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I. INTRODUCTION

The classical (nonquantum) kinetic theory approach te the |
systems including unstable partlcles has been developed in our
recent paper 1/ The hadron gas is an example of the system where
the presence of unstable particles, hadron resonances, essen-—
tially influences the properties of the gas. The decay width
of hadron resonances is often greater than the temperature of
the hadron systems, what suggests the 1mportance of resonance
instability. On the other hand, the lifetime of the resonances
can be longer than the average time interval between successive
collisions in the gas. So, thé resonances should be treated in
a similar manner as stdble particles are. The starting point
of our approach has been the ‘introduction of thé profile func-
tion which is the generalization of the delta function that
"keeps" a stable particle on the mass—-shell. Then the .phase
space element of the resonance with four-momentum p is chosen
in the form A(p?)d*p, where A(p?) describes the mass smearing
of the resonance. Using the proflle function we have defined
the resonance distribution function and macroscopical quanti-
ties. Kinetie equations have been formulated, where, besides
binary c¢ollisions, resonance formation processes and resonance
decays have been taken into account. It has been shown that
the profile function can be uniquely determined through experi-
mentally measurable quantities if the transition rates of the
processes with the resonance involved, satisfy the detailed ‘
batance condition or the bilateral normalization condition. For
the resonance formation cross section in the Bre1t—W1gner form
the prof1Ie function' looks 11ke
AMEY = ! s L)

2aMl(M - M) %+ T %/4] e
where M and I' “are the average resonance mass and the reso-
nance decay width. Finally it has been demonstrated that ‘the
equilibrium characteristics of the resonamnces can be expressed
in the form

= [aMMAM 29, (M), B €2)

where -2, (M) is the respective characterlstlc for stable ‘par-
ticles thh mass M.
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The aim of this paper is twofold. In Sec.IT we show that
our medel is, in the case of equilibrium systems, equivalent
under certaim assumptions to the 8 -matrix formulation of
statistical mechanics by Dashen, Ma and Berstein’2’. In their
approach unstable particles (resonances) occur through the S -
matrix elements of the resonance scattering of stable particles.

In Sec.III the equilibrium characteristics of classical gas
of nucleons, deltas and pions are studied. We show that if one
treats the delta isobars as stable particles their number can
be significantly underestimated.

IT. S-MATRIX EXPANSION OF THE GRAND POTENTIAL

To relate our kinetic theory approach to the Gibbs statis-
tical mechanics, let us write down the grand canonical potential
of the system of stable and unstable particles. Only the inter-
action, which leads to the resonance formation and resomance
decay, is included, i.e., the resonance scattering of stable
particles is assumed to dominate two~body interaction. So the
grand potential reads

Q-3 0m, ) + S fauma’ m3a' ™, 4)), 3)
i 3

where (m, p). is the grand canonical potential of the one-com-

ponent ideal gas of particles with mass m and chemical poten-

tial p. In the First term summation is performed over the

sorts of stable particles while in the second one over the un-

stable particle sorts. Formula (3), of course, follows from (2).
The, S-matrix expansion of the grand canonical potential for

the system of relativistic particles is the following

8 - Qo- TVE ayeﬁ*‘rf : (4)

where {}; is the grand potential of noninteracting particles,
V 1is the volume of the system, T = ﬁ"l is the temperature, 3
is the set of conserved charges and # 1is the set of chemical
potentials, v = (), a) where o describes all guantum numbers re-
quired in fixing the system with J{ charges:
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where S 1is the S -operator and the subscript ¢ indicates that
only the so-called connected diagrams are taken into account.
Let us now discuss, as in paper”2/, the hadron gas consisting
of nucleons and pions. Suppose the scattering processes are

dominated by =»N resonance scattering which lead to the delta
2

formation. We take into account only the collisioms

7T+N—rA'»~>;7+N (5)

and ignore all other interaction processes. For such a system
the first term in Eq.(4) is the grand canonical potential of

the ideal gas of nucleons and pions, and the second term rela-
tes to the 7N resonant interaction. For simplicity we neglect
the role of particle spins, which are taken into account through
the particle degenmeration factors only. Taking the matrix ele-
ment of the process (5) in the Breit-Wigner form one findsfzc*)

>
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Substituting Eq.(6) in the formula (4) we get the following
grand canonical potential valid in the lowest order § -matrix
expansion (4)

85 _B/52+ 2 .
-, +gAzfdMMA(Mz)-i—TVng——‘)—)E—e AVpEemE 7)
w

where g is the delta degeneration factor and z =e Bu is the
delta fugacity. We have assumed that the gas is symmetric, i.e.,
the total electric charge of the system equals (in natural units”)
half of the total baryon charge. In such a case the chemical
potentials of all sorts of baryoms, in particular, of the deltas
with different ;electric charge, are equal to each other and the
chemical potentials of pions vanish. The.function AMZ?) from
Eq.(7) is exactly equal to that from formula (1). In the paren-
theses one recognizes the grand canonical potential of the

ideal gas of spinless partieles with mass*M. So, the fotm of

the potential (7) coincides with this one of (3). In that way

we have shown that the idea of thé profile function follows

from the S-matrix formulation of statistical mechanics.

P

*} There is a minor misprint in Eq.(7.1!) of Ref.2. The se-
cond term of the r.h.s. of this equation should be additionally
divided by ». It should be also remembered that in Ref. 2 I
denotes the decay half-width while in this paper I' is the de-
cay width. )
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ITI. GAS CHARACTERISTICS
' g ' : !

Keeping in mind the formula (2) we discuss in this section
the properties of classical gas consisting of nucleons, deltas
and pions.

The Breit-Wigner formula (1) is correct for sufficiently
narrow resonances what is not the case for the isobars A. So,
to describe the mass distribution of deltas we modify formula
(1) as follows . L

r
AM?) = M -
éM[(M—M)2+F 2/41 o

my - m, ),

where 6 1is the step funetion and my , m_, are the masses of
nucleons and pions respectlvely, M =1232 MeV, T = 115 MeV.
The coefficient & 1is found from the normalization condition
JaMMAM?) =

The baryon density of the'éystem reads

p = ZgAfdMMA(Mz)ﬂ(T,M) + 28T, my) - . ' 8)
with

nﬂLm)::E}E-Tng(ﬁm)

m

and g = 4 and gp = 16; K, is rhe McDonald function. As quoted
previously, the fugacities of N and A are equal to each other
because the gas is assumed symmetric. The first term in Eq. (8)
comes £rom the deltas;while the second one, from nucleons. Sol-
ving Eq.{(8) with respect to 2z one finds the densities of del-
tas, p,, and nucleons. In Fig.l we present,the ratio of pA

to p as a function of temperature. In the case of symmetric

gas this ratio is density.independent. The' dashed. line is found .

under assumption that the deltas are stable particles, i.e.,
I' = 0. It is seen that particularly at low tempetature one
strongly underestimates the density of the isobars if these
particles are treated as stable ones. Our classical calculations
cannot be extrapolated to the temperature T < 30 MeV since in
such a case the quantum effects are essential.

The energy density of the system is

€ = ngfdMMA(M23u(T,M) + zgnu(T, my) + gpu(T, m,), (9

where &, = 3 and

u (T, m) = ”L; szE[BmKl(Bm)

+ 3K2(ﬁ m)]
2
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Fig.1. The ratio of the delta
density to the baryon demsity of
the system versus temperature.-
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‘The first, second and the third
term of Eq.(9) comes from the
isobars, nuclecns and pions; res-
pectively. The numerical calcula-
tions show that the energy den-
sity is completely inseunsitive

to the value of I" of the reso-
nance. The reason is the follow-
ing. At low temperature, where
the number of deltas strongly
depends on the decay width, the,
absolute number of deltas is small
as compared to the number of nuc-—
- T MeV] leons, see Fig.1. Consequently
the délta contribution to the
energy dens1ty of the system is
small. At high temperature, where
the .number of deltas is comparable to that of nucleons, the desc-
ription of résonances is, in practice, the same for I' = O and
" = 115 MeV, see Fig.l. .

In the framework of the thermodynamical model of the pion
production in relativistic nucleus-nucleus collisicns the number
of secondary piouns (of all sorts) equals the number of pions
plus the number of deltas present in the fireball at the moment
of time of the fireball decay. The deltas are added since these
isobars decay into pions which are finally registered. To discuss
how the number of secondary pions changes, if one takes into ac-
count the finiteness of the isobar decay width, we have calcula-
ted the ratio

P+ PAT = 115.MeV)
R = ,
pp+ AT = 0)

T

—— =115.MeV
S—— )

102

T

i

I I | { ! i 1
20. 40, 60 80 100. 120. - %0

where p, is the pion density. In Fip.2 we present this ratio as

a function of temperature for three walues of the baryon density
measured in the units of normal nuclear demsity py = 0.17 fm 3.

It is' seen that at low temperatures R significantly exceeds uni-
ty. As is known the thermodynamlcal model overestimates, at least
by a factor of 2, the multiplicity of secondary pions im nucleus-
nucleus, collisions /34, The proper description of deltas makes
this dlfflculty even more serious.

It is known that' in the nucleon-nucleon collisions at few

GeV/pv;pgldent_momentum about 807 of produced pions come. from
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Fig.2. The ratio R aé a func-
tion of temperature for three
values of the baryon density.

Fig.3. The ratio of the delta
density to the density of ptons
versus temperature for three
values of the baryon density.

the delta decays 75/ So, it is of physical interest to consider .

the ratio of the delta density to the density of pions in the i
hadron® gas. In Fig.3 we present this "ratio versus temperature

for three values of the baryon density. It is seen that the

form aof the ratio as a function of temperature essentially

changes if one takes into account finiteness of the delta decay

width. The ratio monotonically decreases when temperature iri-

creases what is not the case for [ = 0.

IV. CONCLUSIONS

Establlshlng the relation between our transport theory ap- 4
proach and the S-matrix formulatiom of statistical mechanics,
we have made theé idea of the profile function more convincing.
On the other hand limitations of ‘this concept are also better
seen, The S-matrix expansion of grand potential’?’ is rapidly
covergent for classical systems. In the region, where quantum
effects are important the expansion practically fails since one
should take into account numerous multiparticle diagrams for
realistic description of the system. Analogous situation’occurs,

6
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with our approach. To make the idea of the profile function ade-

quate for quantum systems one should include the dependence of
this function on the medium, i.e., the unstable particle life-
time should be density and temperature dependent.

We have applied our model to the description of the hadron
gas of nucleons, pions and deltas. It has been shown that if
one treats the isobars as stable particles their number in the
gas is significantly underestimated particularly at the tempe-
rature smaller than about 60 MeV.

One of us (St.M.) is grateful to G.Baym for calling his at-
tention to Ref. 2.
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HJenbTa-u3o6apw B afjpOHHOM rase

HaigeHa cBssb Mexay ONHCAHHEM CHCTEM C HeCTaOHIbHBIMH
YacCTHLUAMH B TEOpPHMH TPAHCIOPTA, MNPENIOXEHHOH OOHHM H3 aBTOpPOB,
H OMHCaHHeM TaK{uX CHCTEeM B paMkaX S-MaTpHYHOM GOPMYIIMPOBKH
CTATHCTHYECKONI MeXaHHKH. H3ydawrcss paBHOBeCHhE XapaKTepHCTHKH
aJpoOHHOro rasa, COCTOAmEero Hs3 HyKJIOHOB, OenbTa-u30b6ap H MHO-
HOB. [IlpuHsATa BO BHMMaHHe KOHEYHOCTH WMHPHHH paclajga AOejabTra-—
nsobap. IlokasaHo, 4YTO eCclH AenbTa—4acTHlb PacCcMaTpHBaTh Kak
CcTabHIbHbHIE, TO HX KONHYECTBO CymMeCTBEeHHO SaHWKAEeTCA Npd TeM—
nepatype Huxe 60 MsB,

Patora BhnonueHa B JlaGopaTopuH BhICOKMX sHeprui OHAH,

Coobuuenne OGbeqHHEHHOr0 HHCTHTYTa AOEPHbIX HcciaepopaHui. Ilyb6Ha 1986
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Deltas in Hadron Gas

The relation between the author”s transport theory ap-
proach to the systems with unstable particles and the S-mat-
rix formulation of statistical mechanics is established. Then,
the equilibrium characteristics of classical gas of nucleons,
deltas and pions are studied. The finiteness of the delta
decay width is taken into account. It is shown that if one
treats the delta isobars as stable particles, their number
is significantly underestimated at the temperatures smaller
than about 60 MeV,
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