21)

Jalxn)s 3(&&))

should take place.

Now the problem is whether there exist nontrivial solutions
of equations {18) in the class of smooth functions (20) that sa-
tisfy these boundary conditions,

The functions @4 (x,) determine & map of the space R (1)
onto the group U(1) (at the time-intervel end points). In fact, con-
dition (21) is a smoothness condition for this map that may be writ-
ten as

Xg=d T/L

Y2 Y
4 . -1
J}de, 131’04?5 : ﬁjdx,bq M) = oy =0,24,42, .. (22)
'5& ‘%ﬁ
S5uch nontrivisl solutions exist and have the form
A, [ Nx)) = MAJ(xG)% , (23)

where N(x:) is a smooth funetion with integer boundary values
NETAY= ny . (24)

This-situation implies a degeneration of the '"clasgical™

Ai = 1‘91 a»rgt."

vacua

Y The operator A determining the gauge-invariant variab-
les depends on the terms in the solution of constraint equations
that are not connected with the interaction Lagrangiasn. That is why
the additional term in (17) changes its form f-»ém)g()) and it
is just the operator g () that describes the phase ambiguity

of the fields caused by the zero mode.

*). The "topological®™ variable N {x,) descri-
bes the nontrivial vacuum dynamics of the two—dimens;onal Abelian
gauge field (Appendix B).

with parameters n,

5. Popology and Nonobservation of the “Quarks" in QED

141

Quantization of the Schwinger model action according to the mi-
nimal scheme in finite-volume space-time revealed the strueture of
the vacuum topological degeneration. As a consequence of thig dege-
neration there appear nonunique pheses in the "coloured" field sour-
ces in the generating functional (12)

N AN 2F i M) T

1 (:L,H\J):?(ocqm)v".(oc): e 7(x)=e néx)

»~27riN(xo)%l

(25)
ﬁ)(lJN):ﬁ(%)e

Though the function gcxalN) itself is & smooth one, after
taking an gverage over degeneration, that it describes (i.e., over
the topological number n ), there appears a singularity

¥
' <?(14IN)>=€LWL Ly <nfh+%> = d, (26)
¢ ° Leeo b { Y

'h:-v - » 0

where,8m4 0 is the Groneker symbol.

Th{g,singularity does not affect the two-current correlator
structure because the phase factors extinguish each other. There re-
mains a pole at the point P1=eﬁ/ﬁ', representing the existence of
a massive scalar particle in the spectrum.

At the same time the fermion Green function

\ $*Z
Glx-y) - —Zont |
59] J‘VI 7'7:0
changes in an esgential way.

According to (25), (26) the functional Z is defined as

Cond.

*) 1 QED,,, the existence of solution (23), (24) follows straight-

forwardly from the fact that the map of the coordinate space onto

the group one is clessified by an integer degree of mappings J1,(U(1)=
, hence eqs.(18) are consistent with the boundary condition (21),

€22). In QED,, 4 such a topological condition does not take place

(71, (U= 0) ; 8o both the boundary conditions: three-dimensio-
nal analogy of (21) and the usual one

Lim A(x)= 0O,
hded, /14/
lead to one and the same ftrivial) result .

9
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Z JonT]=tim G L3 Z [0 7]
o077 it L3 Z [0
Then, for the representation of the Green function G (1-?) in the
momentum space we find
: ip(x-y) ~iT[A, (x-y)-a.(xy)]
G(P) :&:WL L 4 Sdlxdzye ¢ e g ?*

P K Treo L:*poL

Y e (27)
xGo(m-j)Z D <nlnes-Zydn-sediin =
’h:~‘715'-"ﬂl
iplag) - T[b(xg)-a %]
= Ui gdzxdlzep Py a2 s, 20,
RT>w 2'g

The function G (f)) vanishes because of the interference of
the phase factorsg(m.lm) , that then may be called a destructive
one. However, the ldentity (27) represents the existence of confine-
ment in the Schwinger model in the sense of the model-independent
definition from the Introduction. We have to emphasize the way the
1imit procedures in (27) (on R, T and on'l ) follow one another
(the correct way being the same as in quantum statistics/94 since
the opposite choice leads us to the old result (see section 3).

.

Conclusions

We have tried to analyze the reasons for confinement by an
example of Schwinger's model. In its conventional interpretation the
charged-particle confinement is problematic because of the singula-
rity in the ‘''quark" Green function that allows the existence of ex-
citations with quark quantum numbers. In this sense the #¥ilson cri-
terion is not a criterion for confinement.‘

In this paper an approach to the problem is proposed where the
theory is formulated in terms of dynamical gauge-invariant quanti-
ties and is quantized in a finite-volume space-time. As a result,
there appears a topological degeneration of the gauge vacuum arid the
physical field phases. After taking an average over this degenera-
tiqn the quark Green function vanishes, but the neutral-current
correlator (in the 1limit of an infinite volume) coincides with the
one in the standard approach to the model

10

pm—. | A oamemt 4 A
P ——— e ey o n o ww

e

Thus, the destructive interference of the'topologicai phases
of the physical fields may be considered as a possible reason for
the confinement in the two-dimensional massless QED. We would like
to emphasize that the topological structure of the Schwinger model
coincigig/with the one of a non-Abelien gauge theory in four dimen-
sions . Bo, the conclusion about the existence of confinement
takes place in QéD too /12/.

The authors would like to thank Drs. B.M.Barbashov, D.V,Volkov,
G.V.Efimov, A.V.Efremov, 0.I.Zavjalov, D.I.Kazakov, L.B.Litov and
V.P.Pavlov for discussions,

. Appendix A

Let us remind the form of the (right) fermion Green function
in two-dimensional momentum space ’

G- EEOOCPD | OCrD O pe
F_ +1& P— ~1& P+f)_ + q‘i._ (A.1)
where the "cone™ components are defined as usual
P+ =Potpy-

We shall now calculate the exact Green function of the (right)
"quark" in the Schwinger model using relation (13). As we are going
to discuss the confinement problem, we are interested in the beha-
viour of this function when PZQVO' « With the corresponding asymp-
totics of propagators A,(x) and A, (x) (entering into eq.(13) )
taken into account, we fing h '

LA o i(pem-+p-x )2 Y
L /2. ] - k
G (zqo):__h‘\__ dx, dz_e &’_Di'_)_ =
Qe \p = ;
SN 1 (QL- 1 &)
oo - 3
w [ ve P-Xe/a d: x4 P
..m Sclu:+ x, e . == e -+
4 -1
o e e ey (A.2)
- & o
2w ipmal, L PEA
+ \dx, (x,) e dx. 2= e
+ ’g//
0 —_—e0 x_*1 X,
11



The integrals in the first term of (A.2)} can eaaily be calculated

i n 'fp~3"+/2 . 5/
e e MU L
. P-*’”&
0 .
J Wd x P ( )1/1 2 &%
= lgx. X e = U . (L) o(p,
* g x_~1E petie ) o)

that finally gives us . @z
{ 1
250) = © 9(° -
AG.R@)(F 0) ’C (;;*)4 p-) p-it [\ pepsie (4.3)
M)

- 4T m "2

In an analogous way for the second term we obtain

) /‘{

gxu)(loz"’o): COCPNO(p) (A.4)

p- “1& Prp- +ie

Comparing €A.3), (A.4) with (A.1) we are led to the conclusion

{ Y
6, (F+9)= 6wt =)

418

that

Appendix B

The dynamics of the topologicel degeneration of the, gauge-field
vacuum is described by the action

ThA 2 LS
1 c)‘ . :
53 i (B27) < 3 fon”
T % . (B.1)
1 A

- Y

Quantization of the action (B.1) is not difficult:

‘k:@lu.r:,\‘” C[RON]sd
, 54
where M~I
NRSLES
iy 12

N——— —

—

The topological momentum K gspectrum is easily found 1/ by
taking into account the physical equivalence of the states

<P|N>:%’Fi'l/°,\!} and <FfN+h>:mp{-[P(N+m)} ]

The real state represents Bloch's wave that is an average over this
degeneration with a weight Q/x{o {in 9}

% ih -1 +n
CHINY <l LD e P )

Lo L -
-1 (ark+9)N :
={ e ’NKPXTL+9 (B.2)
0 ,K#E ATk 40

k,:O)jJ)i'ﬁ)__.
|6l « 7.

The spectrum (B.2) gives us for the free Hamiltonian
e’ 2

%L
TR 2 . 2
H, = % (2re+9) e1n LE y
where
Lol
1 A,
is a constant electric field /7/. Ite minimal value (in modulo)
Foo.e%
i T T

coincides with Coleman's constant electric field be introduced /10/
to explain the © -vecuum in the Schwinger model, He considered €
as a simple-parameter, In our approach & is connected with the new
topological variable, so it has a dynamical content as a characte-
ristic of these constant electric fields that represent the real
infrared vacuum of the theory.

The. explicit expression for N'(:‘r-a)

N(xo) = ? (h‘+ VI_) +%(“4'”->

. 13



allows one to rewrite (B.1) in the form

I 2 r
R A

where

:&*2 P ?lbw: - .
~ qw-% o o Ny - n. ‘ :

/18/. Thus, the dynamical interpretation
of this quantity is a peculiarity of the approach proposed in this
paper.
So, at the end points of the time interval the so-called "clas-
sical vacua" of the theory/19/ are purely gauge fields
f *
A41» = z 91)1_(334)
and the gauge field

Ax)= 12, Az, [N(xe))

interpolates hetween them.

is the Pontryagin index
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fdBrieHHe HEeCTPYKTHBHOU HHTepbepeHUUH
Kak npHuYHHa KOHbafHMeHTa B K3/
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BesmaccoBasa K3] l+1paCCManHBaETCﬂ B TepMHHAX OHHAMHYE -]
CKHX KaJnOpOBOUHO-HMHBAPHAHTHLIX mepeMeHHbX. Ha mnpuMepe BuUHC—
neHua bepMHoHHOH dyHkuuu FpuHa HEeMOHCTpUpPYeTCs, YTO JIHHEH—
HplI pOCT TNOTeHIHana He HCKI/H4aeT CYmeCTBOBAHHA B CIIEKTpe
Mogeny BO36YXAEHHH ¢ KB&HTOBBMH uHciaMu ''kBapka' (T.e. Bb—
noJiHeHHe KpUTepuA BunbcoHa efle He O3HadYaeTr CYMeCTBOBAHHA
KOHbafHMeHTa) . 06CYyXHaeTCs TONOHOTHYECKOe BhIpDOKAEHHE dasbl
bU3HYECKHX TOJIeH B KOHeUyHOM mpocTpaHcTBe-BpeMmeHH. [lokasaHo,
YTO NPHUYHMHOI KOHbaHHMeHTa MoXeT OhTh HeCTPYKTHBHaa HHTepde-
peHuua Gba30BEIX MHOXHTEIleH.

PaboTa BuInoJiHeHa B JlaBopaTopuu TeopeTUdecKoH (GU3IHKH
QOUSIH.
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The Destructive Interference Phenomenon as a Reason
for the Confiniment in QED 1+1

Two-dimensional massless QED is considered in terms
of gauge-invariant dynamical variables. By an example of
the fermion Green function it is shown that the linearly
rising potential allows the existence of excitations with
quark quantum numbers in the spectrum of the model (so
the validity of Wilson's criterion does not lead automati-
cally to the confinement). The topological generation of
the physical-fields phase in a finite-volume space-time
is considered. The destructive interference of the phase
factors is pointed out as a possible reason for the confine-
ment.

The investigation has been performed at the Laboratory
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