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I. INTRODUCTlON 

The classical (nonquantum) kinetic theory approach to the : 
systems inclu?~ng unstable particles has been developed in õur 
recent paper 1. The hadron gas is an example of the system where 
the presence of unstable particles, hadron reso-nances, es,sen
tially influences the prop-erties of the gas. The'decay width 
of hadron resonances is often gre~ter than th~ temperat~~e qf 
the hadron systems, what sugge s t s 'the Impo r t ance of. resonance 
instability. On the other hand, the lifetíme of the resonances 
cart be longer than the average time interval oetween successi~e 

collisions tn the gas. So, thé resonances sbould be treated in 
a similar manner as s t ab l.e par t i c Les are.'The starting po í n t 
of our vapprbach ha s been the 'í.n t r oduct i on o f t hé profi le func
tion which is the generalization Df the delta function that 
"keeps " a stable particleon the mas s-eshe l l . Then the .phase, 
space element of the resonance with four-momentum p is chosen 
in the forro ~(p2)d4p, where ~(p2) de scribe s the mass smear i ng 
of the resonance. Using the profiie function we have defíned 

íthe r e sonance d ís t r i.bu t i-orr func t on and macroscopical quanti 
ties. Kinetie equations have been formulated, whe~e, besides' 
binary collisions, resonance formatÍoh processes and resonap.çe 
decays have been taken' into account. It' has been shown that 
the profile function can be uniquely deterffiined throug9 experi
mentally measurable quantities if the transition rates" of the 
processes with the resonance invalved, satisfy the ~~tailed 

balance condition OI' the bilateral normalization tondítionr For 
the resonance formation cross $ection in the Breít-Wigner form 
the profil~ fúnctioriJloóks i~ke 

[\·(M 
2'r = -------------

r O)
 
27TMl(M - M) 2 + r 2/ 4 ]
 

where 1\1 and r· are the aver age resonance mas s and the reso
nance decay width. Finally it has been demonstrated thatthe 
equilibrium characteristics Df the resona~ces can be expressed 
in the f orm 

. 2 Gl
~R fdMM~(M ):2 st (M ). (2) 

where '~st(M) is the re spec t í.ve characteristic for s t ab Le 'par, 
ticles ,vi th nias s M. 
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The aim of this paper is twofold. In Sec.II we show that 
our model is, in the case of equilibrium systerus, equivalent 
under certain assumptions to the S -matrix formuLation of 
statistical mechanics by D~shen, Ma and Berstein/2( In their 
approach un s t ab l.e particles (r-e s onauces ) oc-cur t hrough the S 
matrix elements of the resonanc€ scatt€rin~ of stable particles. 

In Sec.III the equ i l i.br í.um charact.e r i st c s o f c Las s i ca I gasí 

of nucIeons, deltas and pions are studied. We show that if one 
treats the delta isobars as stable particles their number can 
be significant~y underes,timated .. 

11. S-MATRIX EXPANSION OF THE GRAND POTENTIAL 

To relate our kinetic theory approach to the Gibbs statis
tical mechani-cs, let us write down the grand canonical potenti-al 
of the system Df st-able and unstahle particles. Only the inter
action, which leads to the resonan-ce formation and resonance 
decay, is I nc luded, i. e,., the resonance scattering of s t ab l e 
particles is assumed to dominate two-body interaction. SO the 
grand. potential reads 

. i i 2 i
 
Q = ~ n (m i ' P. i) + ~ f d MM tl (M H1 (M, p.j ), ( 3 )
 

1 J
 

where fi (rn, p. l. is the grandcanonical pot.en t a I o f ·the one-scomí 

ponent id.eal gas of part í-c Le s. wi t h mass m and chenrica.I poten
tial p.. In the ftrst term summation is performed over the 
sorts of stable par t i c l es while in the second one over the un
s t ab Le par t.í.cLe so r t s . Fo rmu l a (3), of cou r se , follows from (2). 

Th~ S-matri~ expansion Df the grand canoni~al poten~ial for 
the system of relativistic par t i.c Le s s the followingí 

n = n o- T V ~ a 
·v 

e {3p. 'J1
' 

(4 )
 
v
 

where no is 'the grand po t.e n t i.a L of noninteracting particles, 
V is the vo Lume of t.he system, T = e:' is the t empera tu re , n 
is .the set of conserved charges and p. is the s et; of chemí c a l 
potentials, v = 01, a) where a de scr i.be s a Ll, quan tum numbers re
quired in. fixing the system with n charges: 

d3 -- -f3-J=2~--2 1 - 1 d-+ 
a == f~ dMe P M ----~Tr (S ~S)v 

(2 77 ) 3 4 7T i v aM c 

where S is the S -operator and the subscript c indicates that 
only bhe so-called connected diagrams are taken into account. 
Let us now d i.s cus s , as in paper /2/, the hadron gas cons i s ting 
of nucleons and pions. Suppose the scattering processes are 
dominated by 77N resonance scattering which lead to the delta 

2 

formation. We take into ac;count only the collísions 

77 + N -+ tl --~ 77 + N (5) 

and ignore alI other interaction processes. For 'such a system 
the first terrn in Eq.(4) is the grand canonicaI potential of 
the ideal gas of nucleorrs and pions, and the second term rela
te,s to the 77N resonant interactíon. For. simplicÍty we neglect 
the role of particle spins, which are taken into account through 
the particle degeneration factors only. Taking the matrix ele
ment of the ~rocess (5) in the Breit-Wigner form one finds /21.*) 

.... 
1 -1 a a r - -1

-----'Tr (8 - S) - Re - -" (M - M + ir/2) + 
477i JM c aM 211 

(6 )
-1r 2 - -1 a 

+ Im -- (M - M - ir/2) -- (M M + i r/2)
277 . aM 

Substituting Eq. (6) in the fo~muta (4) we get the following 
grand canonical pbtential valid in the lowest order S -matrix 
expansion (4) 

2 d 3 p __{3JP2+ M2, , I
 

n = n O + g ~ z f d MM ~ (M )·1 - T V f ------- e r,. (7)

(271 ) 3 . 

where g~ is t he delta degeneration factor and z = e f3p. is the 
delta fugacity. We have as sume d that the gas 'i s symmetric, i.e., 
the total electric charge of the system equat~ (in natural units ') 
half of the total baryon charge. In such a case the chemical 
potentials of alI sorts of baryons, in particular, of the deltas 
with different:electric charge, are equ~l to each other and the 
chemi.ca l potentials of p ons vanish. The . function ~(M2) f r om í 

Eq , (7) is exac t ly equzal to that from formula (1) •. In the paren
theses one recognizes the grand canonical 'potential oI the 
ideal gas of spinless particles with mass·M. So, the form oí 
the potential (7) coincides with this one of {3). In that way 
we have shown that the idea of thé profile function follows 
f r om the S-mat.rix f ormul.at on of statistical mechan i cs , í 

*) There is a minor misprint in Eq.(7.11) of Ref.2. The se
cond term of the r.h.s. of this equation should be additionally 
divided by 77. It should be also. remembered that in Ref. 2 r 
denotes the decay half-width while in this paper r is the de
cay width. 
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111. GAS CHARACTERISTICS 
...J, t 

Keeping in mind the formula (2) we discuss in ~his section
 
the properties of classical gas consisting of nucleons, deltas
 
and pions.
 

The Brei t-Wigner f ormuLa (L) is co r rec t f.or su f fi.c i ent; ly
 
narrow resonances what is not th~ case for the isobars ~. So,
 
to de sc r íbe the mass d í s t r.í.but í on of dei tas we modify formula
 
(1) a s f o1 i ows L 

~ (M 2) =. ~ -,__o.--'--=I.--7":--Si-- () (M - mN - in77 ) , 

M [(M - M) 2 + r - /4 1 

where e s the step function and -"-Ih N ~ mTT .are the mas ses ofí 

nucleons and pions respectively, M =, ]232 MeV, r, = ]]5 MeV. 
The coefficient ~ is found from the llormalization condition 
f d MML\(M 2) = 1. 

The baryon density of the 'system reads 

P = Z~~fdMM~(M2)n(T, M) + zgN·n(T, mN)' (S) 

with 

1
 
n (T, fi ) 277 2 TmK2 (f3 m)
 

and gN' = 4 and g~ = 16; K is t he McDonald funct í on , As quotedv 
prev í.ous l y , the fugacities of N and ~ are :equal to each ot he r 
because the gas is assumed symrnetric. The first term in Eq.(S) 
comes ~rom ~he Deltas;while the second one,from nucleons. 501
ving Eq.{8) with respect to Z one finns tpe d~nsities of del
tas, p~) and nucleons. In Fig.] we present,the ratio of p~ 

to.p as a function o f temperatur,e. In t he case of symmet r í,c 
gas this ratio is density.independent. The' dashed. line is found 
under assumption that .the deltas are stab le particles, i. e. , 
r = o. It is seen that particularly' at low tempetature one 
strongly underestirnates the density of the isobars if these 
particles are treated as stable on~s. Our classical calculations 
cannot be extrapolated to the temperature T S 30 MeV since in 
such a case the quantum effects are essential. 

The energy density of the system is 

e = Z g ~ f d MM~ (M 2 , li (T, M) + z gN li (T. m N) + g TT li (T, m TT ) , (9) 

where ~gTT = 3 and 

Fig.l. The ratio of·the delta' 

~I 
density to the 'baryon densiiy qf 
the system versus temperature.!y~ 

~he first, second and the third 
term of Eq. (9) COmes from the 

I isobars, nucleons and pions, res
-- r=115.HeV pectively. The numerical calcula
---- r=o. tions show that the energy den

sity is compl~tely insensitive 
to the value of r of tbe reso
nance. The reason is the follow
ing. At low temperature, where 
the number Df deltas strongly 

1 1O-l 

10-3~ 
depends on the decay width, the,

f absolute number of deltas is s~all 
~ as compared to thé number of nuc
L ~ leons, .see Fig. 1. Con sequently 

, jL'I I T r":,,] I the ~~lt~ contribution .to theI I 80 100 _.20. 4'0. 60. . . 120." 1/0.0. energy densit'y of the system i8 
sma~l. At high temperature, where 

Ule.number of deltas is comparable to tHat of nucie~s, the desc
riptionof résonances is, in prac t ce , the same f or r = o andí 

r .= ]] 5 MeV, s ee Fi g. ] . ' 
In tbe fràmework of the thermodynamical moqel of the pion 

production in relativistic nucleus-nucleus collisions the number 
of secondary pions (of a11 sorts) equals th~ number of pion~ 

plus the number of deltas present in the f{reball at the moment 
of timi of the fireball decay.-The deltas ~re.added since these 
isobars decay iuto pions which ~re finally registered. To discuss 
how the numoer of second~r:y pions c.h.anges, ifone take-s in!.;? ac
count the ,finiteness of t'he Ls obar decay w:idth, we have. calcula
ted the ratio 

p77+ p Ó. ( r = 115.MeV)
 
R = ----------------.._-----

P77 + P~ (r = O)
 

l! where PTT is the pion density. In Fig.2 wepresent this ratio as 
a func~ion of t~nperature for three values of the barYQn den~ity 

]
l( measured in 'the uni ts o f normal nuc.l ea r densi ty Po = O.] 7 fm-3 • 

It i s' seen that at 'low temperatures R significantly exceeds uni. ( 

t y , As is known t he t he rmodynamicaI model ove r e s t i.mat e s, .at; le,ast 
by a factor of 2, the multiplicity of secondary pions iR nucleus

11 nuc Leus collisions /3,4/. The proper de scri.pt í.on of de I tas make s 
this nifficulty ~ven mpre ~e~ióus. 

It is known t.ha t;' in the nucLeorr-riucLeon c oLl i s i.on s at fewli(T,m) 1:.:.- T 2 m2 [t3 mK 1 (f3 rn ) + 3 K 2 (f3 m ) ] • GeV/.ç. i nc í.den]; momentum , abou t JW% of produced p í-ons come .f rom
277 2 
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I ~ with our approach. To make the idea of the profile function ade
, quate for quantum systems one should include the dependence of 
", this function on the medium t i.e., the -unstable particle life

time should be den~ity'and temperature dependente 
We have applied our model to the description of the badron 

gas of nucleons, pions and d€ltas. It has been shown that if 
;. j.	 one treats the i sobar-s as -stable particles t he i r number int-he 

gas is significantly underestimated particularly at the tempe
rature smaller than about 60 MeV. 

ri 
One of lJS <St.M.) is grateful to' G.Baym for cailinghis at 'lO 

tention to Re f , 2.~ ~ 
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values Df the baryon density. oereue t emperature for "thi:ee .. 
oal.uee of the bamjon 'âensity:" 

the delta decays lá!. SOt í t í s o f phys í caI interest to c ons i de r 
the ratio of the delta density to the densíty of píons in the 
hadrorr ga s . In Fig.3 we present this ", ratio versus t emper a tu re 
for three values of the baryon density. It is seen that the 
form of the ratio as a function of temperature essentially 
changes if one takes ínto account finiteness of the delta decay 
width. The ratio monotonically decreases when temperature irt 
creas e s wha t is not the c as e for I" = O. 

IV. CONCLUSIONS 

Establishing the relatíon between our transport theory ap
,:) 

proach 'and the S'-mat r i x fonnulatíon of statistical mechan í cs t 
we have made thé 'idea of the profile function more convincing. (11 

On the other hand limitations of ~his concept are also better 
seen_ The S-matrix expansion of grand potential/2 ! is rapidly 
covergent 'for classical systems. In the region 

t 
where quantum j'l 

effects are important the expansion pr'ac t í caLl.y fai l s since one 
should take into account numerous multiparticle diagrams for Received by Publishing Department 
realistic description o f the system. Analogous s i t ua t í on ' occurs r on April 9~ 19E6. 
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~eHHCeHKo K.r., MpyBqHHCKH c. 
AenbTa-Hso6apw B aAPOHHOM rase 

E2-86-218 

HaHAeHa CBHSb Me~y OITHCaHHeM CHCTeM C HeCTa6HnbHWMH 
qaCTH~aMH B TeOpHH TpaHCITOpTa, rrpeAnOEeHHOH OAHHM HS aBTOpOB, 
H OITHCaHHeM TaKHX CHCTeM B paMKaX S-MaTpHqHOH ~OPMYITHPOBKH 
cTaTHCTHqecKOH MexaHHKH, HsyqaiDTC» paBHOBecHWe xapaKTepHCTHKH 
aApOHHoro rasa, COCTOHmero HS HyKnOHOB, AeiTbTa-HsOoap H ITHO
HOB, llpHHHTa BO BHHMaHHe KOHeqHOCTb mHPHHW pacrraAa AenbTa
HS06ap, llOKaSaHO, qTO ecnH AeiTbTa-qaCTH~ paCCMaTpHBaTb KaK 
CTa6HnbHhle, TO HX KOITHqeCTBO cymecTBeHHO SaHHEaeTCH rrpH TeM
rrepaType HHEe 60 MsB. 

Pa6oTa BbJITOITHeHa B na6opaTOPHH BbiCOKHX 3HeprHH OIDIH. 

Coo6weHKe 06J.eAKHeHHoro KHCmTyra SAepHbiX KCCnenoBaHHH. Jly6Ha 1986 

Denisenko K.G., Mr~wczynski St. 
Deltas in Hadron Gas 

E2-86-218 

The relation between the author~s transport theory ap
proach to the systems with unstable particles and the S-mat
rix formulation of statistical mechanics is established. Then, 
the equilibrium characteristics of classical gas of nucleons, 
deltas and pions are studied. The finiteness of the delta 
decay width is taken into account. It is shown that if one 
treats the delta isobars as stable particles, their number 
is significantly underestimated at the temperatures smaller 
than about 60 MeV. 

The investigation has been performed at the Laboratory 
of High Energies, JINR. 
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