

обьединенны
 институт
 ядерных
 исследовании
 дубна

E2-86-258
A.S.Galperin ', E.A.Ivanov, V.I.Ogievetsky, E.S.Sokatchev ${ }^{2}$

PRESENT STATUS

OF HARMONIC SUPERSPACE

Submitted to the XXIII International Conference on High Energy Physics, Berkeley, USA, July 16-23, 1986

[^0]1. Preliminaries Harmonic superspace (SS) has been invented by us two years ago $/ I, \frac{2}{2}$ in searching for a manifestly invariant description of theories with extended SUSY. The first successes of this approach (unconstrained superfield (SF) formulations of matter hypermultiplets and $N=2$ super Yang Mills (SYM) theory, finding analytic $3 S$ group and prepotentials of the Einstein $N=2$ supergravity. (SG.), the first off-shell formulation of $N=3$ SYM) have been reported at the preceding conference $/ 3 /$. During the next two years, an essential progress has been achieved both in understanding the basics of the method and in its further applications. In this talk we review these developments and outline the problems to be solved.

Recall the basio motivation which has led us to harmonio SS. We have realized in 1984 that an ordinary SS with finite sets of aux xilary fields is inadequate to extended SUSY's. There were several indications of this. First, one faced the familiar "no-go" theorems /4/. Second, there were serious difficulties in constructing unconstrained $3 F$ formulations of $N=2$ theories (analogous to formulations known in the case $N=1$).

The way out we suggested was as follows /1-3/. One has to extend a conventional ss $\left(x^{\alpha \dot{\alpha}}, \theta_{i}^{\alpha}, \bar{\theta}^{\alpha} \dot{i}\right)$ by adaing new purely internal coordinates $\mathcal{U}_{i}^{(a)}$ which parameterize a coset $G / H, G$ being the automorphism group of the relevant superalgebra, H its oertain subgroup. These ooordinates are lowest harmonics on G / H. The SF's defined on harmonic.ss IHR thus constructed oontain infinite sets of conventional SF's appearing as coefficionts of harmonic expansions in powers of $U_{i}^{(a)}$. Among these general harmonic sF's there oan be found SF's of a lower Grassmann dimension, the analytic 8F's. These live as unconstrained objects on an analytio subspace $\sqrt{\mathbb{R}}$ of $\| \mathbb{R}$. Just the analytic SF's provide us with manifestly invari-- ant unoonstrained geometric formulations of SUSY theories with $N \geqslant 2$. Such formulations became possible due to the following radically new property. The number of auxiliary and/or gauge degrees of freedom in analytic SF's (appearing in their harmonic expansions) is infinite. This is just the point where the above no-go theorems fail.

Now we turn to listing the main results obtained within the hamonio $8 S$ approach for the last two years.
2. The most general self=coupling of Nmi matter. One of the important problems in SUSY is to identify the "ultimate" off-shell representation which yielde the most general matter self-coupling.

In the oase $N=1$, it is a chiral multiplet described by unconstrained SF on a complex $N=1$ SS $\mathbb{C}^{\alpha / 2}=\left(x_{L}^{\alpha \dot{\alpha}}, \theta^{\alpha}\right)$. The genuine $N=2$ analogue of $\mathrm{N}=1$ chiral SF is a complex analytic $\mathrm{N}=2 \mathrm{SF} q^{+}(\zeta, \mathcal{U})$ living as an unoonstrained function on analytic $N=2 \mathrm{ss} / 1 /(\pm$ denote $U(I)$-charge): $\mathbb{R}^{4+2 \dot{i}}=(z, u) \equiv\left(x^{\alpha \dot{\alpha}}, \theta^{+\alpha}, \bar{\theta}^{+\dot{\alpha}}, u_{i}^{ \pm}\right), u^{+i} \dot{u}_{i}=1, u_{i}^{ \pm} \in S^{\prime} U(2)$,

$$
\begin{equation*}
'(i=1,2) \tag{1}
\end{equation*}
$$

The most general q^{+}-action is $/ 5,6 /$
$S_{q}=\frac{1}{x^{2}} \int d z^{(-4)} d u \mathcal{L}^{(+4)}\left(q_{A}^{+}, \bar{q}_{A}^{+}, \ldots, u_{i}^{+}, u_{i}^{-}\right) ;\left[\begin{array}{l}{[x]=\mathrm{cm}^{2}} \\ \left.q^{+}\right]=\mathrm{cm}^{0}\end{array}\right.$
where integration goes over analytic SS(1). An analytic density
$\mathscr{L}^{(+4)}$ arbitrarily depends on $q_{A}^{+}, q_{A}^{+}(A=1,2, \ldots)$, on $\dot{\text { its }}$ harmonic derivatives of any order (these are dimensionless and preserve analyticity) and may include explicitly harmonios $U_{i}^{+}, \mathcal{U}_{i}$.

There were many attempts to desoribe $N=2$ matter by off-shell multiplets having a finite number of auxiliary fields (familiar tensor and relexed multiplets and some newly proposed ones $/ 6-9 /$. All these multiplets are most easily represented by some analytio SF^{\prime} s /6/. In ${ }^{\prime 10-12,6 /}$ we have defined an $N=2$ duality transformation and have shown with the help of it that all the self-couplings of above multiplets are equivalent to certain subclasses of the general $q^{+}-$ action (2) $/ 12,6$ (e.g., having special isometiles, etc.). Thus, the latter presumably describes the most general matter self-coupling in rigid $N=2$ SuSy x. This is apparently due to an infinite number of auxiliary fields in q^{+}. As has been shown recently by Howe, Stelle and West $/ 8 /$, infiniteness of the number of auxiliary fields is unavoidable when extending off-shell a complex form of a hypermultiplet.

$$
\text { According to Alvarez - Gaumé and Preedman } / 14 / \text { any } N \times 2 \text { matter }
$$ action produoes'a hyper-Kähler δ model in the physical boson sector. Correspondingly, we may oall $\mathscr{L}^{(+4)}$

in (2) the "hyper-Kahler poten_ tial $\mathrm{n}^{1 / 6 /}$ (by analogy with the Kähler potential of $\mathrm{N}=1$ oase) ${ }^{/ 151}$. An analytio $S S$ formulation suggests a new way of explioit calculation of hyper-Kähler qetrios. Given an arbitrary $\mathscr{L}(+4)$, one may eliminate auxiliary fields by their equations of mation to obtain a metric on the manifold of physioal bosons which is guaranteed to be hyper-Kählex. The simplest example is a familiar laub-NUT manifold which is coded in the action $5 /$

$$
\begin{equation*}
S_{T N}=\frac{1}{x^{2}} \int d z^{(-4)} d u\left[\bar{q}^{+} D^{++} q^{+}+\lambda\left(q^{+}\right)^{2}\left(\bar{q}^{+}\right)^{2}\right] \tag{3}
\end{equation*}
$$

${ }^{x} \int_{\text {Extension }}$ to nonzero central charges $/ 1 /$ or to $d=6 / 8,13 /$ is atraightforward.

In ref. ${ }^{/ 16 /}$ we have found analytic SF actions leading to other interesting metrios. These are the Eguchi - Hanson and multi-Eguchi -- Hanson metrios (manifolds of dimension 4), Calabi and multicCalabi ones (dimension 4n), metrios on the cotangent bundle of a 2nm-dimensional Grassmann manifold (dimension $4 \mathrm{~nm}, \mathrm{~m} \geqslant 1$).

Thus, we arrive at a suggestive idea of classifying hyper-Kähler metrics accoraing to relevant hyper-Kähler potentials $\mathscr{L}^{(+4)}$. Intriguing questions are what is the precise mathematical meaning of $\mathscr{L}^{(+4)}$ and how the latter is connected with the primary principles of the hyper-Kähler geometry.
3. A closed form of the $N=2$ SYM aotion. An interesting development of our geometric formulation of $N=2 \mathrm{SXM} / 1 /$ has been made by Zupnik 113 . He has found a olosed compact form for the action in terms of the analytic harmonic connection $V^{++}(Z, \mathcal{U})$. It heavily uses harmonio distributions introduced in 17 / (analogs of the $N=0$ distributions $1 / x^{n}, S(x)$) and is written as ${ }^{713 /}$ (in the central basis of $\mid 1-R 4+218$):

$$
\begin{align*}
& S_{S_{Y M}}=-\frac{1}{g^{2}} \int d^{12} z T r \ln \left[1+K_{v}\right](z),[g]=\mathrm{cm}^{\circ} \tag{4}\\
& \text { where } \\
& K_{V}^{(-1,1)}(1,2)=\frac{V^{(++)}\left(z, u_{2}\right)}{u_{1}^{+i} u_{2}^{+} i}
\end{align*}
$$

and $T r$ is taken both over disorete indices of the adjoint representation of gauge group and harmonic arguments $U_{1}, \ldots U_{n}$ (the latter are regarded as continuous matrix indices with the harmonic integram tion over them inatead of ordinary summation) The n-th term in the expansion of (4) in powers of V^{+4} is as follows:

$$
S_{S X M_{2}}^{n}=\frac{1}{g^{2}} \frac{(-i)^{n}}{n} \int d^{12} z d u_{1} \ldots d u_{n} \frac{T r V^{++}\left(z_{1} u_{1}\right) \cdots V^{++}\left(z_{1} u_{n}\right)}{\left(u_{1}^{+} u_{2}^{+}\right) \ldots\left(u_{n}^{+} u_{1}^{+}\right)} .
$$

In eqs. (5), (6), $1 / u_{1}^{+} u_{2}^{+}$is a partioular example of harmonic distributions, viz. the harmonic Green function:

$$
\begin{aligned}
& \text { ributions, viz. the harmonic Green function: } \\
& D_{1}^{++} \frac{1}{u_{1}^{+} u_{2}^{+}}=\delta^{(1,-1)}\left(u_{1}, u_{2}\right), \quad D^{++}=u^{+i} \frac{\partial}{\partial u^{-i}}
\end{aligned}
$$

where $\delta^{(1, t)}\left(U_{1}, u_{2}\right)$ is one of the variety of harmonic δ-functions /17/. As in the $N=1$ oase, the $N=2$ SYM action is non-polynomial. Essentially new features are the nonlocality in harmonics and absence of spinor derivatives in interaction vertices. Harmonic nonlocalities
do not oreate problems when quantizing Na SYM and are not present in final answers for SF amplitudes 18 . Note that the Lagrangian density in (4) is gauge invariant only up to full harmonic derivatives and is thus of the Chern-Simons type (in contradistinotion to the tensor density in the standard representation of $N=2 S M$ aotion via the constrained chiral strength).
4. Quantization in harmonio Naz SS. One of the main inoentives to construot the harmonic $S S$ formulations of theories with extended SUSY was the desire to have a manifestly supersymmetrio quentization scheme in terms of unconstrained SF's \qquad - Now this problem is completely solved for $N=2$ matter and $S Y M$ theories: in papers $/ 17,18 /$ we have given an extensive exposition of relevant hamonio superspace Green functions and Feynman rules as well as the first examples of manifestly $N=2$ supersymmetric quantum caloulations X. The main lesson is that these $S F$ techniques are not more dififioult than those in the case $N=1$. Let us quote, e.g., the SF propagators of q^{+}-hypermultiplet and of V^{++}(in the Feynman gauge and in the oentral basis
of $\left.\mid H R^{4}+218\right)$:

$$
\begin{aligned}
& \left.\left\langle V_{a}^{++}(1) V_{b}^{t+}(2)\right\rangle \sim \frac{i}{k^{2}}\left(D_{1}^{+}\right)^{4} \delta^{8}\left(\theta_{1}-\theta_{2}\right) \delta^{(-2,2}\right)\left(u_{1}, u_{2}\right) \delta_{a b} \text {, }
\end{aligned}
$$

where the operators $\left(D^{+}\right)^{4}$ ensuring analyticity and harmonio distributions $1 / u_{1}^{+} u_{2}^{+}$and $\delta^{(-2,2)}\left(u_{1}, u_{2}\right)$ appear. Expressions for vertices are also simple.

Now we shall sketoh the most important features of harmonic supergraph teohniques.
A. Harmonic coordinates (in contrast, e.g., to extra coordinates in Kaluza - Klein theories) do not lead to new divergences. The rea-son is that only nonpropagating (auxiliary or gauge) degrees of freedom are associated with them, not the physical ones.
B. Harmonic nonlocalities disappear if external legs of a diagram are placed on-shell. All the harmonio integrals can be computed by simple algebraic manipulations.
C. Quantum corrections can always be written as integrals with the full Gxassmann measure $d^{8} \theta$
D. No ghosts-formghosts are needed when quentizing $N=2 S Y M$.

[^1]The fact that the effeotive action is an integral of
the type $d^{8} \theta$ is known to yield signifioant improvements in the ultraviolet behaviour. The most striking application $/ 18 /$ is a simple general proof of off-shell finiteness of hypor-Kähler supersymmetric $d=2 ~(\sigma$ models corresponding to the $d=2$ reduotion of the general q^{+}aotion (2). Indeed, in $d=2[X]=\mathrm{cm}^{\circ}$ and $\left[q^{+}(P, O, U)\right]=$ $=\mathrm{cm}^{2}$ so the n-particle contribution to the effective action has the generic form:

$$
\begin{equation*}
\Gamma_{n}=\int d^{8} \theta d u\left(d^{2} p\right)^{n-1}[q(p, \theta, u)]^{n} I(p) \tag{8}
\end{equation*}
$$

in accord with the property C. One easily observes that $[I(P)]=$ cm^{2}, and hence $I(P)$ is convergent.

Now we are ooncerned with quantization of $N=3 \mathrm{sym} / 2 /$ along sinilar lines. It seems especially urgent to work out a proper background Pield method.
5. Na2,3 supergravities in harmonic SS. In ref./1/ we have defined the harmonic SS group of Einstein $N=2$ SG (in its first version) and corresponding unconstrained analytic SG pre-prepotentials. Now we know these for conformal $\mathrm{N}=2,3 \mathrm{SG}$ too /20/ . The gauge groups of the latter preserve the fundamental concepts of analytic subspace and $U(1)$-charges, as well as the unitarity ard unimodularity conditions of harmonios. These are local extensions of rigid conformal supergroups $S U(2,2 / 2)$ and $S U(2,2 / 3)$. In the case $N=2 / 20 /:$

$$
\delta z^{M}=\lambda^{M}(z, u), \delta u_{i}^{+}=\lambda^{++}(z, u) u_{i}, \delta u_{i}=0 \quad\left(M=m, \mu+, \mu^{+}\right),(9)
$$

The fundamental unconstrained geometric quantities which represent the Weyl multiplet are ++ components of the analytio vielbein $H^{++M}(z, u), H^{++++}(z, u)$ covariantizing the derivative $D^{++}:$ $\mathscr{D}^{++}=\partial^{++}+H^{++M}\left(Z_{1} u\right) \partial_{M}+H^{++++}\left(\delta_{,} u\right) \partial_{++}, \partial^{++}=u^{+i} \frac{\partial}{\partial u^{i}}, \partial_{++}=u^{i} \frac{\partial}{\partial u^{+i}}$
Generalization to $N=3$ is straightforward; one has only to take into acoount the presence of two independent complex analytic directions in $S U(3) / U(I) \times U(I)^{/ 2 /}$ instead of one $(++)$ in $S U(2) / U(I)$.

Following the standard conpensation ideology we may, in prinoiple, construct action for any version of the minimal Einstein $N=2 S G$ as a sum of aotions of compensating Maxwell $\left(V_{/ 21}^{++5}(3, u)\right)$ and matter $N=2$ multiplets in the conformal SG background 21 . At present we dispose of the analytio s description of all the matter oompensators known before $/ 1,20,12 /$. So, to construct the complete SF aotions for all the versions of minimal Einstein SG, it remains to find the aotion for $V^{++5}(3,4)$, and this is in progress now. A new possibility is to use as a compensator the basic unconstrained
analytic $3 F q^{+}$(or $\left.\omega\right)^{/ 20 /}$. The corresponding version of Einstein SG will contain an infinite number of auxiliary fields. We expect it to be very promising.

An interesting problem ahead is to construct off-shell Einstein $\mathrm{N}=3$ SG. A component consideration /22/ implies that it can be obtained by coupling three Maxwell $\mathrm{N}=3$ multiplets (or one $\mathrm{SO}(3)$ - $\mathrm{N}=3$ SYM multiplet) to conformal $N=3$ SG. Thus, what one needs is to extend the analytic SF action of $\mathrm{N}=3 \mathrm{SYM} / 2 /$ to local conformal SUSY.
6. New trends. A most modern area of applications of the harmonic SS approach is the superparticle and superstring theories. $\mathrm{Re}-$ cently the "light-cone harmonic Ss" has been constructed 23/ which extends ordinary $N=1$ SS in D dimensions by adding harmonics on the coset $\operatorname{SO}\left(1, D_{-1}\right) / \operatorname{SO}(1,1) \mathrm{xSO}\left(\mathrm{D}_{2}\right)$, $\mathrm{so}\left(1, \mathrm{D}_{\mathrm{m}}\right.$) being the Lorentz group of M^{D}. In such a harmonic $S S$ there is an invariant analytic subspace involving half the original spinor variables. The superpartiole action can be reformulated in this light-cone analytic subspace so that no local fermionic invariance is needed and the Lorentz symmetry is presarved (due to the presence of new harmonic variables which carry Lorentz vector indioes). Another application is the 10-dimensional SYM theory. Its on-shell constraints can be rewritten as the integrability conditions for the existence of the light-cone analytic SF's. There are, however, serious difficulties with the off-shell formulation (as distinot from the $N=3, d=4 \mathrm{sim}^{/ 2 /}$). We would like to point out that other harmonizations of $d=10 \mathrm{~N}=1 \mathrm{SS}$ are also possible, oorresponding to different ohoices of the coset of $\mathbf{S O}(1,9)$. These conceal potentialities which may have utterly unexpected manifestations, e.g., in superstrings and $d=10, N=1 \quad(d=4, N=4)$ 8 M theories. An important point is that the invariant adalytic subspaces arising with this type of harmonization oontain reduced numbers both of Gasasmann and ordinary bosonio (x) ooordinates, as is illustrated already by the simple example of ref. ${ }^{123 / \text {. }}$

Another line of extending the harmonic $S S$ business has been proposed by Kallosh $/ 24,25 /$. She gave some reasonings $/ 25 /$ that the harmonic ss with the even part $M^{10} \times\left(E_{8} \times E_{8} / U_{1}(1) \times \ldots \times U_{16}(1)\right)$ presumably can be used for the off-shell formulation of $\mathrm{d}=10 \quad E_{8} \times E_{8}$ Yang - Mills - supergravity, assooiated with the heterotic string. Also, a complete tensor apparatus of $N=3$ SYM theory in the harmonic Also, a complete tensor apparatus of $/ 21^{\text {a }}$ has been constructed $/ 24,25 /$.

For these two gears, some mathematioal developments of the harmonio SS approach have been made. In particular, Rosly and Sohwarz in ref..$^{26 /}$ treated it with the accent on its affinity with twistors
(reoall that our geometric formulation of $\mathrm{N}=2$ SMM essentially incorporates the interpretation of $N=2$ SYM constraints given for the first time by $\mathrm{R}_{0} \mathrm{sly}^{/ 27 / \text {) }}$.

We end this rather schematic surves by indicating the principal direotion of further studies. The most urgent problem now is, in our opinion, to find a closed off-shell geometric formulation of the most intriguing of $\mathrm{d}=4 \mathrm{SYM}$ theories, the $N=4 \mathrm{SYM}$ theory. It cannot be achieved by a simple prolongation of formulations found by us for $N=2$ and $N a 3$ theories (see analysis in $/ 28 /$) and thus seems to require an essentially new look. We believe that the solution of this task will naturally lead us to superstrings, keeping in mind a familiar correspondenoe between $N=4, d=4$ and $N=1, d=10$ SYM theories.

References

1. A. Galperin, E.Ivanov, V.Ogievetsky and E.Sokatohev. JETP Lett. 40 (1984) 912;
+A.Galperin, R.Ivanov, S.Kalitzin, V.Ogievetsky and E.Sokatchev. Ciass. Quantum Grav. 1 (1984) 469.
2. A.Galperin, E.Ivanov, S.Kalitzin, V. Ogievetsky and E.Sokatchev, Phys.Lett. 151B (1985) 215;+Class. Quantum Grav. 2 (1985) 155.
V 3. + A. Galperin, B. Ivanov, S.Kalitzin, V. Ogievetsky and E.Sokatchev. In: Proc. XXII Int. Conf. on High Energy Physios, Leipzig, July 19-25 1984, v.I, p.37, 1984.
3. M. Rocek and W.Siegel. Phys.Lett. B105 (1981) 278; V. Rivelles and J. Taylor. Phys.Lett. Bl21 (1983) 37.

V 5 + A. Galperin, E.Ivenov, V. Ogievetsky and E.Sokatchev. Commun. Math. Phys. 103 (1986) 515.
6.~A. Galperin, B. Ivanov and V.Ogievetsky. Preprint JINR E2-86-277, Dubna, 1986.
7. J. P. Yamron and W.Siegel, Nuol. Phys. B263 (1986) 70.
8. P. Howe, K, Stelle and P.West, Ćlass. Quantum Grav. 2 (1985) 815.
9. S.V.Ketov, B. B.Lokhvitsky, K. E. Osetrin and T. V. Tyutin. Selfinteraoting $N=2$ matter in $N=2$ superspace. Preprint' $N 31$, Tomsk, 1985 (in Russian).
10ti. Galperin, E. Ivanor, V. Ogievetsky and E.Sokatohev. Preprint JINR E2-85-128, Dubna, 1985.
11. E. Ivanov. Lectures given at the XXI Winter School of Theoretical Physics in Karpaoz, Poland 1985. In: "Spontaneous Symmetry Breakdown and Related Subjeots", World Soientifio, Singapore, 1985, p.413.
12.7. Galperin, E.Ivanov and V. Ogievetsky. Preprint JINR E2-85-897, Dubna, 1985.
13. Be M. Zupnik. Yadern.Fiz. 44 (1986) 1781.
14.-L. Alvarez-Gaume and P.Z.Freedman, Comm.Hath. Fhys. 80 (1981) 443.
15. B. Zumino. Phys. Lett. 87B (1979) 203.
16. HA. Galperin, E.Ivanov, V. Ogievetsky and P.K. Townsend. Preprint JINR, E2-85-732, Dubna, 1985.
17.TA.Galperin, E.Ivanov, V.Ogievetsky and E.Sokatchev. Class. Quantum Grav., 2 (1985) 601.
18.tA. Galperin, E.Ivanov, V.Ogievetsky and B.Sokatchet. Class. Quantum Grav., 2 (1985) 617.
19. T.Kubota and S.Sawada. Progr. Theor. Phys. 74 (1985) 1329. N. Ohta and H. Yameguchi, Phys. Rev. D 32 (1985) 1954.
20.0A. Galperin, E.Ivanot, V.Ogievetsky and E.Sokatchev. Preprint JINR, E2-85-363, Dubne, 1985.
21. de Wit B., van Holten J.W. and van Proyen A. Nucl. Phys. Bl 84 (1981) 77.
22. P.Howe, K.Stelle and P.K. Townsend, Nuol. Phys. B192 (1981) 332.
23. E. Sokatchev. Preprint IC/85/305, Trieste, 1985; Phys.Lett.169B, 1986, 209.
24. R. E. Kallosh, JEIP Lett., 41 (1985) 172.
25. R.E.Kallosh, Preprint CERN-TH. 4188/85.
26. A. A. Rosly and A.S.Schwarz. In: Proc. III Int. Seminar YOuantum Gravity ${ }^{n}$. World Soientific, Singapore, 1985, p. 308.
7. A. A. Rosly, In:Proc. Int. Seminar on Group Theoretical Methods in Physios, Nauka, Moscow, 1982, v. I, p. 263.
28. E. Ahmed, S. Bedding, C.T.Card, M. Dumbrell, M. Nouri - Moghadam and J.G. Taylor, J. Phys. A: Math. Gen. 18 (1985) 2095.

Received by Publishing Department
on April 22, 1986.

Гальперин А.С. и др.

Статус гармонического суперпространства

1. Введение. 2. Наиболее общее самодействие $\mathrm{N}=2$ материи и гиперкэлеров потенциап. 3. Замкнутое выражение для $\mathrm{N}=$ $=2$ ЯМ действия в терминах аналитической гармонической связности. 4. Квантование в гармоническом суперпространстве. Доказательство конечности $d=2$ - гиперкэлеровых суперсимметрич ных б-моделей. 5. Конформные и эйнштейновские $N=2,3$ супергравитации в гармоническом суперпространстве. 6. Новые направления: применения к суперчастице и суперструне.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Преприит Объединенного института ядерных исследований. Дубна 1986

Galperin A.S. et al. E2-86-258
 Present Status of Harmonic Superspace

1. Preliminaries. 2. The most general self-coupling of $\mathrm{N}=2$ matter and introducing byper-Kahler potential. 3. A closed form of $\mathrm{N}=2 \mathrm{SYM}$ action in terms of analytic harmonic connection. 4. Quantization in harmonic superspace. A proof of finiteness of $\mathrm{d}=2$ hyper-Kahler sypersjmmetric σ models. 5. Conformal and Einstein $\mathrm{N}=2,3$ supergravities in harmonic superspace. 6. New trends: applications to superparticle and superstring.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

[^0]: ${ }_{2}$ Institute of Nuclear Physics, Tashkent, USSR Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

[^1]: \bar{x} Some of these studies have been performed in parallel with us by Kubota and Sawada and Ohta and Yamaguchi 719) (in the latter paper, for a nonzero central charge).

