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1., Preliminaries Harmonic superspace (SS) has been invented by
us two years ago ’ in searching for a manifestly invariant
description of theories with extended SUSY, The first successes of
this approach (unconstrained superfield (SF) formulations of matter
hypermultiplets and N=2 super Yang-Mills (SYM) theory, finding ana-
lytic 88 group and prepotentials of the Einstein N=2 supergravity
(86), the first off-shell formulation of N=3 SYM) have been reported
at the preceding conference /3 o« During the next two years, an essen-
tial progress has been achieved both in understanding ‘the basics of
the method and in fts further applications. In this talk we review
these developments and outline the problems to be solved.

Recall the basio motivation which has led us to harmonic SS,

We have realized in 1984 that an ordinary 53 with finite sets of au—
xiliary fields is inadequate t0 extended SUSY's, There were several
indications of this. First, one faced the familiar ™no-go® theorems

. Becond, there were serious difficulties in constructing unconst-—
rained SF formulations of N=2 theories (analogous to formulations
known in the case N = 1).

The way out we suggested was as follows /1“3/. One has to extend
a conventional S8 (¥, Od 5"“‘) by adding new purely internal
coordinates 74( ) which parameterize a coset G/H , (5 veing the
automorphism group of the relevant superalgebra, f{ 1ts certalin sub-
group. These ooordinates are lowest harmonics on (i/}f +« The SF's
defined on harmonic. 88 (R thus constructed ocontain infinite
sets of conventional SF's appearing as coefficients of harmonio
expansions in powers of 14{4’ . Among these general harmonic SF's
there oan be found 8F's of a lower Grassmann dimension, the gnalytio
8F's, These live as unconstrained objects on an analytic subspace /R
of MR . Just the analytic SF's provide us with manifestly invari-
ant unoonstrained geometric formulations of SUSY theories with N= 2.
Such formulations became possible due toc the following radically
new property. The number of auxlliary and/or gauge degrees of free-—
dom in analytic SF's (appearing in their harmonic expansions) 1is in-
finite, This is just the point where the above no-go theorems )
fail.

Row we turn to listing the main results obtained within the
harmonio 83 approach for the last two years.

2. The most general self-coupling of N=2 matter. One of the
important problems in SUSY is to identify the *ultimate® off-shell
representation which yields the most general matter self-coupling,

1} Boreruneuam RECTUTYY

| UCRERIR HooseRoRanm
BRI mira



In the case N=1, it 1s a chiral multiplet described by unconstrained
SF on a complex N=1 S8 4:4]2 (x Qd) . The genuine N=2 analogue
of N=1 chiral SF is a complex analytioc N=2 SF 7, (3 u) living as an
unconstrained function on analytic N=2 8S (+ denote U(I)—charge);

/R4+2i4 (S u)_ :xo(o( o+« @+°( ut) UL -4 u cSU(2)

(=12 @
The most general q,+ -action is 75,6/ [®7= o
A4 2 4 + T+ +
. S‘L= %2 Edg(")olu i( )(q"qu’As U u ) (9" 1= ene 2

where integration goes over analytic SS(1). An analytic density
éf +4) arbitrarily depends on i;qf(A=1 2,e4s),0n its harmonic deri-
vatives of any order (these are dimensionless and preserve analytici-
ty) and may include explicitly harmonics 24‘] i e

There were many ‘attempts to desoribe N=2 matter by off-shell
multiplets having a finite number of auxiliary fields (familiar
tensor and relaxed multiplets and some newly proposed ones /6'96. A1
these multiplets are most easily represented by some analytic SF's

. I/10-12:6/ o pove defined an N=2 duality transformation and

have shown with the help of it that all the self-couplings of above
multiplets are e}uivalent to certain subclasses of the general ‘1?
action (2) (esgey having special isometries, etc.). Thus, the
latter preaumabl describes the most general matter self-coupling in
rigid N=2 susy */ | This is apparently due to an infinite number of
auxiliary fields in q, . As has been shown recently by Howe, Stelle
and West 8 s infiniteness of the number of auxiliary fields is un—
avoidable when extending off-shell a complex form of a hypermultiplet.

According to Alvarez - Gaume and Freedman any N=2 matter
action produces'a hyper-Kahler C; model in the physical boson seoctor,
Correspondingly, we may call éf&4 in (2) the "hyper-Kdhler poten—
t1a1"% (by analogy with the Kihler potential of N=1 case) I/ ,
An analytio SS formulation suggests a new way of explicit calculation
of hyper-Kdhler metrics. Given &an arbitrary ‘), one may eli-
minate auxiliary flelds by thelr equations of mation to obtain a
metric on the manifold of physioal bosons which i1s guaranteed to be
hyper-Kshler. The simplest ex7mp1e is a familiar Taud-NUT manifold
which is coded in the action

Sn= o fdse0du [T v A @r@y] @

/Y or to d = 6 /813

X/Extension.to nonzero central oharges
is strailghtforward.
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In ref./ls/ we have found analytic SF actions leading to other in-
teresting metries. These are the Eguchi - Hanson and multi-Eguchi —
- Hanson metrics (manifolds of dimension 4 ), Calabl and multi=Calabi
ones (dimension 4n), metrics on the cotangent bundle of a 2nm-dimen-—
sional Grassmann manifold (dimension 4 nm, m= 1). !

Thus, we arrive at a suggestive idea of classifying h&per—K's'.hler
metrics according to relevant hyper-Kshler potentials °\£C+4)
triguing questions are what is the preclse mathematical meaning of

éﬁ(“'“) and how the latter 1s comnected with the primary principles
of the hyper-Kidhler geometry.

3. 4 closed form of the N=2 SYM aotion. 4An interesting develop—
ment of our geometric formulation of N=2 SIM has been made by
Zupnik 13/ | He has found a olosed compact form for the action in
terms of the analytic harmonic connection V' (3,W . It heavily
uses harmonio distributions introduced in’ 17 analogs of the N=0
distributions 4/3Ch ' S(OC)) and is written as 1/ ( in the central

basis of “—Rln-?-l& )z

SSYM2 SO\“.ZTFL Qh ['\+ K J(2>

where *+)
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and T'l is taken both over disorete indices of the aadjoint represen=
tation of gauge group and harmonic arguments 2y, ... Z{, (the latter
are regarded as oontinuous matrix indices with the harmonic integra~
tion over them instead of ordinary summationh The n-th term in the
expansion of (4) in powers of is as follows?

Sn 4 _&_ SA'ZZA‘M 0{ Tr V™ @EwM--

SYM, (u+ )

VY (z‘ ’4»1) .(6 )
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In eqs. (5), (6), i/'u;"u;f is a partioular example of harmaonic
distributions, viz, the harmonic Green function: 9

~_D++ e +: 6(4,-1) (ui 1) j)+f u+t‘bu‘-

where (l 0 (ui Uy) 1is one of the variety of harmonic 8 -~funct~
ions /17/. As in the N=1 case, the N=2 SYM action is non-polynomial,
Essentially new features are the nonlocality in harmonics and absence
of spinor derivatives in interaction vertices. Harmonic nonlocalitles



do not create problems when quantiz}¥§/N=2 SIM and are not present
in final answers for SF amplitudes . Note that the Lagrangilan

density in (4) is gauge invariant only up to full harmonic deriva-
tives and 1s thus of the Chern-Simons type (in contradistinction to
the tensor denslty in the standard representation of K=2 SYM action
via the constrained chiral strength).

4. Quantization in harmonic_N=2 88, One of the main incentives
to construet the harmonic 8S formulations of theories with extended
SUSY was the desire to have a ménifest%%_%gyersymmetric quantization

« Now this problem is
/L17,18/

scheme in terms of unconstrained SF's
completely solved for N=2 matter and SYM theories: in papers
we have given an extensive exposition of relevant harmonic superspa-
ce Green functions and Feynman rules as well as the firgt examples
of manifestly N=2 supersymmetric quantum caloulations %/ ., The main
lesson 1s that these SF techniques are not more difficult than those
in the case N=l, Let us quote, e.gey the SF propagators of Qf-&wper—
multiplet and of \/++ (in the Feynman gauge and in the central basis
o IR s L DYDY o
) . ~2.2
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where the operators ensuring analyticity and harmonio
distributions i/uiu; and 8('2"2) (ux’ug)appear. Expressions for ver-—
tices are also simple.

Now we shall sketoh the most important features of harmonic su-—
pergraph techniques,

A, Harmonio coordinates (in ocontrast,e.g.s to extra ocoordinates
in Kaluza - Klein thaories) do not lead to new divergences. The rea-
son is that only nonpropagating @uxiliary or gauge) degrees of free-
dom are assoclated with them, not the physical ones,

B, Harmonloc nonlocalities disappear if external legs of a dla-—
gram are placed on-shell. All the harmonic integrals can be computed
by simple algebralc manipulations.

C, Quantum corrections ocan always be written as integrals with

the full Grassmann measure 450
D, No ghosts~for—ghosts are needed when quantizing N=2 SIM,

ijsome of these studies have been perfo;me
by Kubota and Sawada and Ohta and Yamaguohi /19
paper.for a nonzero central charge).

in parallel with us
( in the latter

The fact that the effsotlive action is an integral of

the type 51869 1s known to yield significant improvements in
the ultraviolet behaviour. The most striking application /18/ is a
simple general proof of off-—shell finlteness of hyper-Kédhler super-
symmetric d=2 (3 models ocorresponding to the d=2 reduotion of the
general qj aotion (2), Indeed, in d=2 [%]=cmP®and [T(P,G,M)] =
= cm2 so the n-particle contribution to the effective action has
the generic form:

o= (dedu (P 12001 T (P) ®

in accord with the property C. One easily observes that [:[(P)J =
em®, and hence I(P ) is convergent,

Now we are ooncerned with quantization of N=3 Smlzlalfms similar
lines. It seems especlally urgent to work out a proper background
field method.

S5, N=2,3 supergravities in harmonic S8S, In ref./l/ we have de-—
fined the harmonic SS group of Einstein Ns2 86 (in its first ver~
sion) and corresponding unconstrained analytic SG pre-prepotentials.
Now we know these for conformal N=2,3 SG too . The gauge groups
of the latter preserve the fundamental concepts of analytic subspa-
ce and {J(1) -charges, as well as the unitarity and unimodularity
conditions of harmoniocs., These ars local extensions of rigid confor-
mal supergroups SU(2,2/2) and 8U(2,2/3). In the case N=2 /29/,

M M/ +__ -+ - = ~ -
§3"=N"(3.W), 8Ul= N3 WU;, §U=0 (M=, ps Ji¥)(9)
The fundamental unconstrained geometric quantities which represent

the Weyl multiplet are ++ components of the analytioc vielbein
H M(; u), HY™ (3 U) covariantizing the derivative Dt s
) \ _,9

Frr= It o H MG W+ HE W | Z’*"‘:U*;‘,% dtis
Generalizatlion to N=3 is straightforward; one has only to take into
acoount the presence of two independent complex analytic directions
in SUC3) / WD) x W(I) /% instead of one (++) in SU(2)/U(I),

Following the standard conpensation ideology we may, in prin-
olple, construct action for any version of the minimal Einstein
N=2 8G as a sum of aotlons of compensating Maxwell (l/++i}3,“))
and matter N=2 multiplets in*the oconformal SG background /21 . At
present we dispose of the analﬁtio 88 descripticn of all the matter
compensators known before /1,20,12/ » S0, to construct the complete
SF aoctions for all the versions of minimal Einstein 8G, 1t remains
to f£ind the action for VHS(S,U) , and this 1s in progress now.
A new possibility 1is to use as a compensator the basilc unconstrained




analytic SF ﬁj'(or w )/20/ . The oorresponding version of Einstein
SG will contain an infinite number of auxiliary fields. We expect it
to be very promising.

An interesting problem ahead is:to construct off-shell Einstein
N=3 8G, A component consideration /22/ implies that it can be obtal-~
ned by coupling three Maxwell N=3 multiplets (or one 80(3) - N=3
SYM multiplet) to conformal N=3 8G. Thus, what one needs 1s to ex—
tend the analytic SF action of N=3 STM /2/ to local conformal SUSY.

6. New trends. A most modern area of applications of the har-
monic S8S approach is the superparticle and superstring th7ories. Re-
cently the "light—cone harmonic 88" has been constructed 23/ which
extends ordinary N=1 88 in D dimensions by adding harmonics on the
coset S0(1,D-1)/ 80(1,1)x80(D-2), 80(1,D-1) being the Lorentz group
of P1D . In such a harmonic SS there is an invariant analytic sub-
space involving half the original spinor variables. The superpartio~
le action can be reformulated in this light—cone analytic subspace
so that no local fermionic invariance is needed and the Lorentz
symmetry 1s preserved (due to the presence of new harmonic variabe
les which carry Lorentz vector indices). Another application is the
10-dimensional SYM theory. Its on—shell constraints can be rewritten
as the integrability conditicns for the existence of the light-cone
analytic SF's. There are, however, serious difficultles with the
offoshell formulation (as distinot from the N=3, a=4 swM /2/ ), we
would like to point out that other harmonizations of d=10 N=1 88 are
also possible, ocorresponding to different cholices of the coset of
80(1m9). These conceal potentialities which may have utterly unexpec-
ted manifestations, e.ge,in superstrings and d4=10, N=] (d=4, N=4)
8YM theories. An important point is that the invariant evalytic sub-
spaces arising with this type of harmonization contain reduced num-
ters both of Grassmann and ordinary bosonio (X ) coordinates, as
18 1lluatrated already by the simple exemple of ref. 23.

Another 1ine of extending the harmonic 88 business has been pro-
posed by Kallosh/24’25/. 8he gave some reascnings 25/ that the har-
monic BS with the even part M40 x ( Egx Ex/Us@)x--- XU;;(:O)
presumably can be used for the off-ghell formulation of d=10 ng:Eg
Yang - Mills - supergravity, associated with the heterotic string.
Also, a complete tensor apparatus of N=3 SYM theory in the harmonic
88 /2/ pgag been constructed /24’25/.

For these two years, some mathematioal developments of the hare
monio 88 approach have been made. In particular, Rosly and Schwarz
in ref ./26/ treated it with the accent on its affinity with twistors

/

(recall that our geometric formulation of N=2 SYM essentially incor-
porates the interpretation of N=2 SYM constraints given for the
first time by Rosly’ 27/).

We end this rather schematic survey by indicating the prinecipal
direction of further studies, The most urgent problem now is, in our
opinion, to find a closed off-shell geometric formulation of the most
intriguing of d=4 SYM theories, the N=4 SYM theory. It cannot be
achieved by a simple prolongation of formulations foumnd by us for
N=2 and N=3 theories (see analysis in /28/) and thus seems to requi-
re an essentlally new look. We believe that the solution of this task
will naturally lead us to superstrings, keeping in mind a familiar
correspondenoce between N=4, d=4 and N=1, 310 SYIM theories.
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CraTyc rapMOHHYECKOT'0 CyIepnpocTpaHCcTBa

1. BeepeHue. 2. Haunbonee ob6mee camopmeiicrBue N = 2 Mare—
PMM H THIEPK3JIepOB MNOTEHHHal. 3. 3aMKHyToe BhipaxeHue gna N =
= 2 M pme#icTBHA B TepMHMHAX AaHAJIMTHYECKOH I'apMOHHYECKOH CBsi3—
HocTH. 4. KBaHTOBaHMe B TapMOHHYECKOM CymneprnpocTpaHcTBe. [o-—
Ka3aTeAbCTBO KOHEUHOCTH d = 2 — I'MNepK3JIepOBBIX CyIepCHMME TPHY
HbIX O-Mopenteit. 5. KoudopmHeie u 2HHmTeiiHoBckue N = 2,3 cymnep-
rpaBHTaAUHH B rapMOHHYECKOM cylepnpocTpadcTBe. 6. Hosmie Hampa-
BIIEHMs: TIPHMEHeHHA K CymnepdacTHlle H CynepcTpyHe. *

Pa6ora BuimonHeHa B JlabopaTopun TeopeTHYeCKOH GHIHKHU
OUSH.,
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