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This paper ie tbe direet continuation Df /1/. Reeall tbat in 
/1/ we havê eonetrueted aeymptotic expaneione of individual Feynrnan 
integraIs and generating funetional of Green functions in larga 
Euelidean momenta or/and ma!SeB. For thie purpoae we have used the 
ultraviolet (UV) R-operation with overeubtraeticns in a apeeial type 
of Bubgrapbe, H-subgraphs. Theee are Bubgraphe whieh depend on large' 
parametere and eannot be made disconneeted by deleting a line with 
a emal1 momentum and mass (eee /1/). The reeulting expanaion haa the 
forro of operetor expanaion, UV-divergenceB being removed aceording 
to the MS-Bcheme /27. 

In thia publieation we use the formulae of /1/ to obtain aeymp­
totic expaneions of aome full Green functione. Then we show that, 
with a special choiee of eubtraetion operatora, eoeffieient funetion 
(CP'e) Df eueh expaneiona ean be made free from infrared (IR) loga­
rithms, i.e.,they can be expanded in powers of emall momenta ahd 
massas witbout arising IR-eingularitiee, which mak~s IR cutoffs an 
unwarrantéd preeaution. In Appendix we have explained the origin of 
"contaet terme". 

For a11 d~finitions concerning the R-operation, graph notation, 
ete.,we refer the reader to /1/. Formuiae 'presented in /1/ and used 
in this paper will be supplemented ~y index i, for example, (~.10), 

(1.20) and so on. For the explanation of quantitiea entering into 
them, aee BIso /1/. 

1. The p'roduet of two currents at short dietBneea (the Wilson 
expanaí.on /37). 

Coneider the generating functional of Green funetiona of tqe 
produet	 1"(llfx) 8(0») in the momentum spaee 

i 6lxR"S 7"e. (~/:::I) =Jdx e- fiM.!. <r flf,.)B(o)eL+:J fJ), , (n 
whera li and B are local cOJilpoeite operato~e. !te expaneion aa 
q -.., 00 (q ia aaaumed to be Eucl1dean) can be. 'obtained írom (1.34) 
by tnking variational derivativae with reapec t to eourcee ufl snd::113 
of operators fi and B and putt ing other Qn.. zero I 
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/{H5 rr;, a (q/J) = 'f c;(Q) <'T Oh- (o) e LR-t" :J'P>c T- D( q1-1J) 
(2) 

J lf \~ CAA.(Q) RN S (7' o; (o)e L + -t- o (Q4-"') 
~ ~ 

_ 6 c; (q) P'HS 7b. (:J) T o (f; 1-"')
k- 11.- } 

where 
n. ~2. /l.-{)JC (Q) = õ b . C~ {:JnJ (See eq. (1. 30));
R !J/I(lt) .::JB(o) Jh=o 

C~ (cy) = L. ~ . C"'R (f:))
...,x. h-K I 

and 2:.. tl /Ç ara renormalization constants of operators {Ofl.~. Note that 
derivativos %J~I and %:7. I _are equal to zero because they cor­

n J,,=O 6. "J...-O 

respond to operators with a lar~ incoming momentum forbidden by the 
completeness of H-partitions. 

Note that there are no "contact" terma proportional to C;; (t;) in 
tbe r.h.s. of (2) because we assume ~hat alI sources are localized 
at infinita Q . Such terms are necessary, however, to moke the ex­
pansion integrable at Q -o with nonvan1shing at this point probe 
functione/4/. Such a poseibility i8 briefly diecussed in Appendix. 
This remark concerns also alI other expansione in larga Euolidean 
momenta (see examples 2 and 3). 

Let us make some comments on the derivation. As ie olear from 
(1.22), to obtain an asymptotic aeri~e, one ehould make Bubtractions 
in alI H-subdiagrams comprieing complete H-partitiona. As B reault, 
we get the eum of terms with alI p06sible reductiona of oomplete H­
partitions. In tbe caee coneidered we have the only type of the comp­
lete H-partition, namely, that containing one H-subgraph Bnd single 
verticee. This H-subgrapb always coincides with some poos1ble flow 
of q through the lines of a ·graph, and both operator vertioos 11 
and B belong to it "( aee Fig. tb ) }, Contracting these verticea into 
a point, we obtain a local operator. Thie process is illuatrated by 
Fig. 1a). 

Functions CR(q) conta in -alI the information on the behavf.our- of 
(1) / as are polynomial in alI small externaI mamenta."...,00 . They 
Mor.ovel', in the fifth eection we ahall show that they can be made I 
polynomial in masses (see also /4,5/). 

2 

., 

2. The product of three currents /4,p,7/.
 

Consider the expreseion
 

RMS ~8C (lY) tt-).J) = s.; fdxc{y e~'ltx-i'ff <fllélC)B(oJC(lf)eJ.,+J'f~.J (J) 

where ~B and C ere co~poeite ope ra t o.raj (r;/7> 00 , Ifjr/<-</rt/, and 
q is Euolidean. Tne expana::l.on of (J) et large Q ie ueed in vari ­
Que methode of dispersion sum rulee/6,7/. As before, to obtain it, 
one ebould tske derivatives of both sides of eq.(1.34) with reepect 
to sources ::Jtt.' 'Jp, and :Jc : 

RN S 7"'nBC {Cf} ~J '3)= fCR"-{q) R,.,s 7o,.c(~ ;J)+?,:c;(ti','f,)IfHS7ón (3) 
(4) 

+ o (9"- 11) ,
wher~ 'T'o,..c (t}}!J}=SJa e-iLJ.:J<T'CcY)Ok.(o)eL-t-J'f>o, 

I\.- ti­3 3 I 
Clt., (q)~)=~rT 1'~\I;,""1 '~\('"'''1 'oJ c.~ ({:Jh..J) :::1.. =0 

h 

and C,,(/Y) are the same aa in e q , (2). In this case the relation of 
"bare " Cpts to renonnalized one s ie nonmultiplicative 

(5)C; rrrj'tp) = L... (c;(q) '1-) ;~""-h- ., C';(~) "l:.;-,.. (1-»1 
~ '. 

wb'ere ~;n-L are additive renormalization ~onstante of To..... c (see eq, 
(A2.14) in /1/). 

The presence of two sums in the r.hoe. of eq.(4) may be explai­
ned ae followe. The complete H-partitions of diagrams cnntributing 
to ~f>C IDay be of two dUferent types. As in the previous caae , they 
alwaye contain only one H-subgraph but the latter may 01' may not 
include the vertex C • These t"o p08siblli ties are shovm in Fige. 
1b) and 2b). Tbey exactly correspond to the t"o sums.on tbe r.h.s. 
of (4). Tbe gl~phical repreeentation of this expansion is givon in 
Fig. 2a). Note thet in full analogy with the previous caBe alI deri ­

.,vatives like o/8',:J.JIJ:J,,~o S'/r'~b!J:I::T,,=,:tc.,do not contribute to the complete 
H-p~rtitions. ­
.' r AlI c~te are .polynomial in emall momerrta and can be. made poly­

nomial in masses (aoe tbe fifth eection and ,/4,7/). 
In an anslogous way fr.m eq.(1.34) one can obtain the expaneione 

of producte of the form rr (IJ C. (Ji) Aúl)&lo)) et }l-o (the Fourier-con-
I. 

jugated Euclidean momentum ~-tOO). Tbe complete H-partition of diag­
rame contríbuting to thie quan~1ty c ontaãne' only one H-eubgrapb. AlI 
such aubgra pha correepond t-a alI poseible flowB' of the momentum q 
through the linee of e diagram and the1r reduction resulte in local 
(es in (2»), bilocal (a~ in (4) and ~multilocal operators. In gene­

'­
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ral, contact terme with ~(~) are pos8ibIe (8e~ the remark at the
 

end of the previoue example).
 

D H~~ = L CA (~JR"s \SI 
h 

+ o (tt f
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3. Coneider the product of fóur compoBite op~ratore /4,B/. In 

the momentum epace 1ta generating functional ia 

R
HS 

Tn8C1> t», 1;.!1, O): R , fjttd.JJte-,·ti~-iP.!J+i(P-~?"l.<TIJ{zt.)B{O)C(3Jl>(l-)t'"]~~6) 
H 

Let p" q",,:l~oo be larga Eucl1dean. ThiB object ie uaed for the deac­
ription of two-virtual-photon deep inelaatic scattering/8/ . Let ua 

obtain ita expaneion as ? -';00 , ~ cs: C;. 
Taking der~vative8 of both e~deB of (1.34) with respect to aour­

caa Jn :lB ::li. Elnd J:D , we get I 
J J 

T, . te.r:« J)=LC;(r;p~)HH/7Ô,.J')+~(C;8)(~).(C:nl(p}RH~7o"o,/~'J)fiMS IJBC D 7J) "" h.. ~ ~ 11 K 'R R 
I' /L I 'to) '+ o (? 1-N) (7) 

where tCnB)R and lCC.1J)R coincide witb CF,S of expanaãona ;f T­
producte7(fl/!:.) and 7'([]J)at o, P-I><)O, whereas 

/1. S'~ h I
 
C R (qJ ~~) z: crJ.:JR(Q) f:!JBIO) f::lc (P) 'f)'J1)(:!._P)CI<({.:Jh.~) :JIL-=-o
 

The connect1on 1:>etween cll. and ttbare" one s 1e e no'logoua to (5). 

The or1gin of (7) ca n be unde ra t ood 8e folloVle. There ar~ two 
typee of comple~e H-psrt1t1ona of the diagrama contr1but1ng tO~BC~ 
cor:reepnnding t o two diffe:rent flOWB .of' momentum P and Q • The f1ret 
one containe two d1ejoint H-eubgrapha, the paira of vertices (~8) 

ond (c,J)) belong1ng to different grapbs (Fig. 1b». The second type 
includee only o ne H-subgraph absorb1ng a11 four Opel'ator 1neert1ona 
(Fig. 3b». AlL other H-partitionB are incomplete and correepond to 
deriv8t1ves~/r.7.q ,"l>yr,,:S.7 , "lJ3/$'[J~ 'â:JB 5j~C't etc. 'The tifO suma inc 
the r.h.s. of (7) are formed by terms "Hh contract1one of H-port1­
tions of thee8 t"o typoe. The structure of (7) ie represented graphi­

cally in Pig. ~a). 
n: 

The functi. ons CR are power series in oS and can be msde analyt1­
cally dependen1; on maBS8D (aee /4/ and the fifth aection). 

4. Bffocti-ve l1ght theories 
Considor ~be CSBe when alI the externaI momenta of Green func­

t1nns are firedl t "hBreaB tba massas of aome part1cles d89cr1bed by 
fieldo 1> hnCi to inflnity (H-v'J -900 ). In tb1a particular case ex­
panadon (1.34) takse the form of effective l1gbt theor1e~/9.4/. If 
the effect of ll.argo maaees '1e fully factor1zed, into CF' B and there 
are only ligbt particlee in ET, then one can ss)' that the decoupl1ng 
of heBvy part ieles occurs /9 t 10/ • 

Hera we eball consider ssymptotic expans Lona of the following 

objecte 

RHS 
(8)RHs. c(:J) = <Te L {IfJ 1» + J'I')o; 
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RMS ~ (:J) = fiNS <1' fi (o) eL{!fJ C;)-r:Jlf>O ~ (9 ) 

"R ~.B ('1J:J)= R fdxe-ilf,)«Tf}()()BIO)e/~{'f}<p).,.:J'f\ ( 10)
N S /0 }H S 

where fi and B are local operators compoeed of fields cp and tf o 
The momentum Cf" (and tbe momenta of sourcee ':J ) are emall as com­
pared to H o 

Expand ing as ueual1y (10 34) in aourcee of fl and !3 we get:J 

R

R r.'(a)::: R (0/e r."fI ('1')...,. J'f '\.,. o f),1-1/) =<'7'e L eff 1'1') +-J'fJ\ +-o /,;a1-JJl.


MS. '1, 14& /0 /Ó l, -0 (11) 

AHS ~ (9)= z CKIL-{M) f?Hs cro,... ('f{D)) e L eH('P) +:J'f;>o:t 0(')1-1'1) 
n: 

l! (=-h~ C~ CM) :Znrn.-(T0n.('fIO») e eH 'f)+"Jlf>o+ o (t\4-Jl); (12) 
I 

'1R a {1} a)= L,C:;'(~JM) RM5. (rpOhJep{O))eLeff(lf)-I-;)<f)RMs ~ o 

+ k C. itl.(H). C ~m.. (H) RHSfJx e-i ,!< 7' q, (If{X»O,.,(VJ(o)) eLef f ('f)tJ:f, 13) 

• 
where 

L (f) =CIf (reL('f)~ 1)= LÇ,'H ({Jh.~/f)ljh==O=
ef f 

and operato%'8 On ('f) include only l1ght fielde 'f 
(i.e.. with tbe Ms-counterterme) effective action 

eq.(1.33» S ÍJ 
LR ('f)= ~~,. (M)·%"s·0.s('f)= L Ca d:Jh:=oJ/ •. 'Os('(' J (14)

"'tt r. s R S- ,where "itr.sare renormalization conetants. 
• Let us exp LaLn shortly these expr-aas í.one , At first, ooneider 

eq.(11). Complete H-partitions of diagrame contributing to tbe l.b.s. 
of (11) contain alI Lí.nes of heavy partioleso The action of C" oont­
racte alI H-subgraphe of the complete H-partition to pointe, which 
producae insartione of light operators 0n1f}. Tbe r.h.e. of (11) con­
tains the eum over alI 8uch partitione. Contributions of O~ are ana­
logous to finita counterterma, 80 that their contributione ere equi­
va1ent to adding, to tbe La grangian, new verticee, whicb loade to 
tbe formation of tba effeotive action. In comparieon witb (11), eqs. 
(12) and (13) contain new types of H-partitions with tbe insertion 
of ~ or 8 , which reeulte in Boma new terms in expansiono. AlI e~­
paneions include terms correeponding to the H-partitiona of (11), 
50 that in alI theee c_soe the effective action ia presente Functions
li; (H) -are parametero o f tbie action and contain alI tbe dependence 

on heavy masses. Moreovar, tbey can d~pena on some fixed parametare, 
e..g., maal!!les of r ,and the subtraction operator t may be chosan so 

6 

+o(Ã'-N) 
r J 

~ ~R (104)-0,. (1(') 

• The renormalized 
R

Le.jf('f) ie (see 

) ) 

that k; will be free from logarithmé of the type f.n.(m/1"I1 (aee /4/ 
•and the fifth aection). If there are no particl~s with a heavy (-H) 

mass, that is, if ;there- are no terme of the kind C M1..tf 2 in the ef­
fective Lagrangian, then tbe full, depoupling occurs. 

5. Infrared singularitiee of CFte 
Proving the UV-finiteness of CFte in tbe limit of the removed 

regularization we have omitted alI problema conpected with IR diver­
gencee. Potontially they can appear because the recurrent formula 
(1.24) corrta Lne differential operators and their ection might 
result in IR aingularitiee (for exemple, these singularitles emerge 
trom differentiatinns with reepect to externaI momenta at zero masses). 
If one uees the dimeneional regularization for divergent expreBeio~e 

to make e,enee /11/, they manifest themselvee as po Le's in E as € ~o • 

We cpuld avoid difficultiee, 1ntroducing some IR cutoif. For 
example, it might be nonzero pointe of subtractions 8seotiated with 
~~ or regulator masees intropuced into IR dangerouB lines. Then tbe 

11mit ~ ~ a wi11 be well-defined, but CFte wi11 acquire some unde­
sireble pa-oper-t í.ea , Firet of' alI, they will contain, in general, 
ll!lrg~ Logar í.thme of the type &.)':J:/M wbere fI ie the IR çutoff 
and 11 ia the scale parameter (aee (1.8». In applications euch cont­
ributions ~ight cauee some trouble be~auBe in general one haB t~ ta­
ke care of their reeummation. As a matter of fact, following this ap­
proBch one includee Gome part of operator matrix elemente reeponeib­
16 for t he low-energy dynamics into CF' e. However, in rea listic quan­
tum modele 11ke QCD the low-energy behaví.our' ia- ,~nknow,n and ~annot 

be deecribed perturbatively. Hence, an incomplete eeparation of 
ehort and larga dietancee (the pree~npe of e~~r/M ie due to this 
r-eae on ) would i~e .undee,f.rable. More~'ver, there exist eome tecbni,cal 
pro~lems, becauee pr8~~ical calculatione become very co~plicated and,J. 
in fact, limited by the one-loop approximst10n. 

ThuB, we woul~ like to combine two requiremente to the echeme 
of aeparating ehort and large die~Bnc~~ determined by operatore tI...l 

the absence of IR loge in CF'e and the eimpli6ity of calculatione. 
From the point of view of the latter condition, tbe Bcheme with zero 
points of Bubtractione with reapect to ~mBll momenta and masses ie 
the moet ueéful. On tbe other band, the action of ~~ BO cboean might 
result .in IR divergencee. However, es will be ehown inthie sE!ction, 
this doe s not happe n and CFte determined b! tia. s (to)h.. with zero pOiJ.Ít!! 
of eubtractione Bre free of IR singu18ritiee, so that there is no/ 
noed in IR cutoffs (note that an e/uivalent schemo based on diff~­
Nnt principlel!!l was propoeed in (4 ). 'Here we introd'uce a1so an in­
termediate Bchemo with eubtractions at nonzero maBA8a and some mo­

I~r menta, wh1ch 18 Bometimes conveniente
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, The following simple example 1s a good iliustration af the me­
thod and can be easilj generalized. Consider tbe expansion of the 
diagram given in .Pig. 4a) aa q- OIJ • All parQmeters except IJ are 
fixed. Thin lines oorrespond to the massles8 field y ,the thick 
one - to tbe fleld t with a small nonzero mesa. Ths diagram may 
be oonaidered a8 one of the oontributiona to tbe Green functiDn 

7'(tf; /)s, m) = i f~ e .e« ('1''((r) cr(s-p)- 'f'F(~). 'f'l'{o) e ijf 'l'y}(>0 ) 
wheré 'P(f) ia the Fourier transform of 'f(x) and rn: ie tbe mesa 
cf cp • 

The limit q.-,oo i8. described by expansion (2). To construct 
t"be latter, one bas to enumerate all complete H-partitiona of the 
grapO. For the case considered they coincide with al1 p08sible ways 
of flowing q through the diagramo The~e are three poeeibi11tiee: 
through the massive line, through masslsee lines and through all li­
nes. Thus, we àee tbree terma in the Figure. In the first two terms 
tbe action of C~ reduces to L. and the action of RH S ia givsn just 
by 1-1( • The etructure {lf CN in the thi:rd term is determinod by (1.24) 

and is rspreesntsd in Fig. 4b). 
Lst oparatorfto);..pick out Nkfirst terma in tba expans í.on in po­

were of smaIl external momenta and massas. Let us study the atructu­
re of IR singularities of CR determlnsã by 1; .= -to • It i8 olear 
that theee singu1&ritiee can emerge orrLy in C R prssented in Fig. 4b). 
Among others, the operator to contains derivativaa ~~/~~~/~~~=o. 
Let us examine whether the result of their aotiDn on the square bra­
okets ie IR finite or not (see Pig. 4b». Derivatives &ct on the 
m8a~iva line, and the raauli; ie rfr-"r2

(ItM: Being lntegratad overK--+~, 
this fector leads to an IR singularity. The diagrama shown in Fig. 
40) oontribute to thie singularity. Hcwever, in the aum IR diyergen­
oea oanoel out. To sea how this happens, repraeent tba diagraMa in 
tbe form given on tba r.h.s. of Pig. 40). We get thet the eum 1e IR 
finita if tbe aotion of the operator1-To g1ves on expreeB10n that 
i9'- (K) ,Z(Il-Z)at h Il..-$.... O. ,It is not d1ff10ult to see, hcwever, 
that 

(1-lt o)...) ~ (PIS, K,~).=:. O (a?.N,.+1) , 

where 4JC,- /J5J ;' I and tlk 1e some integer wbiob depends on N 
linearly. At f=:, 5 ;"'0 this expre8sion is a funot10n only of rr,q and 
behaves as rlC~' IL+J. • lIaking N suffioiently large, VIla get M.. +1~ 
:1.(11..-2.) for any h. • At such N all IR singular1t1es oanoel out, and 
derivatives of the type ~"'/'J,"~/BS,"'''O are tinita. In full an8~ogy one 
can oho" that the region 1<-0 1e also m BBfe. Thue, the eboãee -t::: 
=t" gives an IR tin1tf.f' eipreeBion. 
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{ : 
This aimple reasoning can be generalized to any expansion of J 

type (1.34). To obtain the generalization, it ia convenient to int­

roduce one more subtract10n operator. 

At ,first defi,ne more precisely the action of subtraction opera~ 

tors -t1-L on a give'n gra ph , 

Let us take a n H-graph q,. Fix some fIow of .external momenta {Q3 ~:
and f ~ J through 1ts 11nes and then cho oae .aome system of loop mo­ .i menta f ~ 1 . ~he system / lt". '1-) ft1 thue defined w'i1l be referred to ,I
as a base eystem. Then consider an H-subgraph ~~ q . ExternaI momen­
ta of 6 ca n be tt,'f.,- and some loop momenta R.. • In general, the 'set (\ 

l 

of loop momenta of 6 does not necesearily coincide with any 8ubaet i 

of loop momenta k . It makes us to introduce one more aystem of ex­

ternaI and internaI momenta. Let ua consider some H-foreet F{63H 
of the graph C; • Chooae the fl~w of {qi t.hrough 4- ao that some sub­

set, -{qjó of large momenta enter some vertic'Els of any graph 6 €: Fr~J". 
If !fij6=tfl , then 6 ahouLô contain 11nes with large maaeee , Note 

that diff~rent EJete 16(J~ and different .ae t s of the verticea, through 
which the moment~ of the Gama {~J~ flow, correepond to di~ferent H­
aubgraphs coinciding topologica lly wi th 6 • Now introduce the eya­
tem of loop momenta 1t according to the following induction proce­

dure. The choice of 1t in the minimal elements of F{61H ie arbit­
rary. Then consider eome "graph iE. ,F{6]JI .. and chooae j,ta loop momenta 

BO that eome tbeir Bubeet coincide: 'I9ith loop'momenta ofthe maximal 
aubg'ra pha of 6 • Thtl ~esul~ ing Bye't;'em {ªr'J) ,1:3,:- of '.mapping c: by 

momenta ca n be introduced for any foreet F such that ç er , Of cour­

se, mome rrt a 11: can be expressed via 9) j. and loop momenta of the base 

sYB~em; 1: == 't(ty,'1"l). 
Now, coneider a given H-foreEJt F{t/fH and the correeponding 

F-system {tr, ~h 'tiF • Let 6 E F{6Jti • Externa 1 momenta of ($ ere aome 

eubsets of {trjiJ.-] (denote them as . i fj,'1}( ) and {tj • Defino the sub­
tl'Bction operetor (to), acting on 6 ae the Taylor operator expanding 

the integral corresponding to 6 in powe.rs of 'f , rn. and those 't 
wbich are externaI for , • Then~ ihtroduce the Bubtraction opera­
tor:t6 that expande 6 only in p~wer8 
externaI momenta of 6 snd loop momento of' 

a maximal Bubgraph. By defin1tion, te;:: 1 • 
Given operatOl"B (to)J snd t~6 ,we can 

ponding to them. Denote thess CFta 8S C:Ro 

of those (l}ó which, are 

the graph in "hich 6 is 

introduce CF' B correB­

Bnd ~ , I'eapect1vely. 
Functione ~Ro can be obtained vis aqe (1024), operatcre r b&ing 

replsoed by ~" • For c~ fie have 

CR,"(C;)= RM S (q~ L.-' n i6'CR(~)' q/{dJ~). 
{dJ; 6· -

(1'5 ) 

where:tr{ are defined w1th respect to, the fore~t F= qU[6J~. In 

fu11 analogy functiona Atlo and 'K 1i are determined. 

Notice the relation: (t O)6 ·1:.6Z. = (tO)6.. · (-to)J2. if 62. ~ 611 
Then we immediatoly have 

C-tO)li C R (4) = CRo (q). (16) 

Our aim is to e atab Lâ eh the IR finitene-sa of • The a bove equa­C R o 
tion means that wo can prove thie fact 'if we show the exist-ence of 

R.-r ,. ,... ,
der-Lva t í.ve s of the type Ô't~o·~m"o CR(G, a t e = o and at Bufficient­
ly large N. Hera we ahall present a heuriBtic conaideration baaed on 
the dimensional analysis and power counting, whicb ie quite Buffi­
cient for practioal purposea. 

As it followa from eq.(t.26), ~R can be exprsased entirely in 

terms of ;IH and L\HS opesa t í ons , As is well-known, l1HS is free from 
IR singularitios nnd contains on~y UV poles. This fact allows UB to 

restrict our ottention to the consideration of IR properties of~H • 

Let c: be an H-graph with t'hecorresponding Feynman integral 

C; ( fi J H.) ~.) m.} = SJ K I C; (Q,) fI.I 1~ )'n./ k } , ( 17 ) 

where Lt; ia an integrand a nd .fk ] are loop momenta from tbe baee 
eyetem. The f'l1nction ~It{tj)can be repreBented as (aee eq.(15)) 

ZH (ç) = SJk Ih (~""'.I""~.1 ~); 
(18) 

rÃ (tY,H.)~/m-,I.):::: L tt (-lI[) I/1 te« ti m ~)
qEF{RjH h. '1 ~"I'.1 j • 

Here the sUMmation runs over alI H-foreste containing tha graph ~ • 

Let us show that N (aee(1.10» can be choaen large enough to make 
.1\-" .......... /) tI-'" /.)IR finite alI derivativee of the type "'''0 ~",,,,o ~H L<f e 7) lltfl4' • The 

latter expreseion ia determined by the integrands 

I'\. - ) h..-a Iz (~JM,k) = ~ ~ (-rei ô I~ (~}t1,~); 
(19 )li€, F{'3'H • 

Ô"-~H (Cf) = S~k dh1à (q)M~~) 
...., ~ 

(operatore td commute w1th ~ ). Potent1ally IR divergencea can 

arisa when (19) ie integrated over any momentum region of ~ where 
denominators of some lineB of eth.IA turn to zero. Denote tbe sot o-:r 

auch l1nes by ~ • The liullificBtion of momenta flowing through tbee8 
lines correeponde to eome fixed valu9s 11; of momenta {K,j ,from the 

set fkJ . To prove the cancellation of IR divergenceB, we ehould es­
tabliâh ~he IR oonvergence cf the integral 

.11Kt d h. I ii' '(20) 
KJ~l<s 

for any set p /12/. 
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Suppoee we have some set ~ of' linee 'wi tb zero denominatore. auch that ~(Fi) =~r ( Fs ). Moreover', ~ ia a maximal element in. 

Without 108e of generality we can assume that their nullification some '(E. F$ such that 'ir (JS.) ia ~ union of.f{ and there exist 
corresponds to Ks=.O. Let the space of /(t, has tbe dimeneion :D,s' • 6i ,which are no t bard, such that 6i. (~)=J>é. ...... From these two pro­
Let us verify that ô h lÃ "'" (K~) 1-1)j as K$'" a for some choice of perties we immediate1y conclude that the set {K j-i; of 100p momenta of 
J{ ,eo that the intagral (20) ie Eluperflc1.ally convergente To seé O from the Fs -aystem, which are ext erriaã momenta of '1:" "con­
that this is indeed true, rewrite (19) eo that powere of Ks could sista of linear combinations of momenta {I\ s J . 
eaaily be counted. Our basic atrategy will be some monification af
 
the etrategy of /13/.
 'i 

Coneider eome ~erm in (19) correeponding to the foreet F and t 

separate alI lines of the correeponding Feynman graph into two clas­

see. The firat one comprisee regular linee, that ie linee whoee de­
l1~minatora remain nonzero at K~ = o. These linee carry nonzero mo­
menta or depend on large maesee. The other class contains ein~~lar 

lines wi th zero at Ks -::-0 denominators. Ç>f couree, this separation 

should be performed after the applicetion of operators 1& in (19). 

Thus, first we ehould reparametrize alI momenta of ~ in terme of 

the F-eyetem {(,jl,4--J~Jç attached to tbe foreet under c onaf.de ra t í.on , 
s~t {1l1d'::; O for any 6 é:. F , nullify CJ,.1 m and, Dt laat, k s (which 
are functions of ~ ), and only then examine whether denominatore 

of the linee are zero or noto ~ 11/ 
Notice some properties of the reduced graph Ó{F) (soe .1the second
 

eàotion). As a result of tbe above procedure, momenta of the linee
 

be Longf.ng to ?(F) can be some combinotione of {91 and loop momenta
 
j[ of f[(F) , or zero. If, beeides, a iine ie mess1ess, then tbe lat ­


ter caee (and on1y i t) corresponds to a s.ingu1ar Lí.ne , Note a Lao that
 

the ection of =[& at arbitrary va1ues of 100p momenta of 'l (F) does
 

nõt produce zero denominators, BO that singular lines emerge only
 

aftar putting ~= K$ (9,q,/f):= O and before tb1B procedure their momenta
 
are linear combinatione on1y of q,. and /')$ •
 

Coneider a given reduced graph ?'(F) correepond1.ng to the graph 

6€ F • Denote tbe sete of regular snd singular lines of ~ (1=) as 
6'..(F) Bnd ~~;{F) , I'espective1y. The eet õ,.. (F) can be represented as a 

union of i ts connected componente $, , "6"r (F)= ~ fi. • As i t followe from
 
the abova coneideration,~. are either H-eubgraphe or 1PI-Bubgraphe
 
alI lines of nhich depend 00 nonzero 100p momento of ?(f). Moreover,
 
for every fi.. tbere exists 't"i..í: 6 ('t'i 'Í F if j.:/t"i) euch that 'r:;,(F)=.f'.o
 

Coneider tboBe 't"i which are H-eubgraphe. ,Find alI such Ti for every
 
6€. FUG snd form tQe set ('t} from them. The union F,:; ~'t)U F ie ao H­


forest. It may happen tbat different foresta bave the geme F~ • Ob­


alI such foroets are eubeets of F~ • 1st F~Q~ be a mini~alvtoue1y,
(with a min1mal number of elementB)toreot correeponding to the given
 

F • Let ue deBcribe the set F~\ F~h... It consistei of Bubgraphs 1:"
s 

With tho help of p$ -forests the sum in (19) can be rewritten 

as fol10ws: 

n -vL n (-th.)=' L L n (-tI.-) = L h6~ fI[ ) 
'16 F{ hJ h. I.S FsFi héF 'S

H 
where 

3
~ 

e.. = { 1-~k, if l é FS \ Fm.é.k­

- tlt. if h. E F w4h.. 

so that we have 

()h.IÃ =. L ( n f~) ()h-Ic:. (21)
Fs hé f.=s 

Let us verify that each term in (21) ia integrable over KJ; near 

K.s = O. 
.---) h 

Each term has the form (A~F.s fI... () Iy. There are two p~sibi-
li ties: (i) the product contains at least one factor IA. = 1-t J.... ; 

(ii) there are no such faotora, that ia, alI ~~= - ~~ . In caae 

(i) h-~F.s \ 'f..;'L and , hence, {I<]I..- are linear functions only ?..f fK-1­
Thus, i ; expande h.. in powers of t KS near IíS = O and 1 - t~ 
gives an addi tiona1 f'ao to r -- (Ks)~#dJ;(Recall t!=at to achieve the accu­

racy o (À 1-") of the expansion, operatora ti ahouLd pick out first 

( c/.J.. + 1'1) terms of t he Taylor series in {K}4., where dI.. ia the 

dimensionali ty of an H -subgraph h.. at é = O). Further, in case 

~i) the contribution to (20) can be written as (see Fig.5) 

Ifs{11(~ h. (ffs/rJI'f) ·I:;. (lís) ' ".. (J5~) ,where Á- is the contribution :l;"rom 
the H -Bubgraphs (-- (If$) ci""+N+-1. ), I p ia that from singular 1i ­

nes (-- ("5) clS ), JS being the dimenaionali ty of t s ), and r ie 
a posaib1e contribution from regular 1PI graphs independent of large 

parameters (after the action of (}h. and integration ovel' loop momen­

ta the 1atter contribution depends only on Ks and, hence, is ,(K$)~~ 
where cL~ ia i ta dimension). If d4 ia the dimension of q ,then 

d'e: = :D$-I-ds,+d/a ~d,. +f1. and h.. ~ dq+!'J.. Thus, we have 

h..·I~· r ...... (/(s) JIt.+AI.,.d.s+J,.~1 JIa.+N+~.,.J,.+1= "t;+N-]).t-"+1~ 1-.J)~ . 
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This.unequ~lity is the desirable estimate for the IR convergence. In 
case (ii) a.Ll, h. E F rn.i.h. 80 that F nUh-= F~· • In this cas e alI lines 
of q are regular. This can be proved by induction. rr " 6'roc«: ia 

the minimal element of F,.·.;tL , then ~m-i4..= 6rw:.1;1 and(6"",;..Jr=;: (6m..ih..)r. 
If ( ~ ,...u•...)r:f. drro<-h... ,then (6'~~) to should contain an H -subgraph, 

because otherwise 6 m4h = (bho1 ll.) r U(6"';h)S ia not H-sabgraph. But this 

H -subgrap-h sh~uld belong to ,f.s \ F",-,,,,- =ri so that (6 mút...).- = i ,.....;11...t 

1"urther, let ~ € h"-'tt'= F~ have regular lines in alI i ts maximal c ompo-. 

nents. If ~t' '4= r . then alI connected components of dr ahould be 
1FT -graphs independent of the Íarge externaI parameters because téFs . 
Moreover, there exist subgraphs "Li • which are not harçll such that 
I..! ~ = ~r. But accorcling to the induction hypot he s.í.s , maximal compo­

r:ents of r are regular s o that they should be elements of ~ \ r,....;tt:::~. 
Thus, ~~~ and this proves the induction hypothesis. 

Thus, we have shown that (21) is integrable at ~5 = O. 

To summarí.se , C ~'5 determined by operators t.o are represen.t­

ed by power series in small momenta CJ- and masses JrL and do not 

contain •R divergences. 

Func't ona CR posaess the sarne properties in a' sense that theyí 

can ,be expanàed Ln, 'l- and tn- into power series wi tnout giving rise 

to IR singularities. 

Practioal consequences of the cancellation of IR singularíti­
es in CF's are twofold. First, it giV8S th~ possibility to use the 

mass-independent renormalization group technique/2/. Second, it leads 
to .simple algorithms for evaluating CF's in p;fl14/. Here we p r e aerrt 

on1y formulae for evaluating C~o. These formulae can be considerably 
simplified compared to (1.24) and (1.25) by exploiting the properties 
of the diinensi.onal r-eguLaz-Lz.at Lon, As is well-known, in this regulari­

zation alI massless integraIs with zero externaI momenta are equal to 
zero. Thus, alI completely reduced graphs should be set to zero after 
being expanded in power s of q" and·rn.... In doing so , we ge t ; 

CRo(G)=(-!-J1 R'H5 ~ (C:~3~ (C CRo tiL)) -A,.,s (41{.~J~ ) ~ (22 ) 

CB o ((j') =:(tJ:: RH$ q; C"o (C;) =(~.c;'. 

Note that "bare" C r-, s eso given by the aecond relation in (22) 
coincide wi th functions Â~-cç) used in/4/ and , thus, may serve as a 

starting p0int 'in'cbmpa~ine the two approaches (being rewritten in 
tema of C8 o ' (1. 22~ coincides wi th the "EA-expansionll of/4/ ). 

14 

. I 

To obtain C F 's v.ía (22), one should evaluate only MS -counter­

terms and integ~als depending only on large variables ~ ~3 and fHJ. 
For example, i~ the case of short-distance expansions (Eee examples 1 
and 2 in the previous section) Cf: 's are expressed via massless pro­
pagator integraIs wi th orie ext ez-naL momentum q • Wi thin dimensional 
regularization such integraIs cnn be evaluated up to th~ee 100ps/15/. 

In the case of effactive l1ght theories CF 's are determined by 

massive vacuum integraIs and so on. 

There exista, however, one more possible applination of the 
technique developed here. Namely, it can be used for analysing Eucli­

dean collinea:r s:l.rJgula.ri ties. These singulari ties arise in Euclidean 
Green functions at aome zero externaI momenta. Indeed, for a while 
one can imagine thcse momenta to be nonzero but small as compared to 
other dimensional parameters. Such a reformulation of the problem gi­

ves a new aca.Le and Green functions cari be expanded in i t wi th CF 'E 

finita in the ool11near limit. Thus, al~ collinear singularities 
turn out to oe 10cRlized in ~perators. 
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Appendix. On tho Origin of Contact 'Terms 

We shall cona1der here a s1mple example when tbe grapb G is a 

funct ion of one larga momenturo Q • 
The expression RH Cf lq) 18 not integrable at ty=O w1th probe 

functions 'f(Q) which have at ç= O zero of an insufficiently large 
order. ThuB, apply1ng the etandard cont1nuat10n procedure /16/, we 

find that the follow1ng integral 
/11-5 )Jd,? ('f(f/)- Z *.! r;h.rp('" rO))'R H (Cf) {An 
"cO 

18 convergent for any 'fIQ) which Ls finita at fi> = o and grows 

more Blowiy than (}J/tI-S 8S tf" 00 (recall t ha t RH t;(~):::: O( ~N) 
a a q-'J'oo and at q= O it haa the behaviour q~-1 with poeaible 
logarithmlc corrections). Ua1ng the 1dent1ty 

li'CO>.) .lO) = (_~l)h.SJ~ ~ (~)(S) 'f(S) 

we con rewrite (A1) ae 

15 



\ 

rJ'I '«(q) [ RI1 C1 (~) - g(-1)....1ti £'(")(tV) SJt·.sh: R/of t; (S1::: 
(A2) 


II-s" 

:;: S.:J~tf(cr)[J;'H'1(Q)+~ ~(")(Q)'C".]. 

I.

'. It is not difficult to show by using asymptotic properties of 
RH 'i lq) that the functional (A2) is O(;~-*)(1iP to logs) under the ';} 

rescaling Q~;H~ of ·the expression in the brackets. ~1'IDs with ~ ¥ 

functions are contact tel'lDs. Thus, the distribution in the bracket~ 
can be used as a starting point of the combinatorial analysis. 

Note that in our presentation we have omitted all contact terms 
bet;:auee field sourcss 3..l4l)playing the ):'ole of 'fUr) are assumed to 
be localized at infinite q . 
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rOpHmHHA C~ r. . 	 E2-86-177 
o nOCTpoeHHH onepaTOpHMK pa3no~eHHA H 3~eKTHBHMK TeopHA 
B MS-cxeMe. flpHMepbl. HHcPpaKpacHaH KOHe'lHOCTb 
K03~HeHTHbIX cPYHKUHH 

MeToA nOCTpoeHHH aCHMnTOTH'leCKHX pa3noIeHHA cPeAHMaHoB­
CKHX HHTerpanOB no oonblllHM eBKJJHAOBbIM MMnynbcaM H (JiJla) Mac­
caM~ npElAnO~eHHblij aJ3TOpOM paHee, Hcnonh30BaH ,lJ;Jl.R llollyqeHHH 
pHAa ~pOKO Hcnonh3yeMMK pa3no~eHHfI. nO~agaHO, 'lTO npa onpe­
AeneHlIO"l Bbloope BbNHTaromero onepaTopa KQ3~liUHeHTHble cPYHK~HH 
pa3nO~eQHA He C0,DieplKaT HHcPpaxpaCHMK cHHrynHpHOCTeAj nl?HBeAeHbl 
3~eKTHBHble 4)0PMYnbI AnH HX BbNHcneHHH. 

Pa60Ta BblnOnHetIa B na60pa1'OpHH TeOpeTH'leCKOA cPJ13~iKH orum 

Coo&ueHHe O61.eJ.umeHHoro J1Hcnrryra JIJlepHlolx HCCJ1eJI.OBaHHH• .D,y6Ha 1986 

Gorishny S.G. 	 E2-86-177 
On the Construction of Operator Expansions and 
Effective Theories in the MS-Scheme. Examples. Infrared 
Finiteness of Coefficient Functions 

The method of constructing asymptotic expansions of in­
dividual Feynman graphs in large Euclidean momenta orland 
masses proposed in our previous paper is used to obtain some 
widely use~ expansions~ We show that, with a special choice 
of subtraction operators, coefficient functions of these ex­
pansions do not contain infrared singularities. and present 
efficient formulae for their evaluation. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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