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An impertant problem of the theory of strong interactions is the
calculation, "from the first principles of QCD¥, of the parton
distribution functiens and hadronic wave functiens fﬁ (x} -

% (Xg, %2, X5) ... accumulating infermation abouf. the nomperturba-—
tive aspects of the quark-gluon dynamicse. A very promising mefthod to
calculate the Lowest moments of these functiens is the QCD sum rule
(SRY approach /1/ | For example, the zeroth moment of S‘;,(x)( ieCey
-{ constant) was obtained in rei‘./l/ with 5% accuracy. In ref.
the. SR for & were formally generalized for next moments of
the function ;lf,m()‘\ « Infermation about the nonperturbative dy-—
namics. within the QCD SR method is aecumulated by a power series
over the vacuum expectation values (VEV*s) eof local operators which
determines the magnitude of hadronlc c¢haracteristics. Note, .however,
that A% #s the function parametrizing matrix elements of

a nonlocal operator *

he
2/
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Thus, there arises the questidn whether it is possible to get reliab-
le information about the essentially nonlocal objects within the
standard version of the SR method@ restricted to the simplest local
VEV's £ q0NqLey> < Gy 0y &rqw‘) >y etc.y, of it is neces—
sary ‘to take into consideration monlocal VEV's 4@&3)01'(2\>,
<G‘3N(§)GNG‘>”' Moreover, the Iatter are in fact the initfal objects
of all calculations within the QCD SR approach, while the lacal VEV's
emerge from them after expansion info the TayIor series. .

To study the bilocal VEV's, it is convenient to introduce the

parametrizationn . -
o Y
_ ARE
<P 4By = <7 9> S 4 Py dy (2)
(V]

having the structure of the J -representation for a propagator. The
E)EP.E-!}?%QQ_QI_ <q0) §(&Y> over local operators corresponds to that

X’Here and in what follows we take fields of uarks u,d and
gluons in the Fock-Schwinger gauge (3] ¥ [\éj_}‘,zo where the
covariant derivatives ) coincide with ordinary ones 'Br .

Jl-}‘:)Deriving a QCD SR one can always perform the Wick rotation
Z_5 1 Z 1+ Le6.y to treat all coordinates as Euclidesn, with z2<0 .
[ 0
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where A=< ‘T,])Z‘;[)/lq‘l) is the average virtualness of the vaduum
quarks.

For the bilocal VEV containing a

o

3( ~matrix
z
Aoy, -

[¢]
the zeroth moment of LP L\)) is zero in the limit of massless quarks
and that is why the (¥ — expansion for 1}’ L\) starts with the
!
X(V) term:

2
s vy = A[Sw)—— Xm} e A2

The contribution proportional:to dg (ﬁ q,> results also from the.
"trilocal®™ condensates (cL(Q)x (X\ A (3)@(2)) which can ‘be
parametrized by a triple integral representatlon of the same type.
The role of thé functions &P s becomes especially
clear, if one writes the SR directly for the wave functlon (X-—%—X )

<i<osy LAD = Z"X g\) (3
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v ( triCodaty + ((<GG>) + xe>X.

Thus, the longltudinal momentum distribution of the quarks inside
the pion 1s related to the virtualness distribution of the vacuum
fields.

The standard SR 7192/ results from eq. (4) if one takes the first
term of the & — expansion for ‘1‘(\)) u['\) . This model is,
ev1dent1y, too crude if the average virtualness of the vacuum quarks

3 ( and/or) gluons). is 'not small compared to ‘the typical hadronic
scale SOCN-O) ~ 0,75 GeV2 « Existing estimates yield

.12= (0.4+0,1) GeV? So - \. In such a situation, instead of the
standard expansion over the local VEV'S, one should use an expansion in
whicl the large virtualness of the vacuum field has been taken into

-

account aust in the first term. In other words, -for .function,

M(Z )— 4‘1(03 92> with finite correlation length -~ il/’j\a of
the vacuum fluctuations 1t is much more preferable to use the expan-
sion of P over & o= }A) the first term of which takes
into account the main effect caused just by the finlte width of the
function MI{Z%) , while the subsequent terms describe those due to
deviation of its form from the Gaussian one..'That is wh,y we take ¥
equal to BJ(V j‘}z) and lt" (¥) equal to A SW %—:Jl) « Values of
the shifts are determined, obviously, by the second terms of the
8'“ « expansions for PV) , q:'k\ﬁ « In a similar way one can
construct model S ~functions for“theé’ trilocal and gluonic VEV's,

As a result, we obtain the following SR for the moments of the pion
wave function: g

-y
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where§= -5, 8 = {-q @ oMty Y= 35 0 L%

If one takes 11 = 0, then eq. (5) coincides with the
Chernyak - Zhitnitsky (CZ) SR /2/, while the 0 (2%)term in the N -
expansion of eq. (5) gives (in a" model~independent way) the magnitu.
de of the 4& <q1> 4>< 79> - contr_ibutjion. It should be noted N
that the latter completely cancels, for ™M™= 0,6 GeY2 y the o( 49>
contribution. .

In the CZ SR 7%/ the relative contribution of ke U{QD and 4, <G&>
corrections rapidly grows with that of N . As a consequence, the
scale S, for N=2 (4) 1s 2.25 (3) times as high as that for N=0,
That is why the values of < SN> obtained in ref.
2425y 3 «ve higher than the
ponding to the asymptotic

] are by factors
"asymptotic" values 3/(N+1)(N+}) corres—
wave function
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In the SH (5) the coefficient in fromt of the numerically most '
important i$< ‘1‘&>2 —contribifion decreases with N by almost the
same law ds the perturbatiwe contribution, and as a consequerce,
fitting the SK (5) one obtains for the lowest moments the values
I
4'317' = 0,25+, 01, ¢3¥ = o.130.00
6 ¢e)
<3y = 0.,07x0,02
! e & « It 1s not surpri-—
ogly slightky differlqg from the asyggi;fiz=onj§ ﬁ:t s D
sing that the model wave function 3 ¥ L w V
J:eproaucj.ng: the value‘s, (6) is altso close 1:0.2 —‘gr . It shoukd. 27 R
emphasized hereé that the overestimate of <% >, & S in ref.. s a
direct consegquence of the approximations PNy~ TOY %N‘jw SN},
For any functions PNy W(N)  securing the "observed" value
= 0,4 GeVz of the ratio (q $1€t>//j{ 8> the results for « 3“')
always will be close to those displayed in egq. (6).
Explicit form of the functions PN \i’(\r'} t’fd--,
ciple, can be obtained from a specific model (or, 1deally, the theory)
of the QCD vacuum. More practicable, however, seems a way based on
the fact that the SR's similar to eg. (57‘can_be obtatned for othér
wave functions and also for quark and gluon distribution functions
which are known experimentally. This opens a possibility of formulating
the inverse problem, i.e., that of finding the "“vacuwn distribution
functions" POy , %’(‘3 (that are universal for all the had-

rons!) from the given functions g“fp (x) §&/p oy, Agu/j‘ (x), eté.

in prin-

“We are grateful to A,V.,Efremov, V.A,Nesterenko, B.L.Ioffe and
M.A.Shifman for stimulating discussions.
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HemnokanwHele xoHmeHcaTel U KX]I mpaBuina cymm
IUIs1 BOJIHOBOH (QVHKIMWH MHOHA

E2-86-259

O6uapyxeHo, uro KX[ npaBuna cymm /IIC/Zi1 MOMEHTOB BOJIHOBOH
GVHKLIHH nHOHA P (X) BecpMa 4YYBCTBHTENBHH K GOpMe KOODOHHATHON
3aBHCHMOCTH ''HemokamnbHelX KoHpeHcaToB''<q(0)q(z)> = M(zg),

<a(0)y#q(z)> H T.n, llonydess! MoaubuiMpoBaHHble [IC u HailimeH AB—

: I — :
HbH BHA ¢, (X) = — f.vx(l - x) ons pacnpepesieHuir M(z%), umero

) A2 = 0.4 2
WUX MUPHHY, ;mrﬁryzemyro CTaHQapPTHEIM 3HaUeHHeM = 0,4 I'sB” ar-
HomeHusa A° = <qD“q>/<qQQ>.

Pa6ora BunimosiHeHa B JlabopaTopuH TeopeTHUYEeCKOH GH3UKU.
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It is shown that QCD sum rules {(SR) for the moments of the
pion wave function ¢ _(x)are very sensitive to the z-dependence
of the "nonlocal condensates''<q(0)q(z)> = M(z?),<q(0)y, a(z)>,
etc. We discuss a modified ‘SR and obtain the explicit form of

¢, 00 = L, yx@ - x)

which has the width dictated by the standard value A% =0.4 Gev?
of the ratio )\? = <aD2q>/<§q>,

corresponding to a distribution M(z®)

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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