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§ 1. Introduction

A continued quantitative test of quentum chromodynemics (QCD)
stimulates the calculation of radiative corrections of higher orders.
This in turn leads to the appearance of new methods of calculation/1_3{
In recent years in a number of papera/4-7/ a new method of calcula~
tion of massless Feynman diagrams has been developed, It was called
the method of uniqueness. Its possibilities have been demonstrated
by fiveloop calculations in the (P“ model. The difference of gauge
theories consists in the presence of derivatives (or momenta) on the
lines of diagrams. For instance, when calculating the moments of
structure functions of deep-inelastic lepton-hadron scattering (DIS)
there appear the dlagrams with N derivatives (momenta) for the
n -th moment 8 « In this paper the method of uniqueness is genera-
lized to the diagrems containing propagators with an arbitrary num-
ber of momenta on the lines., As usual, the object of calculation is
the coefficient funotion depending on & =(4-D)/2 , where D 1is
the space-~time dimension. The point of interest is the coefficients
of negative power and few coefficients of positive power of &£ .

The paper is organized &8s follows., In sect.2 we present the main
formulee and the methods used. In sect. 3 these formulse are applied
to calculate some typlcal diesgrams needed for further work. In secte.
4 one of the diagrams contributing to ° 0(5 ~correction to the longl-
tudingl structure function of DIS is calculated. At the end we give
the total result for the c{s ~correction,

$§ 2. Main Formuleas

All the calculations are performed in the coordinate represen-
tation. The lines of .graphs are associated with powers of the type
ﬁ/Cr‘)d , o being called the index of the line; the arrow with
subscript rﬂ corresponds to a vector xM ’ thq black arrow cor-

responds to derivative F94Da%ﬁfpaﬁ , two arrows (black arrows)with
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subscript M correspond to the product of N1, vectors xM...x#n

(derivatives '3/4,',...'7/4,, ). 1If the subscript is in brakets (n ),
this means a traceless product of 2 vectors (derivatives)
”n
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Congider now the calculation rules,

1o Contribution of a simple loop with some vectors on the lines
is an ordinary product

m
n+m
= 2)
. p
2. The chains are integrated as follows. If there are /s Vec-
tors with "blind" subscripts xMeee /", then we will neglect
the terms gl“f/“'j' . In the case of "marked" vectors X/Mx”.,

it is necessary to know all the structures, The integration formulas
ars the following:
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where the symmetrizer é is defined as
S g’ = ( ?"/u‘var 3vﬂ‘xﬁ>.

The result of integration for a larger number of marked vectors is
straightforward.
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e = AL () —
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In the last chain there could be the product of marked derivatives
because the structures: ~3/“"/"J' do not appear.

3., Differentiating the identity comnecting the unique vertex

(Zd; = D ) with unique triangle ( Jdl, =D/5 ) (see, e.g., ref./s/)
we get '

(4b)

4, Integrating by parts with account of '3/4(‘1"3)":: D we get the
following equation for the vertex with an arbitrary index

Repeating this operation (M + k ) times we come to
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Integrating by parts and taking into account ’D: (x2-¥Y=2D we got,
as compared to eq.(5), a more useful in some cases equation:
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5. While calculating the moments of atructure functions one

deals with traceless products of vectors. The use of traceless pro-
ducts €CCHr M gnables us to ignore the terms ~ @My because
they are easily reconstructed from the general form of traceless pro-
ducts. Hence during the integration one has to look for the coeffici-
ent of the main term xC/...oc/™ (see 2.). The formulae for the
traceless products follow from thelr connection with Gegenbauer po-

lynomials [4]
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For the product of vectors one has
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where C, (@6)is the Gegenbauer polynomial,

with the help of eqa. (8)=(9) one can obtain the following equa-
lities
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The first three eqs. are valid being multiplied by X eee X .

Equation (9) leads also to
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For the vertex containing the traceless product of N vectors this
glves
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Integrating by parts in the r.h.s. we have
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6. To calculate complicated dimgrams, it is often convenient to
use functional relations analogous to those of ref, 7 « This sometimes
gimplifies the calculatiohs. For example,
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For another typical diagram we have (for even t )
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$ 3. Examples of the Diagream Evaluation

We demonstrate the efficiency ofl the proposed method calculating
a number of typicel diagrams teken from practical calculations., We
proceed in 7 - space., Any diagram of P -space can be trensformed
into X =-space either via the Pourier transform

S al.f, eth'Pﬂl‘" Pl % A -2\)0; d 4 As (VD
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or considering the dual diagram. The last way is preferable due to the
absence of any multipliers and changes of ingicea, The dual diagram



arises from the initiel one replacing all /DL‘ by X, with the
dlegram - integral correspondence as in 2 - space.

1. We atart with the already discussed diagrams (13), (14). The
first diagram arises in all complicated diagrams giving contrib}xtion
to the nonsinglet structure function of DIS (see sect. 4), The second
one appears in the nonplanar case.

To evaluate the first diagram, one can expand over the upper ver-
tex (eq.(5)) or lower vertex (eq. (6)). However, for our purposes it
is more useful to apply eq. (13b) for K = 1. We have
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where S;(n>= ZVkL L 3= Salw) is the Riemannian
3 -function and X‘ is the Euler constant, We finally get

.

where T(w) = i Sk, (17)
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For the second diagram we proceed in the seme way., Applying
eq. (14b) for K = 1 we oome to
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Using eq.(16) we find
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2. When calculating DIS structure functions by the technique of

“gluing"/a/ one comes to diagrams of the type

T.(¢) =2 ZV , (20)

3+fe
where the limit

T, = ﬁ\:‘; (r3)s (ne1d T, (4) (21)

gives the desired contribution, Here also the kinematics of DIS should
be taken into account, which means that o 0, i.e.,0ne neglects the
proton mess,

The complexity of calculations is due to the presence of a large
number of various structures of /\4 end V which should be contracted
with ZMZY . To avoid this and to reduce the diagram (20) to the
calculated one (17), we use the following trick. Differentiating (20)

with respect to C‘L/Air .}“ and summing over Mar see e , we get
)
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The firat two dimgrams equel zero due to the kinematic restrictions
( £%= 0), and the third one with the help of eq.(10) is reduced %o
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This diagram can be easily calculated because all vectors ere now un-
der the traceless product. We have
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where  D. (e) is the coefficient function of the diagram

Hence the coefficient function of interest with account of Ki~
nematics is reduced to the diagram considered before:
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Taking now the limit (21) and putting & = O we finally arrive at
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where D. is given by eq. (17).

3. To demonstrate the efficiency of eq.(7) as compared to eq.(5),
we conaider the diagram, which is complicated not only because of its
topological structure but due to the poles in £ .

n
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Transforming the lower vertex we come to cumbersome sums which should
be expanded over & . However, these problems can be separated with
the holp of eq.(7). Applying the latter to the lower vertex we have
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Comparing these two expressions we find the following representation
of the initial diagram
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The resulting diagram is now easily calculated. The only complicated
diagram in the r.h.s. is multiplied by 4-D =2& and contribut-
s only to O(g> terms,

4. As an exemple demonsirating the usefulness of eq.(6) we con-
sider the integral
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5. A8 an example of calculation by the uniqueness relation we
consider the integral
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§ 4. Deep-Inelsstic Scattering: 0(5 ~Correction to the Longitudinal
Structure Function

In this section we present the diagrams contributing to the
two~loo correction to the longitudinal structure function of DIS
(see the figuras).
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Hers the solid, wavy and dotted lines mean quark, gluon and photon,
respectively.

+ To illustrate the usefulness of the method of uniqueness, we
consider one of complicated diagrams (No. 8). To get the longitudi-
nal part, we multiply the diagram by a projector P"Fv/qz, where P
and Q, are quark and photon momenta. We are interested in the co-
coofficient function of 7 -th moment. To find it, we use the tech-
niq’ue of "gluing"/s/. For this purpose we multiply the result by
qfl“ 5/@") \ where d= 3+4¢ and integrate over a{ . A8 & re-
sult, we have
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We are interested in the contribution

. . [N L
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where AI- means the integral with a counterterm instead of a diver-
gent subgraph.

Evaluating the trace and passing to a dual diagram, we obtain ‘in
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-—(494 U+z)®— - z)@— (28a)
T - g0 Gpr -t Ly @1
1@ a).— - u—t>.~ - o z)® Hm)

In eq. (28&) in the first square bracket all the diagrams are simple,
and in the second one they are more difficult. Calculation of one of
them has been done in sect. 3. The others are evaluated in the same
way; the result is
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The contribution of the diagram with a counterterm is
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Eventially, we find the following contribution of the given dia-
gram to the coefficient function
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The total contribution of all the diagrams, fig. 5, can be represented

in the form
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this result has @ simpler analytical form than that of ref.’'"/ an

soincides with it numerically. The numerical difference with the cal-
culations of ref, corresponds to that mentioned in ref, /11/
Note that the use of the method of uniquencess enables us to find the
result without computer. Physical epplications of eq. (29) will he
discussed in & separate publication,
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§ 5. Conclusion

We have demonstreted possibilities of the method of uniqueness
for the evaluation of Peynman diagrams in QCD. Though the formulae
are more cumbergome aa compared to scalar theories, all calculations
of complicated diagrams are reduced to a number of steps end all in-
tegrations are performed algorithmicelly without a direct integral
evaluation or expansion in an infinite series. These features deter-
mine the advantages and wide possibilities of the method of unique~
nesse.

The authors are grateful to S.G. Gorishny for useful discussions,
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§ lpUHMMAETCA NOANWCKA Ha NPenpuHTH W coobiyeHnA 06BeANHEeHHOro MHCTUTYTE
g E AQEpPHBIX MCCNEeRoBaHWUN .
YcTaHOBNEHa CNeayolian CTONMOCTE NOANMCKM Ha 12 MecAues Ha magawuna OHF

; 8 BIGIOYAA NepecusiKy, NO OTAENbHHM TEMATUUECKNM KaTeropuaM:
(@] 5 WHAEKC TEMATHKA llena noanmckn
E = N va ron
m (&) 1, IKCcnepUMeHTanbHaR PMINKA BMCOKHMX 3HEPrui 10 p. 80 xon.

x 2. TeopeTnueckan ¢M3amMKa BHCOKMX 3IHEpPrwui 17 p. 80 won.
E 3. IKCnepUMEHTaNLHAA HENTPOHHAA QN3NKa 4 p. 80 Kon.
ﬁ ' TeopeTHueckan PM3MKA HMIKUX IHEPrUi 8 p. 80 won.
m 8“ 5. MaTemaTuka 4 p. 80 won.
[5) g 6. filnepHan CNEKTPOCKONMA M PafHUOXHUMHA 4 p, 80 won.
g o 7. ®n3anKa TAMENHX MOHOB 2 p. 85 kon.
Q 8. Kpuorenuka . 85 xon.
E‘ B: P ] 5
S | 9. Yckoputenu 7 p. 80 kon.
m E 10, AsTomaTtn3daumua 06paboTkn 3KcnepuMEeHTan bHEX

[&) AAHHBIX 7 p. 80 xon.
ﬁ = 1. BWUMCIMTENBHAA MATEMaTUKA W TeXHMKa 6 p. 80 xon.
; (@] 12. Xumun 1 p. 70 kon.
- (@) 13. TexHuka OU3UUECKOro 3IKCNEpUMEeHTa 8 p. 80 kon.
3‘ E 1h, HccneaoBaHuR TBEPAWX Te€N U MMAKOCTEeH

') ANEDHBIMM METOAAMM . 1 p. 70 xon,
% = 15. FucnepuMeHTansHAA PU3INKa AAEPHUX Deaxuni
™ E NPU HUSKMX IHEPIHUAX t p. 50 xon.
5 2 16, foanMeTpUA U OM3INKa SaWUNTH 1 p. 90 xon,
e 8 17. TeopMA KOHAEHCMPOBAHHOrO COCTOAHMA 6 p. 80 xon.
=7 18. Wchonb3oBaHwe pe3ynbTaToB W meTOAROS
O 3: GYHAAMEHTANLHUX DUIUUECKUX UCCNEROBAHWA 2 p. 35 kon,

B CMeWHWX OSNACTAX HAayKW M TEXHUKM

Q 19, Buoduanka 1 p. 20 xon.
% § Moanmucka moweT 6wtk odopmneHa € moGoro mecaua TeKywero roaa.
E Mo BceM BONpocaM NYOPMNEHMA NOANMCKM ChnefyeT OGpawaTsCA B W3AATENbCKWA
= | otpen OMAW no agpecy: 101000 Mockea, fnaenoutamnt, n/a 79.

KasakoB [[.H., Korukos A.B. E2-86-204

Meron yHMKanbHOCTE(H: MHOTroNeTseBble BuUHCIeHHA B KX

MeTon yHHUKanbHOCTeH pacnpoCTpaHeH Ha OuarpaMMel C TIPOH3BOIb—
HbIM YHCIIOM MPOH3BOJAHMX /MM uMnyilbcoB/ Ha nHHHaX, llonmydeH pan
bopMyIn1, yAOOHBIX O/Is1 BLIUMCIIEHHST B KaJIHGDOBOYHBIX TeOopHAX. llpuBo-
OATCA TNpHUMEepbl BHYHCJIEHHS MHOT'ONETIEBhHIX JgHarpamMM, BCTpeYanolHx-
ca B KXII, Merop npuMeHsieTCsi K BHYHCIEHHI0 &g —~NONPABKH K IIPO-—
AONIPHOH CTPYKTYPHOU GYHKIMH CNyGOKOHEYNPYroro paccesHus nento-
HOB Ha AaJpoHax,

PaGora BumonHeHa B JlaGopaTopuy TeopeTHueckofi dmsmuxy OUAU,

Hpenpunur O61eUHEHHOTO MHCTHTYTa AHEpHBIX HCCmeNobanui. lyGHa 1986
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The Method of Uniqueness: Multiloop Calculations “in QCD

The method of uniqueness is generalized to diagrams with
an arbitrary number of derivatives (or momenta) on the lines.
A number of useful formulae is obtained which can be used for
calculations in gauge theories, Some examples of multiloop
calculations in QCD are given, The method is applied to the
calculation of ag-correction to the longitudinal structure
function of deep-inelastic lepton-hadron scattering.
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