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This paper is the direct continuation of /1/. Recall that in
71/ we have constructed asymptotic expansions of individual Feynman
integrals and generating functinnal of Green functions in large
Euclidean momenta or/end masses. For this purpose we have used the
ultraviolet (UV) R-operation with oversubtractinne in a special type
of subgraphs, H-subgraphs. These are subgraphs which depend on large -
parameters and cannot be made disconnected by deleting a line with
a small momentum and mass (see /1/). The resulting expansion has the
form of operator expansion, UV-divergences being removed according
to the MS-scheme

~ In this publication we use the formulae of ay to obtain asymp-
totic expansions of some full Green functions. Then we show that,
with a special choice of subtraction operators, coefficient function
(CP's) of such expansions can be made free from infrared (IR) loga-
rithms, i.e.,they can be expanded in powers of small momenta and
masses without arising IR-singularities, which makes IR cutoffs an
unwarranteéd precaution. In Appendix we have explained the origin of
"contact terms".

For all definitions concerning the R-operation, graph notation,
etc.ywe refer the reader to /1/. Formulae presented in 1 and used
in this paper will be supplemented by index I, for example, (I,10),
(I.20) and so on. For the explanation of quantities entering into
them, see also 1 . B

1. The product of two currents at short distances (the Wilson
expansion /3 Je

Consider the generating functional of Green functions of the
product T(A()B(o)) 1in the momentum space

Rus Tha (8,9) = S e 9% g T geyseye™ Py o

where A and B are local copposite oparato}s. Its expansion as

@ —3e° (G is assumed to be Euclidean) can be. obtained from (1.34)
by tasking variational derivatives with respect to sources Jp and Jg
of operators A anda B ana putting other {21 zeros
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where

Ce(1n3)]

- ° (see eq.(1.30)),
Cr (@) 8'9,(8) §Tg (o) 0

Ca(Q)= 2, 2, CR(Q),

and Z_,x are renormslization constants of operators {0 }. Note that
derivatives %J/ and 5753 l
"

respond to Operatora with a large incoming momentum forbidden by the
completeness of H-partitions.

Note that there are no "contact" terms proportional to 57(49 in
the r.h.s. of (2) because we assume that all sources are localized
at infinite Q . Such terms are necessary, however, to make the ex-
pansion integrable at @ =0 with nonvanishing at this point probe
functiona/4/. Such a possibility ile briefly discussed in Appendix,
This remark concerns also all other expansions in large Euclidean
morenta (see examples 2 and 13).

Let us make some comments on the derivation. As ig oclear from
(1.22), to obtain an asymptotic geries, one should make subtractions
in all H-subdiasgrams comprising complete H-partitions. A a result,
we get the sum of terms with all possible reductions of complete H-
partitions. In the case considered we have the only type of the comp-
lete H-partition, nemely, that containing one H-subgraph and single
vertices. This H-subgraph always coincides with some possible flow
of Q through the lines of a graph, and both operator vertices A
and B belong to it (see Fig. 1b)). Contracting these vertices into
a point, we obtain a local operator. This process is illugtrated by
Fig. 1a).

Functions Cnﬂ@)contain 81l the information on the behaviour of
(1) @8 §»00 , They are polynomial in all small external moments.
Moruover, in the fifth gection we shall show that they can be made
polynomial in messes (sees also /4, 5/)

are equal to zero because they cor-
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2. The product of three currents /4'6’7/. " .

Consider the expression

Rus Troc (©,9,9) = Rus Jdedy e84 {7 p0y B o) Clypetr),

where 123 and C are coﬁlposite operators; /[§/—> o0 /?(/<</r?/, and
@ 1s Buclidean. The expansion of (3) at large @ 1is used in vari-
ous methods of dispersion sum rules o7 . As vefore, to obtaim it,
one should take derivatives of both sides of eq.(1.34) with respect
to sources J, , Jg and T : -

Rus Thac (Q;% 7)= .G 7 (8) s To.c (3, )+ZCR(%$)KNS T (7)
+0(Q+ﬂl

R (3,9)=Jdy e‘iW(TC(y)O,L(o)eL‘”Y)‘,,
" _ 53 n
CK (Q}C")" (B.Uh(q) Sogc (‘;)8'35(0) CR ({Jn_}) [

h
and C:RfQ)are the same as in eq.(2). In this case the relation of
"bare" CF's to renormalized ones is nonmultiplicative

oy % ! m X . o n )
Ca(9,9)= 2. (CR(8,2)Zmn ~CR (&) Zor(3), (5)
. " \’
where Zc,. are additive refiormalization constants of 7215
(a2.14) 1n /Yy,
The presence of two sums in the r.h.s. of eq.(4) may be explai-

ned as follows. The complete H-partitions of diagrams contributing
f°723c may be of two different types. As in the previous case, they

(see eq.

always contain only one H-subgraph but the latter may or may not
include the vertex C . These two possibilities are shown in Figs.
1b) and 2b). They exactly correspond to the two sums on the r.h.s.

of (4). The graphical representation of this expansion is given in
Fig. 2a), Note that in full analogy with the previous case all deri-
vatives like§4ﬁh} ;%%?%f ,etc.,do not contribute to the complete

“H-partitions.,

All CPF's are polynomial in smell moménta and can be made poly~

" nomial in messes (see the f£ifth section and</4 7/).

In an snalogous way frem eq.(1.34) one cen obtain the expansions
of products of the form 'T'(‘:I Ci (%) AC)YBL)Y) at x~0 (the Fourier-con-
Jugsted Euclidean momentum §-#9°), The complete H-partition of diag-
rams contrfbuting to this quantity contalns only one H-subgraph. All
such subgraphs correspond to all possible flowe of the momentum &
through the lines of & dlagram and their reduction resulte in local
{es in (2)), bilocal (as in (4)) and .multilocal operators. In gene-



ral, contact terms with 5(Q) are possible (see the remark at the
end of the previous example).
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3. Conesider the product of four composite operators /4’8/. In

the momentum space its generating functional is
\ ~i@x—cPysi (P Ly
Rus Thec» (8,05, U)=RH£J{“/”\/7‘/36 frecty (Pﬁ)i<7v,)6()3{0)c(3)2,(5)€ 2(6)

Let P~Q"‘:1—’w be large Euclidean. This object is used for the desc-
ription of two-wirtual-photon deep inelastic Bc&tteringla/. Let us
obtain its expansion as A -»oo 4 444 6.

Taking derdvatives of both sides of (1.34) with respect to sour-

ces J,;,.']B Je end Jp , we get:

RusThaco (9,84, 9)° ZJ(R (§,Ps) ’?ﬂs%u(th(cna) (8)- (Ccn),,fp) RusTo,0037
‘ ro(at), (M

where ((—RB)R and (Ccz) coincide with Chs of expansions of T-

products T/As) &nd T[Cb)at @, P> o0, whereas

CE (9,5%)= ST (@) 5Tg(0) 8 & (
The comnection between C4* and "bare" ones is anologous to (5).

The origin of (7) can be understood as follows. There are iwo
types of complete H-partitions of the dlagrams contributing to'7,}3c;, ,
corresponding t o two different flows .of momentum P and ¢ . The firset
one contains two disjoint H-subgraphs, the pairs of vertices (A, 8)
and (C,D) belonging to different graphs (Fig. 1b)). The second type
includes only one H-subgraph absorbing all four operator insertiona
(Fig. 3b)). AlL other H-partitions are incomplete and corrsspond to
derivativesd/3T, SY5U,59, , 53/50s595 80, etc. The two sums in
the r.h.s. of (7) are formed by terme with contractions of H-parti- ,
tions of these two types, The structure of (7) is respresented graphi-
cally in Fig. 3a).

The functi ons C;? are power series in $ and can be made analyti-
cally dependent on masses (see 74/ gna the £1ifth section).

2) 5 Tp(3-P) R({J 3) /.'7,,,—-0

4. Bffective light theoriles

Consider the case when all the external momenta of Green func-
tions are fixed, whereas the masses of some particles described by
fields ¢ tend to infinity (M~2-s92), In this particular case ex-
pansion (1.34) takes the form of effective light theor105/9'4/ I1f
the sffect of Xargs masses is fully factorized_ into CP's anhd there
are only light particles 1in ET, then one can say that the decoupling
of heasvy particles occurs /9'10/.

Here we shell consider asymptotlc expansions of the following
objects



Rus Ty (3) = Fps LT AL) BN, (9)
. . T
R Toa (2,7)= Bus Jde ¥ TAG) B @70 1 (10)

where # ana B are local operators composed of fields ¢ and ¢.
The momentum ¢ (and the momenta of sources ¥ ) are small as com-
pared to M

Expanding as usually (1.34) in sources of A and B, we get:

Rus 4‘(*'7) Rus (Tekess (P JY’)* o(A™)=(Te Leﬂ{ﬂ*ay? -ro(/\wp 2 (11)

Rus T (9)=Z, Co (M) Brus {TO, (pte) eL"H(‘PJ"”7>’/>O+ (A1)
h

. Pogs lo)e 7 )
= Z.Cr (M) Z,n (T O, (v0) € HOIY 0 (15 (12

Rus Ths (9, 9)= Z'C;(TOM) Rus LT 0O, (Wo))el'e"f (‘P)H’V)

/ 1
* T e ) R [k LT O, (o) O bess M1+ 3p{13)

+o [)1H),
where

L.eff (p)= Cr [TeL(ﬁ¢)1) Laﬁ ({7n§ ‘f)/:)n- = Z’ﬁ ("’)Ur (‘f’)

and operators O,/f) include only light fields ¢ . The renormalized
(i.0. with the Ms-counterterms) effective action Legfbﬂ is (mee

eq.(1 33)) ~
Less ()= 2 hr (M) Z,0s(9)= 2 B s (,=03:)-0s(8), (4

where Egrsare renormalization constants.

* Let us expldain shortly these expresaions. At first, oonsider
eq.(11). Complete H-partitions of diagrams contributing to the l.h.s.
of (11) contain all lines of heavy particles. The action offkcont-
racts all H-gsubgraphs of the complete H-partition to points, which
produces insertions of light operators 0,(¢). The r.h.s. of (11) con-
tains the sum over all such partitions. Contributions of O» are ena-
logous to finite counterterms, so that their contributions are equi-
valent te adding, to the Lagrangian, new vertices, which leads to
the formation of the effective action. In comparison with (11), eqs.
(12) and (13) contain new types of H-partitions with the insertion
of A or B , which results in some new terms in expansionm. All ex-
pensions include terms corresponding to the H-partitions of (11),
so that in all these casem the effective action ia present, Functions
'fglﬂ)ire parameters of this action and contain sll the dependence
on heavy masses. Moreover, they can depend on some fixed parameters,
e.g., masses of Y , and the subtraction operator 7 may be chosen so

6
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that kg will be free from logarithms of the type ék—&ﬂﬁﬂ](see 4/

‘and the fifth section). If there are no particles with a heavy (~#)

mess, that is, if there are no terms of the kind CM*¢?

fective Lagrangian, then the full decoupling occurs.

in the ef-

5. Infrared singularities of CF's

Proving the UV-finiteness of CP's in the 1limit of the removed
regularization we have omitted all problems connected with IR diver-
gences. Potentially they can appear because the recurrent formula
(1.24) conteins differential operators and their action might
result in IR singularities (for example, these singularities emerge
from differentiatinns with respect to external momenta at zero masses).
If one uses the dimensional regularization for divergent expressions
to make sense /11/, they manifeét themselved as poles in & a8 €-»o.

We could avoid difficulties, intreducing some IR cutoff. For
example, it might be nonzero points of subtractions assotiated with
th or regulator masses introduced into IR dangerous lines., Then the
limit €-»> ¢ will be well-defined, but CPF's will acquire some unde-
sirable properties., First of all, they will contain, in general,
large logarithms of the type . #c/M where Mr 1is the IR cutoff
and M is the scale parameter (see (1.8)). In applications such cont-
ributions might cause msome trouble becsuse in general one has to ta-
ke care of their regsummation., As a matter of fact, following this ap-
proach one includes some part of operator matrix elements responsib-
le for the low-energy dynamics into CF's., However, in realistic quan-—
tum models like QCD the low-energy behaviocur is unknown and cannot
be described perturbatively. Hence, an 1ncomp1ete separation of
short and large dietances (the. presence of fn,”r/& is due to this
reason) would be undesirable. Moreover, there exist some technical
pronlems, because practical calculations become very complicated and,
in fact, limited by thé one~loop approximation,

Thus, we would like to combins two requirements to the scheme
of separating short and large distances determinad by operators 1, :
the absence of IR logs in CF's and the simplicity of calculations.
Prom the point of view of the latter condition, the scheme with zero
points of subtractions with respect to small momenta and masses is
the most uséful, On the other hand, the‘ection of 4 so chosen might
result in IR divergences. However, as will be shown in this section,
this does not happen and CF'e determined by tha(ﬁgh_with zero poijita
of subtractions are free of IR singulsrities, mo that there is nq/P
need in IR cutoffs (note that an equivalent scheme based on diffe-
rent principles was proposed in ,4 ). Here we introduce elsc an in-
termadiate scheme with subtractions at nonzero mssses and some mo-
menta, which im scometimes convenient,

7 .



The following simple example is a good illustration of the me-
thod and can be easlly generalized. Consider the expansion of the
diagram given in Pig. 4a) as §- 02 , All parameters except 4§ are
fixed. Thin lines correspond to the massless field y , the thick
one - to the fleid 1’ with a small nonzero mass. The dlagram may
be considered as one of the contributions te the Green function

T8 ps,m) = L Jh e STy pts-p).p 09 ppcer € W, |

wheré ¢(p) 1is the Fourier transform of ¢() and s is the mass
of ¢

The 1limit §—29° 1g described by expansion (2). To construct
the latter, one has to enumerate all complete H-partitions of the
graph. For the case considered they coincide with all possible ways
of i’lowing Q through the diagram, There are three possibilities:
through the massive line, through massless lines and through all 1i-
nes. Thus, we see three terms in the Figure. In the first two terms
the action of C# reduces to T and the action of R, is given just
by 1-K . The structure of €& in the third term is determined by (1.24)
and is represented in Fig. 4b).

Let operator(‘tp)kpick out N, first terms in the expansion in po-
wers of small external momenta and masaes. Let us study the structu-~
re of IR singularities of C',z determined by T = to , It is clear
that these aingularities can emerge only in Cg presented in Pig. 4b).
Among others, the operator t, contalns derivatives ?'“/am*/%,,,,,,.
Let us examine whether the result of their action on the square bra-
ckets is IR finite or not (ses Pig. 4b)). Derivatives act on the
massive line, and the result is {q-_—x)"("") Being integrated over x~+@,
thie factor leads to an IR singularity. The diagrems shown in Fig,.
4c) contribute to this singularity., However, in the sum IR divergen-
ces caneel out., To see how thie happens, represent the dlegrams in
the form given on the r.h.s. of Pig. 4c). We get that the sum is IR
finite if the action of the operator 1-t, gives an expression that
ig ~ (K) Z(n-z)‘t FEWRG~0 « It is not difficult to see, however,

that

(1-EQ R (rs k@)= 0 (=) -
where %~ ps, 2 and N is some initeger which depends on N
linearly. At f=$ =0 this expression is a function only of K’q and
behaves &8s (“9 Hits o Making N sufficiently large, we get N +7>
2(n-2) for any ~ . At such N all IR singularities cancel out, and
derivatives of the type a"/'am*-/,;‘.a., are finifte. In full analogy one
can show that the region K~¢© 1s also IR safe. Thus, the cholde +=
= to gives an IR finite expression,

g

v ¥ Pl QN
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This simple reasoning can be generalized to any expansion of
type (1.34). To obtain the generalization, it is convenient to int-
roduce one more subtraction operator,

At first define more precisely the action of subtraction opera-
tors t, on a givén graph.

let us take an H-graph q . Fix some flow of .external momenta {g}
and {1,} through its lines and then choose some gystem of loop mo-
menta §{B3 . The system {§,.¢, £ thus defined will be referred to
as a base Bystem. Then consider an H-subgraph €= ¢4 , External momen—
ta of 6 can be 4§ 4 and some loop momenta 8 « In general, the set
of loop momenta of 6 does not necessarily coincide with any subset
of loop momenta & . It mekes us to introduce one more system of ex-
ternal and internal momenta. Let us coneider some H-forest F{d}H
of the graph § . Choose the flow of {@f through ¢ so that some sub-
set_«[@}& of large momenta enter some vertices of any graph de Ffdf,.
If /§3¢=& , then 6 should contain lines with large masses. Note
thet different sets {9j¢ and different .sets of the vertices, through
which the momenta of the same {0}( flow, correspond to different H-
subgraphs coinciding topologically with 8 . Now introduce the s8yB~
tem of loop momenta * according to the following induction proce-
dure. The choice of # in the minimal elements of F{OJ}H is arbit-
rary. Then consider some "graph de f:(‘}n . and choose its loop momenta
so that some their subset coincide"f with loop ‘momenta of -the maximal
subgraphs of § ., The ;‘esulting system {Q),,i)'tf,_; of'nmapping ¢ by
momenta can be introduced for any forest F such that ¢&F, Of cour-
se, momanta # can be expressed via §,9 and loop momenta of the base
system: # = f{gg}é).

Now, consider a given H-forest F{K}H and the corresponding
F-aystem {0,7/)'35,.- . Let 6 € Ff$f{yy . External momenta of & are some
subsets of (§,4.f (denote them as /§,9%¢ ) and {#4 . Define the sub-
traction operator (tol{ acting on € as the Taylor operator expanding
the integral corrssponding to 6 in powers of ¢ , s2 and those vy
which are external for ¢ . Then, introduce the subtraction opera-
tor T¢ that expands ¢ only in powers of those {z}( which are
external momenta of 6 and loop momenta of the graph in which $ 1is
a maximal subgraph, By definition, Eqr- 1.

Given operators [‘tg)g and ’rgg , We can intz:gducs CF's corres-—
ponding to them, Denote theese CF's as qpa end Cg , respectively.
Functions CR,. can be obtained via eq.(1.24), operatore T being
replaced by %o . For Cez we have

Cr(G)= Rus (G- Z 0 T, Ce ) G /1485 ), (15)
> : ,
H
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where t¢ are défined with respect to the forest F= 40{5};. In )
full analogy functions Ay, and ZH are determined,

Notice the relation: (t°)51:{5z.= (to)g‘-(‘to)gz_
Then we immediately have ' .

(to)q CRCD = Cr, (&). (16)

Our aim is to establish the IR finiteness of C/ea « The above equa-
tion means that we can prove this fact if we show the existence of
derivatives of the type ’a!;;f,-%';,,, eg(q)at €=0 and at sufficient-
ly large N. Here we shall present a heuristic consideration based on
the dimensional analysis and power counting, which is quite suffi-
cient for practical purposes, N

As it follows from eq.(1.26), C'e can be expressed entirely in
terms of XH and A, operations. Ag is well-known, A,¢ is free from
IR singularities and contains only UV poles. This fact allows us to
restrict our attention te the consideration of IR properties of ZH .

Let q‘ be an H-graph with the corresponding Peynman integral

q[?;”,‘)—,’”‘)z SD,K Iq‘ (Q)M,%m,k)v (17)
where T, is an integrand and {k} are loop momenta from the base
system. The function E,,(q) can be represented as (see eq.(15))

ir 6, =6,

By ()= Sdk Iz (q M, g, m, #); ) (18)
18

Ix (9 M, L b)= 2., (-%, e

A 4, m, k) q,GF{“"h( £) Lo(9M 9, #)

Here the summation runs over all H-forests containing the graph q’ .

Let us show that N (see(1.10)) can be chosen large enough to make

IR finite all derivatives of the type 3:':;, Dmno B, (q)= A, (), Te
latter expresgsion is determined by the integrand:

h ~
VIR(9 M k)= n "
A M = -tg}2°T .
)°h ‘ié F{‘}H é d) -('1 [Q)H, E)}

"By (§) = Sk 3"I; (g,M,#)

{opsrators Id commute with " ). Potentially IR divergences can
erise when (19) is integrated over any momentum region of £ where
denominators of some lines of 'a"Iz turn to zero. Denote the set of
such lines by S . The nullificetion of momenta flowing through these
lines corresponds to some fixed values Hf of momenta {Xs§ from the
set {k} + To prove the cancellation of IR divergences, we should es-
tablish the IR convergence ¢f the integral ’

Jdge 2™ I 5 (20)

(19)



r .
Suppose we have some set S of lines with zero denominators.
Without loss of generality we can assume that their nullification
corresponds to Ks=¢ . Let the space of kg has the dimension Dg .
Let us verify that ?"IKN(K_;)”'Dj as K¢-» o for some choice of
N , 8o that the integral (20) is superficially convergent. To seé
that this is indeed true, rewrite (19) so that powers of Ks could
easily be counted. Our basic strategy will be some mcdification of
the strategy of 13 .

Conaider some term in (19) corresponding to the forest F and
separate all lines of the corresponding Feymnman graph into two clas-
ses, The firast one comprises regular lines, that is lines whose de-
nominators remain nonzerc at Kg = 0. These lines carry nonzero o~
menta or depend on large masses. The other class contains singular
lines with zero at Ks=0 denominators. Of course, this separation
should be performed after the application of operators :Ed in (19).
Thus, first we should reparametrize all momenta of Q' in terms of
the F-system {Q,q,}’k}p attached to the forest under congideration,
set {Rf4= 0 for any deF , nullify g, ™ and, at last, Ks (which
are functions of K ), and only then examine whether denominators
of the lines are zero or not. _ /1/

Notice some properties of the reduced graph 3(9(see,the second
section). As a result of the above procedure, momenta of the lines
belonging to E(F) can be scme combinations of {q)j and loop momenta

of 6(F), or zero, If, besides, a line is messless, then the lat-
ter case (and only it) corresponds to a singular line. Note also that
the action of ¢ 8at artitrary values of loop momenta of g(F) does
not produce zero denominators, so that singular lines emerge only
after putting q= /(_s(q,q.}ﬁ’)zo and before this procedure thelr momenta
are linear combinations only of q and Ky .

Conslider a given reduced graph 6'_(F) corresponding to the graph
6eF . Denote the pets of regular and singular lines of 8(F) as
2,.(F) and gs(F) , regpectively. The set 8, (F) can be represented as a
union of its connected components f: , © (F)=gf; « As it follows from
the above consideration, $: are either H-subgraphs or 1PI-subgraphs
all lines of which depend on nonzero loop momenta of S, Moreover,
for every §i there exists ;s 6 (t; £ F if $:1#6 ) puch that T:(F)=f .
Consider those t; which are H-subgraphs. Find all such 7; for every
de FUG and form the set {t} from them. The union Fs={‘t]UF is an H~
forest. It may happen that different forests have the same F ..Ob-
v}ously, all such forests are subsete of Fg . Ist Fm'n be a minimal
(with a minimal number of elements)forest corresponding to the given

Fc . Let us describe the set Fg\F,; . It consists of subgraphs

12

such that '_E'{Es—): ?,- ("}) Moreover, % is a maximal element in.
gome Y€ Fg  such that y,. (F) 1is & union of p; and there exist
6,: , which are mot hard, such that 6¢ (%)=g; . From these two pro-
perties we immediately conclude that the set {kv},t of loop momenta of
J from the F¢ -system, which are extéernal momenta of 7 , con-
sists of linear combinations of momenta { K¢} .

With the help of F’s ~forests the sum in (19) can be rewritten
as follows:

n(-t,)= 2u 2.
Ge F{h3, " B FeR heF

where

-, )= n £
(,L) %hé%fg—)

fp - { 1-th, ir he F\F,,,
-t2 if h e F
s0 that we have

o U I
aIA %(heiis

5&) ?an_ (21)

Let us verify that each term in (21) is integrable over K near
K¢ = o.
S

Each term has the form (AQF f’-—) ahlf_ There are two possibi-
lities: (i) the product contains at least one E‘_actor el 1—tk ;
(ii) there are no such factors, that is, all 'fh.’"" ~ :E,‘_ . In case
(i) hi%\ﬁ:‘;,l and, hence, {Kkfg are linear functions only of fﬁ:,j
Thus, t, expandg in powers of ,Ks near Ag = 0 and 1 - :E;‘_
gives an additional factor-v(Ks)f"d"*(Recall that to achieve the accu-
racy O[) 4"”) of the expansion, operators ‘T:{ should pick out first
( ”[A +N) terms of the Taylor series in {KFj , where d, is the
dimensionality of an M -subgraph h at e = 0). Further, in case
(i) the contribution to (20) can be written as (gee Fig.5)
ﬁs{;fks h(5,9,M) I (Rs)-r (Ke) , where h 1is the contribution from
the f{ -subgraphs (~(H,¢)‘i’t+”"4 ), ¢ 1is that from singular 1li-
nes (~ (KS)‘!S ), ds being the dimensionality of fS ), and I is
a possible contribution from regular 1PI graphs independent of large
parameters (after the action of " and integration over loop momen-
ta the latter contribution depends only on Kg and, hence, is .(If’g)p{"
where cly» is its dimension). If ¢ is the dimension of G , then

a(.‘q = _Dg—rc(,g»i-a(/l +d, +n and h g dqv—f/\lv. Thus, we have

IL'IS e "’(KS) J;,+A/rc/_s+u,r'-f1 .,(‘_-f-n(-pc{‘uﬂ{'.""l: Jq.-l»/i/—-.b":—h#; G—DS .
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This. unequality is the desirable estimate for the IR convergence. In
case (ii) all h € Fmin so that Fmin= F¢ . In this case all lines
of C,‘ are regular. This can be proved by induction. If T € min.  is
the minimal element of Fpyn , then g,m‘,t= 6 i, BN (E'm;h}r_’— (6},,“‘.‘_),-_
If (dw.‘_)r# 6 min. y then (d"dm)r
because otherwise Emin= (Smin)r U(8min)g i8 not H-sabgraph. But this
H -subgraph should belong to F \Fus=¢ » 80 that ({,m'h_)r: & pin.
Purther, let ¥ € FmihEFs have regular lines in all its maximal compo-
nents. If , # ¥

should contain en H -subgraph,

, then all connected components of Z_ should be

1PI -graphs independent of the Yarge external parameters because Y& Fg.

Moreover, there exist subgraphs T , which are not hard, such that
U’F;:Fn But according to the induction hypothesis, maximal compo-
nents of Y are regular so that they should be elements of F\Fin=¢
Thus, E:? and this proves the induction hypothesis.

Thus, we have shown that (21) is integrable at K¢ = O.

Po summarise, CF's determined by operators 1, are represent-
ed by power series in small momenta ¢ and masses nrv and do not
contain R divergences.

Functions Z'VR possess the same properties in a’'sense that they
can be expanded in, ¢ and M- into power series without giving rise
to IR singularities.

- Practical consequences of the cancellation of IR singulariti-

es in CF's are twofold. First, it gives the possibility to use the

/2/

mags-independent renormalization group technique Second, it leads

to simple algorithms for evaluating CFg in Pi'/M/. Here we present

only formulae for evaluating Cgo . These formulae can be considerably
simplified compared to (1.24) and (1.25) by exploiting the properties

of the dimengional regularization., As is well-known, in this regulari-

zation all massless iniegrals with zero external momenta are equal to
zero, Thus, all completely reduced graphs should be set to zero after
being expanded in powers of g, and m ., In doing so, we pet:

CRD(Q)=('th R‘qu‘i;q%}c (ﬂ Ck, U‘))'Ans ((”/‘{-43'2)} 02)
Co, (§)=(th Rus &5 Cro (G)=(Rad

Note thet "bare® CF's Cg, siven by the second relation in (22)
coincide with functions A""‘((“) uged 1n/4/ and, thus, may serve &as a
starting point -in ‘comparing the two approaches (being rewritten in
teYms of Cgp o (1.22) coincides with the "EA-expansion” of/d’/).

s
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To obtain CF 's via (22), one should evaluate only MS -counter-
terms and integrals depending only on large variables .{03 and fo
For example, id the case of short-distance expansions (see examples 1
and 2 in the previous section) CF 's are expressed via massless pro-
pagator integrals with one external momentum § Within dimensional
regularization such integrals can be evaluated up to three loops/15/.
In the case of effective light theories CF 's are determined by
massive vacuum integrals and so on.

There exists, however, one more possible application of the
technique developed here. Namely, it can be used for analysing Eucli-~
dean collinear singularities. These singularities arise in Euclidean
Green functions &t some zero external momenta. Indeed, for a while
one can imagine these momenta to be nonzero but small as compared to
other dimenslonal parameters. Such a reformulation of the problem gi-~
ves a new scale and Green functions cen be expanded in it with CFig
finite in the collinear limit, Thus, all collinear singularities
turn out to be localized in operators.
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Appendix. On the Origin of Contact ‘Terms

We ghall consider here a simple example when the graph G is a
function of one large momentum Q .

The expregsion Rn Q(Q) is not integrable at f?=0 with probe
functions t{’(s)) which have at @=0 zero of an insufficiently large
order. Thus, applying the standard continuation procedure
find that the following integral

N-5 .
Jdo (w1~ Z, £, 9™ ¢™(0)) Ru (9) (A1)
h=z=
18 convergent for any ¢/q) which is finite at =0 and grows
more slowly than QN5 as @-» oo  (recall thet R, 479) = 0(51'”)

as @-2occ and at Q=0 it has the behaviour L”_.‘ with posaible
logarithmic corrections)., Using the identity

g 00) = ()" Jds & s e

we can rewrite (A1) as

, We

15



fde¢(9) [Rn G1§) - é,’:—(—ﬂh{l? 3(»)(0) §des= R, q(s*)Ja (42)

N5 %)
= Sdag@[ Ry G0 + Z. §7(0) ¢, ],

It is not difficult to show by using asymptotic properties of
R G(8) that the functional (2) 1s O(A™)(up to logs) under the
rescaling §-»AG of the expression in the breckets. Terms with -
functions are contact terms, Thus, the distribution in the brackets
can be used as a starting point of the combinatoriel analysis,.

Note that in our presentation we have omltted all contact terms
because field sources J,(@)playing the role of ¢(4) are sasumed to
be localized et infinite ¢ .
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Fopumunit C.T. E2-86-177
0 DmocTpOeHHH ONEpPATOPHWX PasNoXeHHE H 3ddeKTHBHHX Teopmit
B MS-cxeme . llpumeprl., HHpaxpacHas KOHEUHOCTH
xoo@buHeHTHHY GVHKIHR

MeTon nOCTpOEHMA ACHMIOTOTHYECKHX pasnoxeHuil defiHMaHOB—
CKHX HHTErpanos no GONBIMM eBKIMAOBLIM MMIYIbCAM KW (Mau) Mac—
caMm, NpemlIoXeHHNE aBTOPOM paHee, HCINCAbLIOBAH IJMIA NDONYYEHHS
pAfA WHPOKO HCNOAB3IYEMHX passioxeHwii. JlokasaHo, uTo npH onpe—
OeJIeHHOM BuBOpe BbNUTAIOMEro oneparopa Ko3bdWuHeHTHne GYHKIHH

pasnomeﬂnﬁ He copepxaT HMHOPAKPACHMX CHHIYJIADHOCTel} npuBeneHny
" sbdekTHEHNE HOPMYNR INIA HX BHYHCIIEHHS.

PaGora suimonueHa B JlaBopaTopuu TeopeTHYeckofi dumsuxm OURU

Coobiense OfbeauHEHHOr0 MHCTHTYTAa AfIepHBIX HcchenosaHuit. IlyGua 1986

Gorishny 8.G. E2-86~177

On the Construction of Operator Expansions and
Effective Theories in the MS-Scheme. Examples. Infrared
Finiteness of Coefficient Functions

The method of constructing asymptotic expansions of in-

dividual Feynman graphs in large Euclidean momenta or/and
masses proposed in our previous paper is used to obtain some
widely used expansions. We show that, with a special choice
of subtraction operators, coefficient functions of these ex-
pansions do not contain infrared singularities, and present
efficient formulae for their evaluation.

The investigation has been performed at the Laboratory

of Theoretical Physics, JINR.
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