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1. Introduction

This paper is devoted to the analysis of e simple non-relativistic
model of two-particle decay. Why have we addressed ourselves with
such a problem ? In order to answer this question, recall first thet
a wide family of decay processes, spontaneous or induced, is observed
in different areas ranging from particle to molecular phyesics. As a
rule, they represent one of our primary sources of physical infor-
mation.

~ On the other hand, the state of arts in the quantum theoretical
description of decay processes does not always correspond to their
important role. It is true that most of them can be treated effecti-
vely by simple methode whose origin can be traced back to the foun-
ding fathers of gquantum mechanics/"2 . However, a lot of problems
arise immediately when we try to go beyond the accuracy of these
methods, which represent in a sense the first-order approximation,
and to formulate the decay theory on rigorous grounds. A sketch bf
such a theory with an extensive bibliography can be found in Chaps.1-3
of Ref.3, but a number of open problems persist. In this situation,
we regard a thorough treatment of various decay models as a way which
can give us a deeper insight and stimulate development of the theory.

According to our opinion, there sre two sorts of open problems

which deserve a particular attention 4 . The first of them concerns
a consistent relativistic description of decays. Starting from the
first principles, one can construct a general quantum-kinematical
framework D , but the choice of the functions which determine the
decay law and other measurable quantities has only an indirect justi-
fication based on similarities with non-relativistic systems and
heuristic considerations, We met this problem in a recent study con-
cerning the effects of locslization on proton decay/7 . There is no
model, up to our knowledge, of & relativistic quantum field theory,
which would illustrate appearence of a Breit-Wigner-type ansatz on
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dynamical grounds. We intend to discuss this question later in more
detail.

At the present time, however, we are going to work within the
non-relativistic quantum mechanics. The situation is much better here;
in many cases we are able to treat unstable systems rigorously, and
at the mame time more or less realistically. To be specific, let us
mention the dilation-analytic technique/a_’2 or the tunneling decay
models/13_16/. A common mathematical core of these and other studies
is the perturbation theory of the eigenvalues which "dissolve" in the
continuous spectrum once the perturbation is turned on. The second
one of the important open questions mentioned above concerns the
search for alternative techniques of solving this problem 4 .

After this 1ntroducfion, let us turn to the contents of the pre-
sent paper. We are going to treat in detail & two-particle decay with
the simplest possible interaction Hamiltonian. It bears a close simi-
/17/. The decay of the
V-particle have been discussed many times in this framework, e.g.,
in Refs.18-22, and the essential idea can be traced back to the
Friedrichs’ pape 23 . Hence the results we are going to derive are

larity to the lowest sector of the Lee model

hardly surprising. Nevertheleas, none of the existing treatments can
be regarded as complete or entirely satisfactory, and we hope to fill
the gaps. At the same time, & careful analysis of this problem repre-
sents a good starting point to discussion of more complicated decay
models.

The model is described in Section 2. In the next section, we
discuss 1ts transformetion properties with respect to the Galilei
group 1; . Using the standard representation theory of j’, one can
write easily the projective representation of 5‘ which suits to our
problem. We deviate, however, from the standard formulation 24 in
the matter of time translations. Usually the representations are re-
garded as acting on functions of coordinates and of time ; we prefer
to express them by operators acting on the state Hilbert space only.
It makes the proof of Theorem 3.1 a2 bit lengthy, but according to
our opinion, it is a proper way how the spacetime transformations of
a quantum system should be described. Next we find the conditions
under which the model is Galilei-invarient ; further on we shall con-
sider this case only.

After separating the centre-of-mass motion in Section 4, we turn
to discussion of the reduced resolvent which contaeins the essential
dynamigal information. We show that under mild essumptions about the
interaction Hamiltonian, it has a meromorphic structure. The unper-
turbed Hamiltonian has a simple eigenvalue embedded in the continuous
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spectrum ; the corresponding pole shifts under influence of the per-
turbation to the second sheet of the analytically continued reduced
resolvent. Further properties of the solution, such as spectral con-
centration: relation to the scattering theory,etc., will be discussed
in a sequel to this paper.

2. Description of the model

We are .going to discuss the situation when a heavy particle of mass M
decays into two particles of non-zero messes my,m, all of them
are assumed to be non-relativistic and spinless. The state Hilbert
space of such a system is

X=X ., (2.1)

where ‘qu- L2(R3) refers to the heavy particle and Z’d =L2(R3)® LZ(IRB)
to the decay products. Its elements shall be written as

P (X )
y/‘ 2(11 1x2)
where i,i1,f2€ R3 . Since we are going to build the model in such a

way that the centre-of-mags motion would be free, it is natural to
identify the heavy particle coordinates with

Y WYX E) = (2.2a)

n,x, +m,%
7 . ™% *B%

my +m, L (2.3a)

In view of the Bargmsnn’se superselection rule/2¢’2s/, the masses must

satisfy

M= m1+m2 H (2.3b)

otherwise the decay would not occur in a Galilean-covariant theory

(cf.Remark 3.3 below). The relative motion describes in terms of
m,m '
-2 - - - 2
X = x,- X , m = E?%TEE . (2.4)

Using these variables, we cen set ya(f,i) i= %12(¥1,f2) and write
the state vectors as

» (3)
Y YR = Yu ) . (2.2b)
}bd(xrx)

Next one has to choose Hamiltonian of the model. In ordey to maka the



decay energetically possible, the free energy of the heavy particle
must be shifted on a positive constant E . It corresponds to the ener-
gy released in the decay of a relativistic particle of rest mass MO =
= m,+ m24-E/c ;y if B« mjc2 for Jj=1,2 , then the heavy-particle

energy is

22
(M c4+p c2)1/2 = m102+ m202+E+'éG]T) + 0(0'2) .
172
Motivated by this argument, we choose
>
Hs = HO*-gV y . (2.5)
where the free Hamiltonian is
"21T4Ax 0
HO = : 1 (2.68)
0 s—A

7, Ax, T Zm,,

and the interaction Hamiltonian will be specified a little later. The
Leplacians here are understood as self-adjoint operators, i.e., with
the domains consisting of those §¢L2(R’) for which Ay exists in
the sense of distributions (cf Ref.27, Sec.IX.7). Furthermore, the
operator —(2m1) A -(2m2) Ax2 is easily seen to be e.s.a. (Ref.27,

Sec,VIIT.10). We rewrite the free Hamiltonian using the coordinates
(2.3), i.e., as the self-adjoint operator

1
E-2mlx 0
Hy = —_— . (2.6b)
0 - 788 " 2245

In fact, the two operators are unitarily equivalent by mens of U :
(U@)(i,}): ¢(¥1’¥2) y but we prefer to speak about the same operator
in different coordinates. The interaction Hamiltonian is chosen in
the simplest possible way, namely
V()1 (X,3) ay
v: (vwEdH = (R , (2.7)
v(i)yh(i)

where ve L2(R3) is a given real-valued function. Using Fubini theo-~
rem and H8lder inequality, one finds easily ([V¥II<IVIIYll for all
Yed, where vl 1ie the L2-norm. The equality is achieved, e.g., if
Ya =0 . Hence V 1is a bounded operator, IIVli= fiv]] , which is, further-
more, symmetric due to the real-valuedness of v . We conclude :

Proposition 2.1 : PFor a real coupling constant g , the operator H5

is self-adjoint on the domain D(Hg) =D(H,) consisting of all Ve
for which H0@ exists in the sense of distributions.

Before proceeding further, let us show how the state vectors
look like in the p-representation. If 51.§2 are the 1ight—partic1e
momenta, then

P = B+ 32 , (2.88)
m,3,-m,0, ’
3= —‘—er?—" . (2.8b)

are conventionally the centre-of-mass and the relative momentum, res-
pectively. As above, P is identified with momentum of the heavy par-
ticle. For an arbitrary Ve yzm ) & JKB ) , we define

- -18.% 2
.. F.® (22)"%/2 f3 e”1E- Xy (i) aX
Y(F,B) = i= B, L, i (2.9)
33 (E,B) (29)7> f e HETEX)y (%,3%) af ek

this transformation extends by continuity to the operator P : #—>d7 .

In other words, we define
P o:= F3$ EG , (2.10)

where Fn denotes the Fourier-Plancherel operator on L2(Rn) ; this
relation showa that F 1is unitary. In what follows. we shall mostly
write Py = *f s having in mind thet 'y/ lni)ch. 'Sén for some sequen-
ce with suitably regularized integrals if ¥ does not belong to
LG L1 . The free Hamiltonian acquires in the p-representation form

of the matrix mult%plication,

P
. B E-+2M 0
PR P = N (2.11)
0 2M*2m

As for the interaction hamlltonian, we have to express the vector
FVE' It holds obviously FSVVh"vVh . For a function ¥q * 'yd(i,ﬁ) =

Z w,k(X)y,Zk(y) with %key(m ) and y«2keL (8> ) , the first row

in (2 7) equals
n 5 n ~ A
Zy D ey = k%%k(i)("'%k) :

Applying to this the operstor By , we get

G
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n > A A 2., > <+
Z Y (PYvag,) = f v(k) g, (P k) dk .
k=1 R3

The function y’d of this form are, however, dense in LZ(RG) , and
the operator FV 1is bounded ; thus the relation

L Sy @ e
(rvy)(3,8) =| ®&° ) (2.12)
V(B (B
holds for all Ve€X.

3. Galilei group transformations

Let us recall first some basic facts about the Galilei group (9‘ 3 more
detailed expoeition can be found, e.g., in Refs.24-26 . It is a ten-
parameter Lie group whose elements are § = (v,8,V,R) , where R 1is
a 3x3 orthogonel matrix. They satisfy the composition law
(b',8°,v',R")(b,8,%,R) = (b+b ", R'B+34+¥b,R'V+¥ ,RR) . (3.1)
There is & one-to-one correspondence between the elementes of 5 and
spacetime transformations. In this way, the light-particle coordina-
tes transform under § Gj to

femewed L gme 5.2

The same is true for their centre-of-maes position,

i' = Ri + _"It + -é (3.38)

80 1ts identification with the position of the heavy particle is
Galilei-covariant. On the other hand, the relative coordinate trans-
forms as

x =Rx . (3.3b)

Let us turn now to transformations of the state vectors. For the model
under consideration, the following assertion holds :

Theorem 3.1 : There is a unitary projective representation of j'
on % defined by

) .
(U(,E,7,0WE,3) = exp{3u[¥v+ 3. (24-D1 ] x
H,t 1,2 1 (3-4)
8 LY(R™T(X+Tb-2),R™'%)

6

for sll ge§ end YLe¥ . Its multiplier equals

P2

Oy = exp{%mﬁ‘.n 2-2.RT-RVID] . (3.58)

L]
Proof of the theorem requires an suxiliary agssertion @

Lemma 3.2 : The relation
(oifigd (1/2u[FP0 + ¥ (2K-8)] -1Hgdyy(F

2 ) (3.6a)
el(1/2)1&1[3 (b+b ) + 9. Qi‘“%(iﬁb’,i)

Proof : It is clearly sufficient to check the relation (3,6a) for
=0 ,38=0 . It is useful -to pass to the p-representation. We denote
ﬁg EF 1 ; then it is equivealent to

—iH

. 22
(ei}lgb Syg ¢ 1Ne !)(P o (1/2)U7D +1b 7. P(s _.W(P'p)

, (3.6v)
where SE is the shifting operator
(sph)(3,) =8 (B-K, D) .

The equivalence follows from the relations

’

(FS_gy - &) (B,3) = e VT ED)

¢ oM X5y (2,3 = $B-uT3

~
-

which can be verified directly for de L n L1 .3 for a genfral et ,
one can always find a sequence {nﬁnéc L NL such that <§_ conver-—
ges pointwise to é a.e. in R xR . Before proceeding further, we
must introduce some more notation. Let Bn(cx) i= {xe R": Ixlsal,
then we denote

N(w) ={"£€5Y. : supp y’:ue 133(04) , Bupp é,\de B6.(“)-§

A A7
Purther we define the operator HSOL -H +gvl s where Ve 1is given
by (2.12) with v replaced by

A
It is easy to see that the sets N(x) := FN(x) fulfil the following
conditions




ﬁonm c New)

o

g#N(oc)c N(max(«,p)’) ’ (3.7)

Sysii) < N + MIF]) .

Por an arbitrary 'Qfe N@) , the following estimate is valid

Mg iR < 2las Byl + 26 “f Tafy 0 ak?

<2t uvpuﬂu%u% z[(2M 2,,,) +g uv,gu]n%u? .

Since || Gﬂ lig lﬁ‘r”:llvll , we get the inequality

A2 02
HHgﬁE" < g (3.8)
with
2 22
2 & "
o= 2B+ 5g+ 5y v 28fIvid .

It is easy to deduce from here that f?(az) consists of analytical vec-
tors of H for any fixed «,/S . In a similar way, we are going to
check the formula (3.6b) expanding the exponential functions into
power seriss. Assume dzﬁ » then the relations (3.7) give

H Ps i }N(Q)C N(x +MI¥])

and (3.8) yields for any Y€ N(x) the estimate

“H gp Sy gp.%" <ca(+mﬁ| 3{”@ ”gc,f:ﬁh-ﬂ (K7

Hence we are allowed to apply the Hausdorff-Baker-Campbell formula
which gives

(eib'ﬁgf Sys e'ib‘HSP@)('r’.ia') =
- (2, S-ib—l-[n Lo [y 851 8) B -
nz-:é -(%Ln (5.'&--m )ny(ﬂ.yw,p)

H

P B b4 A
. it (BT~ (1/2)u%2) LENT, D)

This is true for each o(z/s . Por an arbitrary Y'e.w , we can there-
. A

fore choose a sequence {]}nf such that Y% € N(n) and %  converges

to ¥ pointwise a.e. in R“X® , and conclude that

b‘Hsﬁ» Sy © -ib Hgﬁ % - e(:I./Z)MV b +1b ¥, P SMv . (3.9)

It remains to perform the limit /S-roo . We have D(ﬁgp) =D(ﬁg) =
= D(H ) and

A A AN A A A
g% - ¥ < lgl¥s - FHIYN->0
A A A aA*
as p-»00 for every @eD(HO) y, 80 H - H in the strong resolvent

sense (Ref.27, theorem VIII,25). It in turn implies

A A
s-1im e 1Hgat . o-1Hgt (3.10)
Aroo
for all te®R (Ref.27, theorem VIII.21). The operator SM? is boun-
ded and operator multiplication is strongly sequentially continuous,
hence the relations (3.6) follow from (3.9) and (3.10). -]

Proof of theorem 3.1 : It is easy to check that the operators (3.4)
are unitary. We heve tc show that they form a projective representa-
tion of 5 , 1.e.,

UpTG) = wp", 000, ‘ (3.5b)

where ;4{ is defined by (3.1) and @ 1is a suitable multiplier. By
definition,

(U(v’,8°,%,RU,3,¥%, 1M E,3) =
= exp {4097, (b "+ 2d - 89}(e 8" U(R, VRN ()T (FF -5, @YD) 5
at the same time, lemma 3.2 gives

(e He® y(v,2,%,7) )(T,§) =

-1

- e(i/z)uwz(mb')ﬂ?.(25{-5)](eﬂ{g(bw’) 3 .

v) (&7 (F+#(be1 )-3,R

Combining these two relatioms, we obtain after a straightforward cal-
culation the relation (3.5b) with @ given by (3.5a). One can check
easily that @ is really a multiplier, ©(47, # )a(s s ,4) =

=Wl P gy . B



Remark 3.3 : Let us return for a moment to the relation (2.3b).Suppo-
se that the heavy-particle mass is M . In this case, the upper and
lower components of Y would transform in a different way : the upper
one would acquire the phase factor exp %M.’ [\?2‘04»1'7'.(22—3 Y] . Now one
has to use the identity (OU,0,-¥,1)(0,-#&,0,1)(0,0,¥,1)(0,4,0,I) =

= (0,0,0,I) ; it shows that the unit element of 5 would transform
the vector ¥ to

>

etlﬁ a.v

ema.s

¥u
Ya

which represents a different state unless =M .

Y =

¥hat is the physical meening of the representation U ? Conei-

der an observer who describes a state of the system.at en instant ¢
by the vector 'yt= e'iHBt'Q/ referring to en initial condition ?’0=¥ .
Another observer who uses the primed reference frame will describe
the same state by l,f/t , which is related to ’S{/t by

y;- = U(b,a,v,nwt . (3.11a)
For simplicity, assume that the clocks of the two observers are syn-
chronized, i.e., t =1t . Then %; = U(-t,8-¥t,¥,R) ¥ so the relations
(3.3) and (3.4) give

>

y,t’(i’.i’) = e(i/2)¥[2R-1v.f+V.(Vt+a)] y/t(i,i’) H (3‘111))

in particular, the squared moduli of the primed and n‘on-primed compo-
nents are the same.

Existence of the representation U alone does not, however, imply
Galilean invariance. The latter requires in addition that the eguations
of motion are form-invariant under chenges of the referemnce frame.
Suppose that yt<.,.) is a rapidly decreasing function, 1i.e.,
¥, J’(R}) and ’y;de:/(ﬁ ) , then (3.11b) together with the equation
if{"{t = (Ho+gV)¥«t give

22 - =, o
A (3 2° i/2)ML- (2X - 122 -1
12y ®,3) = 2 [-#%+ 7. ¢ E)J.(Euvyt-m XA
[ 33y, o7 @i, §
+ HgY) (BTN (X-F0-8), 572 + g | B -
V20, (@ -F-E)

N

The first three terms are nothing else than (H. Y )(X',%°) . In the
0t

10

s

—_—
——

last one, we uese rotational invariance of the lebesgue measure obtai-
ning in this way

' - {3 TRIF gy T 07
124 (R0,37) = (HW (X ,E) + g s .. .
v(R™'y Wt,u(x )

It is clear now that the vector function tr>Y; fulfils Schrddinger
equation of the same form as t H'}.Lt does if v(%)=v(R¥) . Galilean
invariance requires therefore the function v to be spherically sym-
metric, v(X)=v(RX) for all R€ 0(3) .

‘In what follows, we treat the Galileen-invariant case only ; we
assume v(%):v,(r),_ where r=I|%] and v, is a real-valued func-
tion from LZ(R"',radz-).

4. Separation of the genire—of-mase motion

The state Hilbert space (2.1) decomposes naturally into the tensor
product of spaces referring to relative and centre-rof-mass motion,
#=4"e 7L . wWith the usual license, we write

¥ =1°®> e (c o 12R>) , (4.1)

where the bilinear mapping & : L2(R’)x (€ ®LZ(R%)) »% is defined by
(p o (G (&%

(ay(i’) ) -
y D) p(R) '

one can check easily that it has the required properties/aa/. 'i‘he
Hemiltonian (2.5) can be then expressed as

rel

Hy = Bl I + Ie'ug , (4.2)
where HS™= - ) A and Hrel_ﬂrel +gV with
0 =~ 7R g 50 g
E 0
ngl =< 1 > ’ (4-33)
0 =-5=A
2m—x »
0 (v,.)
V= ’ . (4.3b)
v 0

we omit here the superscript "rel" for convenience. The operators
Hgm and H‘;el are self-adjoint and tvhe relation (4.2) implies 28/

11
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Omy, al
o-iHgt o o ~iHo tg e-iﬁﬁ t (4.4)

for all teR . Hence the total propagator decomposes naturally and

its centre-of-mass part represents a free motion. For our purposes,

only the relative part islimportant. We are interested in the situa-
tion, when the initial state of the system represents the undecayed
heavy particle,

t= (M =1eld) (4:5)

at t=0 . Then the state vector factorizes at each t>0 ,

rel
= .=iH,t cm %t w
y% =ee’Y = yt,ua rel ’ (4.62)
t,d
where
rel
Ytou,. e-iHEEIt(i) (4.60)
rel 0 g
Y¢,4
and
2 =9 - .
p$2D) = (2nit)"¥2 1.1.m. HIX-YIT/2%, (F) af (4.6c)
4 K> ¢o

(¥Isa
(cf.Ref.27, Sec.IX.7). The same can be put in other words. The decay
is described fully by the reduced propagator

. iHgt . -iHt )
Ut.-prg{es = E e 8 1A (4.78)

u

where E denotes the projection onto X (Ref.3, Chap.!). However,
u rel rel %

the letter equals I® Eu , where Eu projects onto the one-dimen-
sional subspace Zflel-v ¢ in ”rel , and therefore the relation (4.4)

implies

cm rel
y, = e"itlo t emilig Tt (4.70)

t ® Pfﬂrel

u

Before proceeding further, let us mention how this decomposition looks
like in the p-representation. The operator (2.10) expresses as

(1 o)
P=F.®

3

. 0 By

(4.8) "

»

1

A
and trensforms H into fl = ficme I+ 1e % , where Hgm is a multi-

- - " a8
plication operator, (ﬁgmﬁ)(P) =(P2/2M)§(P) end

12

frel
Bg = a f . ' (4-9)
av >m

5. The reduced resolvent

In what folliows, we shall be concérned mostly with the relative motion,
and therefore we omit the superscripts "rel". Let us first recall that
the reduced propagator (4.7) is determined by the reduced resolvent

. -1
Ru(z,Hg) i= p;zh (Hg- z) (5.1)
as
vy = [e P any (5.2a)
R

where the vector-valued measure is given by
&
TELALD) + P DY = 507 lin [[Rytg+1y,8) - B (g -1y ED]¥ af
L (5.2b)
(Ref.3, Sec.3.1) ; if Ru(..ﬁg) has a pole near the real axis, ’
then the reduced propagator is dominated by the corresponding exponen-
tial term. In our case, the (relative) subspace 5& is one-dimensio-
nal, so Ru(z,H ) and U, act simply as multiplication by numbers
ru(z,H } and u(t) , respectively.
Since E> O by assumption, the unperturbed Hamiltonian has a

simple eigenvalue E embedded in the non-simple continuous spectrum
GC(HO) = RY . The perturbation problem for this eigenvalue can be sol-

ved, because the interaction Hamiltonian fulfils the Priedrichs condi-
tion
EdVEd =0 . (5.3)

We shall work in the p-representation,' where Ho and (Ho—z)" act
as multiplication operators. A simple algebraic argument (Ref.3, Pro-
position 3.2.1) gives

Proposition 5.1 : The reduced resolvent (5.1) acts as multiplication

by

ru(z,Hg) = [—z +E +g2(}(z)]_1 , (5.4)
where
A, 212
G(z) = n{} l‘-’—(l?-é— ap (5.58)
Z-%m

for ze'?(Hg) , in particuler, for each non-real z€C .

13



Spectrum of the operator H can be found easily. In particuler,
<l 55t Hg )= G es (Ho) =R* , because the operator V is of rank two, and
tﬁerefore relatively compact with respect to Ho (Ref.27, Sec.XIIl.4).
The cxucial observation is that ru(,.,Hg) may be continued analyti-
cally across 1R+ , even if the full resolvent is not having a cut
there . We shall prove that the perturbation shifts the pole correspon-
ding to the unperturbed eigenvalue from the real axis to the second
sheet: of the analytically continued ru(.,Hg) . Let us first collect

the hypotheses concerning the function v :

Assumptions 5.2 : (a) v is spherically symmetric. In that case, the
A
same 18 true for ¥ , and we shall write w/r\(iS) =v1(p) , having in mind
that 91 is not Fourier image of v,
Yq'P) =y

The xelation (5.52) can be now rewritten as

&
l.i.m [ _1;5_1;?_21-_ "}‘(r) dr . (5.6)
od»00 O

.5b
¢(z) = 42 [ —l———ap . (5.5b)

- %

(b) +the function u ~» lG,(JaTu) |2JéTnR can be continued analytically
to am open set Sl c € containing the point E and such that £2NRC
oy IR* y, 1.e., here is @ holomorphic function f : (L ->€ such that
2(a) = ]v (V2mx) | f2T for 1€ QNR . For notational convenience, we
write f(z) = |v,(V2mz) | 2/zmz  tor non-reel z too.

(c) V1(m)%0 ,

(d) the last assumption can be replaced by a stronger requirement,
F(p)#0 for all p>0.

Now we shall prove two auxiliary assertions @

Lemma 5.3 @ Let the function Ara]v (JZ81)| 2 /253 have a bounded

derfivative in an open eet J C R . Define

|v (P)l . )
I(,\v):=50f———2——dp , (5.7)

whexe P denotes principal value, then the functiom I(.,v) is con-
tinwous in J .

Proof : Choose an arbitrary K€ J . Due to the assumption, there
are positive ¢,8 such that

14

[1%,()1%p - lG,(\/z'mJ)lz\/szIsc[p-/Eﬁ[ (5.8)

holds for all p,/2ma E(\/2m -&8,V2m md, +3) . The integral (5.7) can

be then written as

\/zm(\l—‘)) \/2m(~k+@_ 1% ',\ ( )2 2
Iy = élk(*"’) e Y R A ._vl_i_z_ dp

0 »/2m(J\-€) ,/2m(q+f) 4 - %}

for some Qe (0,4) . We can choose 9&(0 4y) and Je(o é’J in
such a way that |V/2mQE 30)- /2 zal < 4 53 holds for

‘/&T-ke(ﬂm.\o-é“ .JZmJO +é"1)

(5.9a)
80 that
V2m(3E6Y - Vamy, . (5.9b)

In what follows, we shall consider only those A which fulfil the
condition (5.9a). The integrals Ik(.A,v) y k=1,3 , are finite and

I (.,v) are continuous at JO due to the dominated- -convergence the-

orem. It is sufficient therefore to consider the second integral. A
simple integration yields

~/2m(\&+ ) \J - V2m(4+f)
‘Pf d 2 = 1lim ‘ + f P dp2
VEmGog) J.-'ga 170+ sz(q-f) VEEXES DANES =
L
2m 0
R
80 we have
e [3,0)12p - 17, (/EER) 2/ Ems
L= 2/ . pdp . (5.10)
‘/Zmzu\—(ﬁ A= ‘gﬁ

According to the conditions (5.8),(5. 9), the following inequality holds

lv (»1%p - 1, ¢ 2n2) 12\ 2m < _2mCp

5 Pl S < 2mC .
“\-éL p +/2ma
m

thus the rhs of (5.10) makes sense as a Lebesgue integral and I (.,v)
is continuous at J\O by the dominated convergence theoren, ]

Lemma 5.4 : Adopt the assumptions (a) and (b). The function Gq
defined by
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G(z) ess Imz>0
Gn(z) =1 471(z,v) -43;21m|91(\/2mz)|2\/2mz ... zZERNS (5.11)
G(z) - 8ﬂ21m1\71(»/2mz)12\/2mz .. 2zel, Imz<0

is holomorphic in {z : Im z2>03 U8 .
Proof : One hes to check that within {1 , the relation

lin G(atip) = 4al(nv) ¥ 4r2in ¥, (J2m3) |2/2ma (5.12)
'7-vO+
holds. We notice first that I(a,v) makes sense due to (b), because
the assumption of the preceding lemma is fulfilled in that case. Hence
one can choose a sufficiently small (p and express G(z) a5 a sum
of three integrals in analogy with the above proof ; the dominated-
convergence theorem implies Gk(-xii'z)—é MIk(A,V) for k=1,3 .

Further we have

V2mjl+$) 1‘71 (p)|2p - |’\}1 (J2mzt)|2\/2mzt

lim & (\-\11'7) 47 lim %5 pdp+
7—>O+ 7-.0+ ’__—Zm(.\—e) At i? _ gﬁ
Jam(a+p) (5.13)

..._P_..P._._
+ 47 1lim Iv 2 z*)l Jenzy f ,
10 [FEG=) At 19 - P—-
where t-Ai:I.? . The first limit equals 47;-1 (q,v) according to
(5.10) and the dominated-convergence theorem. One obtains easily

J2m(.x+'>$
1im __.P_dE_._.E = m lm [1n(p$1y) - In(-ptiy) ] = Fim,
70 Vzat-p) 4*17 70

while Iv ( 2mz:)l 2mzy —> Iv,(\/2m )] \/ 2m) , so we arrive at the rela-
tion (5. 12) Next we must show thet the convergence in (5.12) is uni-
form with respect to A in any finite interval J C f) AR . We have

mia=g) 2| a2
th(zt) -G1(-A)| <4 f Iv,(p)] 2-2 - RE p“dp £
0 Z+=%n " Zm
Vanl-e) 15 (p)1%p2
< 4\7F’7| ]
O R e

and the last integral can be estimated easily. The third integral can

be treated in the same way ; we obtain

loylza) -Gl € @72 AL (5.148)
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for k=1,3 . Consider now G2(z*) . In the second term of (5.13),
19, (V2mzy)) ./2mz*—> lv (V2my) | 2 /5> uniformly in view of (5.8), and

we have the estimate

J2mh+¢)
J 2R & gy 5m1n§;il Sl (5.14b)
\szz\l-ﬁ) Zi-gi ? 7 e

It remains to cope with the first term in {(5.13). It is easy to see

that
Rq(p)lzp- IGI(JZmz)IZszz
P(p,/2mz) := 5
z - P
2m .

is holomorphic with respect to p,JZmz if only they belong to .
Then h“)EaF(p,u)/au is also holomorphic, and therefore bounded
if p,u belong to a bounded subset of (l . We have

1
P(p,v2mz,) - F(p,V2ma) = (J2mz*4—/2m4) ‘cl)‘h(1)(p,\/2m.\+t( 2mzi-l2m~\))dt

s0 there is a positive K such that |F(p.,/2mzi) - F(p, 2mq)|€
<k|/2mz; - J2mr | holds if p€({/2m(~\—f),,/2m(.a+§7)) » A€J and 9,7
are small enough. Hence we have

\/2m(J\+Q)
A [P(p,V2mzy) - P(p,v2ma) ]p dp| < 2mg>1{I\/2mzt -fmil €
Vam(a-g) '
—8— S,
J:\-o' .

since .,\Z.Ao>0 for A€ J . Combining this estimate with (5.14) we
see that the convergence in (5.12) is uniform. Since G(.) 1is easily
seen to be holomorphic in the upper and lower complex halfplanes, the

assertion follows from the edge-of-wedge theorem 28/. a
Remark 5.4 : One has to check the uniform convergence, because the

remark following theorem 2-13 of Ref. 29 is not correct : a counter-

example is represented by F(z) =2z ei z

Now we are in position to prove the main result of this section :

Theorem 5.5 ¢ Assume (a)-(c). Then there :is a connected complex
neighbourhood ‘Ql cf) of the point E and a positive € such that
for each ge (~2,2) ,

rﬁ(z,Hs) := -z+E+g2(}‘n‘(z)]-1 (5.15)

represents-analytic continuation of (5.4) to {z :Imz>03 U
The function ru(.,Hg) has Just one singularity in J?.l y 8 simple pole
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at z=zp(g) , where the function zp:&p-ié‘p belongs to c°°(-£,£_]

and its real and imaginary -parts fulfil

% |, (p)12p?
a8 = E+4ﬂsz~?£f—l—z‘dp +oigh (5.16a)
E -
2m
8 (&) = 4a%ng®| ¥, ([2n®)] 2{2uE + 0(g?) . (5.16b)

Proo? : The assertion concerning analytic continuation follows from
Lemma 5.3 . Only possible singularities of (5.15) are zeros of the
function f(g,z) = z-E —g2G (z) defined for ge®R and z from the
analycity domain of G . For small enough g , one can use the impli-
cit-function theorem (cf.Ref.30, thms.III.28, III.31). The function £
is infinitely differentiable with respect to both g and 2 , further
we have f£(0,E)=0 and (2£/92)(0,E)=140 . Then there is a neigh-
bourhood (-8 ,&") of the point ‘g=0 and a unique function =z €

e ¢®[-¢g",¢e’) such that f(g,z_(g))=0 for Igl<g” , 1.e., zp(g) =

= 34-52G5ﬁz (g)) . Continuity of the partial derivetives of £ implies
particularly that (af/bz)(.,zp(.)) is continuous in (-2°,£") , end
therefore there ie a positive £< &  such that (9f/9z)(g,2 (g))#$0
for ge (~£,2) . Consequently, ru(.,Hg) has a simple pole at zp(g).
The first few terme of the Taylor expansion of Zy can be easily
calculated : we obtain

8 lg=0 ag’ lg=0
and ,
Ef%? = ZQR(E)
dg” tg=0
which imply (5.16). B

Remark 5.6 : In fact, we have proved the theorem using the @ssumpti-
ons (a) and (b) only. The assumption (c) is important, however, since
it determines the leading order in the formula (5.16b) which ylelds
the decay width. We shall return to this problem in a sequel to thie
paper.
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