

совб位:
 ииетитута habpilyx nсендднаниа aybina

E2-86-176
S.G.Gorishny

ON THE CONSTRUCTION
OF OPERATOR EXPANSIONS
AND EFFECTIVE THEORIES
IN THE MS-SCHEME.
General Formalism

Operator product expansions (OPE) of various kinds $/ 1 /$ and effective theories (ET) ${ }^{/ 2,3 /}$ have become widely used for qualitative and semiquantitative predictions within $Q C D$ and other realistic field models (for a review see $/ 4,5 /$), An important point in practical applications of these asymptotic expansions is the calculation of coefficient functions (CF) entering into them, which are the only piece amenable to evaluation in perturbation theory (PT). There exists a certain analogy between $C F$ and ultraviolet renormalization constants because both of them originate from the region of large momenta $/ 6 /$. As is well know, the most convenient scheme for evaluating ultraviolet (UV) counterterms is the minimal subtraction. (MS) scheme ${ }^{/ 7 /}$, and its convenience is mostly due to the polynomiality of counterterms in masses $/ 8 /$. This property leads to simple renornalization group (RG) equations and lays the ground for some powerful methads of computing RG parameters $/ 9 /$. From the analogy mentioned above one may expect that a similar property with the same consequences should hold for CF's. Nemely, one may hope that within the MS-scheme CF.s can be expanded in powers of small dimensional parameters like momenta and masses without giving rise to infrared (IR) singularities. These expectations have been proved to be correct $/ 10$ / (see also $/ 6,11$ / for a study of some particular cases).

In short, the method of $/ 10 /$ consists in the following. The formal Taylor expansion of Green functions in powers of amall momenta and masses produces IR divergences, which makes asymptotic series meaningless. However, as has been pointed out in $/ 10 \%$, correct asymptotic estimates can be restored by adding, to the formal expansions, special IR counterterms. These counterterms compensate IR divergences and convert the whole series into a well-defined distribution. The expansions of Green functions thus obtained can be cast into a form of OPE and ET, the IR counterterms being interpreted as composite operators. The method of $/ 10 /$ is a general one and provides the complete treatment of Euclidean asymptotics of Green functions. However, a natural connection of CF's with high energies and the UV rem normalization gets somewhat lost.

In a more familiar procedure of separating different dimensional scales via the ultraviolet R-operation with oversubtractions $/ 12,13 /$ this connection seems to be more transparent. Moreover, the latter approach provides a uniform treatment both for the ultraviolet renormalization and operator expensions. However, till now this formalism has been developed only for expensions in one large euclidean momentum $/ 12,13 /$ and large masses $/ 3 /$ and, as a rule, with the $U V$ renormalization performed at a fixed momentum point, which is inconvenient for practical calculations. Becides, it is somewhat unclear whether in this approach one could construct CF's without infrared logarithms (even in the MS-scheme used for the UV renormalization).

In the present paper we apply the method of the ultraviolet R operation $/ 15 /$ to construct expansions of Green functions in any number of large Euclidean momenta or/and masses. Then, short-distance expansions $912,13 /$ and effective light theories $/ 2,3 /$ can be obtained as particular cases of the above limit. We start with the MS-renormalized Feynman integrals and obtain their expansions in terms of MSrenormalized quantities. In the next publication/17/ we apply the technique developed here to obtain some widely used expansions and present arguments according to which in the MS-scheme the separation of large and small dimensional parameters can be made at zero momenta and masses with CF's free of IR logarithms.

The present work is organized as follows. In the first section we recall basic notions of the R-operation. The next section contains our derivation of an expansion of individual Feynman graphs and all defipitions relevant to it. In the third section we obtain the corresponding expansion of the generation functional for various Green functions. In Appendices we collect prescriptions of the dimensional regularization and combinatorial formulae of functional teohnique.

1. R - Operation

On the whole our notation follows that of ref. $/ 10 /$.
A given Feynman graph G consists of vertices and lines connecting them. Each graph G corresponds to a momentum integral constructed via Feynman rules. Generally speaking, such integrals may contain divergences, and to make integral expressions meaningful, Feynman rules should be supplemented by a regularization. We shall use the dimensional regularization $114 /$ that ts the most suitable for our purposes. Some basic conventions of this regularization are given in

Appendix 1. In what follows the regularization is implicit.
A subgraph g of the graph G consiats of vertices and innes (may be, not all) connecting them, chosen from the vertices and lines of G. A subgraph may coincide with G or be a single vertex. A subgraph g is properly contained in G if g is a subgraph and $g \neq G(g$ is a proper subgraph). At last, g is a nontrivial proper subgraph of G if $g \notin G$ and g is not a single vertex.

Call a set of subgraphs $\left\{g_{\alpha}\right\}, g_{\alpha} \leq \boldsymbol{C}$, a partition of G, if $g_{\alpha} \cap g_{\beta}=\varnothing$ and each vertex of G 'belongs to one (and only one) $g \in\left\{g_{\alpha}\right\}$.

Then introduce the following $\boldsymbol{\Delta}$-operation defined on any subgraph g. By definition, put $\Delta(g)=1$, if g is a single'vertex. If g is a disconnected graph, then $\Delta(g)=0$. In other cases $\Delta(g)$ is obtained by contracting g into a poịnt. This point forms a new vertex with a Feynman rule uniquely determined by g and independent of $G(g \subseteq G)$. An exact meaning of $\Delta(g)$ will be concretized for the cases considered.

Now introduce (still purely combinatorially) the R-operation via the relation $/ 15 /$

$$
\begin{equation*}
R C_{1}=\sum_{\left\{g_{\alpha}\right\}} \prod_{\alpha} \Delta\left(g_{\alpha}\right) G /\left\{g_{\alpha}\right\} \tag{1}
\end{equation*}
$$

where summation runs over all partitions of G.' The graph $\mathcal{G} /\left\{g_{\alpha}\right\}$ is a graph obtained from G by contracting all $g a$ into points with Feynman rules determined by $\Delta\left(g_{\alpha}\right)$.

Properties of the R-operation introduced up to this moment are sufficient for studying its action on the whole PT series (Green functions, S-matrix, etc.) $/ 13,10 /$. The corresponding formulae are presented in Appendix 2.

A UV R-operation removing divergences that arise in the course of integration over large momenta can be imagined to be a particular case of the construction (1) with a given ohoioe of $\Delta(g)=\Delta u v(g)$ As is known, Feynman integrals are rendered finite if one subtracts UV divergences from all their one-partiole-trreducible (1PI) componente, i.e., those which cannot be made diaconnected by removing one line. Therefore, define $\Delta_{\mu V}(g)=0$ if g is not $1 P I$. This requirement confines the summation in (1) only over those $\left\{g_{\alpha}\right\}$, where g α is either a single vertex or $1 P I$. Call such partitions UVpartitions $\left\{g_{\alpha}\right\} u v$. The quantity $\Delta_{u v}(g)$ is a UV counterterm. The definition of $\Delta_{4 V}(g)$ is not unique: a polynomial of external
momenta of g can always be added $/ 15 /$, and how we shall fix this ambiguity determines the renormalization scheme. Here we consider two schemes: the MS scheme $/ 7 /$ and momentum subtraction scieme $/ 15 /$. Rewrite (1) in the form

$$
\begin{equation*}
R G=R G+\Delta(G) . \tag{2}
\end{equation*}
$$

Then the MS-scheme is given by the following recurrent relation

$$
\begin{equation*}
\Delta_{M S}(g)=-K^{\prime} R_{M S} g, \tag{3}
\end{equation*}
$$

where K is the operator that picks out poles arising when the dimensionality of space of the regularization $D=4-2 \epsilon$ tends to its physical value (4 for the Minkowskj space). In full analogy, the momentum subtraction scheme is given by

$$
\begin{equation*}
\Delta_{t}(g)=-t^{\prime} R_{t} g \tag{4}
\end{equation*}
$$

where t is the operator that picks out several first terms in the Taylor expansion at a fixed momentum point. "The number of terms is determined by demanding convergence of the corresponding integrals and coincides with the momentum dimensionality dimg of g /15/. If dimg <0, then $\Delta_{t}(g)=\Delta_{M S}(g)=0$.

Let us expound some useful properties of counterterms:
a) they are always polynomial in the external momenta of g 115/;
b) in the MS scheme they are polynomial in any dimensional parameters (like masses) and independent of the regularization parameter μ /8/.

The latter property is very helpful for evaluating $\Delta_{M S}(g)$ and RG functions related to it because it allows one to nullify any dimensional parameter and, thus, to simplify considerably the integrals to be calculated/9/.

Recurrent relations (3) and (4) can be solved expliaitly $/ 16 /$. Call two subgraphs nonoverlapping if they either are disjoint or one of them is a subgraph of the other. Consider any set of nonoverlapping subgraphs of G. In this set separate the system of maximal olements,i.e., elements such that there are no subgraphs from the set containing them as a proper subgraph. If the system of maximal elementis comprises some partition of G, then we shall say that the initial set is a forest of G. A UV forest $F\{g\}$ including only 1PI graphs andfor single vertices. Then (3) and (4) can be written down in the form

$$
\begin{equation*}
\Delta_{m S}(g)=-K_{g} \sum_{F\{\tau\}_{u V}} \prod_{\tau}\left(-K_{\tau}\right) g ; \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{t}(g)=-t \sum_{\substack{f\{\tau\} a V \\ \tau \neq g}} \prod_{\tau}\left(-t_{\tau}\right) g, \tag{6}
\end{equation*}
$$

where K_{τ} and g are operators K and t acting only on the subgraph τ. Here summation runs over all possible forests of g except those containing g. Inserting these solutions into (1),we have

$$
\begin{equation*}
R_{\text {uv }} G=\sum_{F\{g\}_{\text {uv }}}{ }_{g}\left(-M_{g}\right) G \tag{7}
\end{equation*}
$$

where $M_{g}=K_{g}$ for the MS-scheme and $M_{g}=t_{g}$ for the momentum subtraction scheme. Summation runs over all forests of G.

2. Agymptotic Expanaion of Individual Feyhman Graphs

The structure of the R-operation turns out to be very convenient in analysing asymptotic properties of Feynman integrals. It has been used in ${ }^{/ 12,13 /}$ to prove the short-distance expansion of operator products and in 137 to obtain parameters of effective light theories originated from the large-mass expansion of the initial ones. In those papers, however, momentum subtraction was used for the UV renormalization, which complicates practical calculations. Moreover, In phenomenological applications one often deals with a more complicated asymptotic behaviour than one Euclidean Large momentum or one large mass. Here we present an extension of the procedure $/ 12 /$ to the case of asymptotic expansions in large Euclidean momenta or/and masses, UV divergences being removed in the minimal way according to the MS-scheme. As a rule, our consideration will be aimed at the construction of a convenient and efficient calculational acheme for practical applications, so that sometimes our arguments will not be mathematically rigorous (but, of course, they can be made rigorous at the cost of some complicitions).

Let all external momenta and masses of lines of G be decomposed into two sets $\{q, M\}$ and $\{q, m\}$. We are interested in the behaviour of $R_{M S} G$ at large values of Eucildean Q and M :

$$
\begin{equation*}
\frac{|Q|}{M}=\text { const } ; \quad \frac{M}{m} \sim \frac{M}{|g|} \sim \lambda \rightarrow \infty ; \quad R_{M S} G \underset{\lambda \rightarrow \infty}{\longrightarrow} \text { ? } \tag{8}
\end{equation*}
$$

Momenta Q are assumed to be Euclidean, i.e., each component of Q tends to infinity so that $q Q / Q^{2} \sim \lambda^{-1}$. Many expansions considered in the literature are generated by limits that are particular cases of (8). For example, short-distance expansions correspond to $Q \rightarrow \infty$ and effective light theories arise at $M \rightarrow \infty$.

Notice an important role that 1 PI graphs play in the course of the UV renormatization. Indeed, $1 P I$ components contain all information about UV divergences of the graph, and removing UV poles from all $1 P I$ components of the graph renders it UV finite. In the course of an asymptotic expansion procedure there also exists type of graphs playing an analogous role. Namely, these are components of the graph which absorbe all the dependence on its large parameters $\{Q, M\}$. It is clear that to obtain an asymptotic expansion, one has to expand only these components. Let us introduce some definitions.

Call a line of G hard if at least one of the following conditions are fulfilled: a) the line corresponds to a particle with a large mass M; b) a nontrivial combination of large momenta Q can flow through it. A subgraph $h \subseteq G$ is a^{4} hard subgraph (H - subgraph) if it contains at least one hard line and cannot be made disconnected by deleting one line that is not hard. A partition of " G is hard (H -partition) if it contains only H-subgraphs and single vertices.

It is clear that H-subgraphs are analogs of $1 P I$ subgraphs in the: Rqv-operation. Indeed, as follows from the definition, any graph G can be represented in the form of a tree graph all lines of which are nat hard and effective vertices are just. H -subgraphs or 1PI. subgraphs independent of $\{Q\}$ and $\{M\}$. Thus, it is sufficient to obtain an expansion of each H-subgraph because all components independent of: Q and M come through the expansion procedure unchanged. It is clear elso that each H-subgraph is represented by a tree skeleton graph with hard lines and 1PI effective vertices.

$$
\begin{align*}
& \text { Introduce now an intermiediate } \quad R_{\mu}^{(N)} \text {-operation } \\
& R_{H}^{(N)} G=\sum_{\{19} \prod_{g} \Delta_{H}^{(N)}(g) G /\{g\} \equiv \sum_{\{g\}_{H}} \Pi_{H}^{(N)} \Delta_{H}^{(N)}(g) G /\{g\}_{H}, \tag{9}
\end{align*}
$$

where $\Delta_{H}^{(N)}$ is a particular case of the Δ-operation and $\Delta_{H}^{(N)}(g) \neq 0$ only if g is either a single vertex or an H-subgraph. Thus, the summation in (9) is effectively restricted by $\{g\}_{N}$ partitions, i.e., by H-partitions. Let us describe the algorithm of evaluating $\Delta_{H}^{(N)}(g)$. Consider a given H-subgraph $R \subseteq G$. The get of its external momenta consists of external momenta of $\mathcal{G}\{Q, q\}$ and,
perhaps, of some internal integration momenta of $G\}\}$. Consider the Feynman integral $h(Q, q, k, M, m)$ corresponding to h and introduce the subtraction operator $t^{(N)}$ such that

$$
\begin{equation*}
\left(1-t^{(N)}\right) h(Q, q, k, M, m)=o\left(\lambda^{1-N}\right) \tag{10}
\end{equation*}
$$

As $t^{(N)}$ one can choose the Taylor operator that picks out some first termia in the expansion of h in powers of q and k at some fixed point $\left\{q=q_{h}, k=k_{h}\right\}$, where $q_{h} \sim k_{h} \sim q$. The number of terms is equal to $\operatorname{deg}_{q, M} h+N$, where

$$
h(q, q, k, M, m)=O\left(\lambda^{\operatorname{leg}_{Q, M} h}\right) .
$$

Kewriting now (9) in the form analogous to (2) and defining

$$
\begin{equation*}
\Delta_{H}^{(N)}(h)=-t^{(N)^{\prime}} R_{H}^{(N)} h, \tag{11}
\end{equation*}
$$

we get (modulo $\ln \lambda$)

$$
\begin{equation*}
R_{H}^{(N)} G=\Delta_{H}^{(N)}(G)+R_{H}^{(N)} G=\left(1-t^{(N)}\right)^{\prime} R_{H}^{(N)} G=O\left(\lambda^{-N}\right), \tag{12}
\end{equation*}
$$

where we choose G to be an H-graph. Of courge, the estimate $O\left(J^{-N}\right)$ in the roh.s. of (12) is formal because $R_{H}^{(N)} G$ can be divergent as $\epsilon \rightarrow 0$, nevertheless, at nonzero \in it is a well-defined quantity.

The meaning of (12) is fairly transparent: making a sufficient number of subtractions in H -subgraphs, one can obtain any desired behaviour of the l.h.s. of (12) as $\lambda \rightarrow \infty$. Note that the relation (12) gives the expansion of an unrenormalized graph G. Indeed, one H-partition consists of single vertices. The term corresponding to it in $R_{H}^{(N)} G$ is G itself so that we have

$$
G=\left(1-R_{H}^{(N)}\right) G_{H}+O\left(\lambda^{-N}\right)=-\sum_{\left\{g 3_{H}\right.} \prod_{g} \Delta_{H}^{(N)}(g) G /\{g\}_{H}+O\left(\lambda^{-N}\right),(13)
$$

where the subscript means the absence of the term including only single vertices.

To simplify the notation, in what follows the index N will be omitted.

To solve the problem for the $M S$-renormalized graphs, note that the action of R_{H} is determined formally on each term of the renormalized expression $R M_{S} G$ (see (1) with $\Delta \equiv \Delta_{M S}$). Indeed, each term of the kind $\Pi \Delta_{M S}(g) G /\left\{g f_{\text {GV }}\right.$ allows the interpretation in terms of Feynmen integrals. The whole sum R MS G is UV -finite as $\epsilon \rightarrow 0$, so that we may expect that $R_{H}\left(R_{M S} \mathcal{S}^{G}\right.$) will also be

UV-finite. Let us show that this is indeed the case. We have

$$
R_{H} R_{M S} G=\sum_{\{g\}_{G V} \subseteq G} \sum_{\{h\}_{H} \subseteq G /\{g\}_{a V}} \prod_{R} \Delta_{H}(h) \prod_{g} \Delta_{M S}(g)\left(G /\{g\}_{G V}\right) /\{h\}_{H}(14)
$$ Let us try to reexpress (14) in terms of explicitiy UV -finite as $\epsilon \rightarrow 0$ quantities. Note that in (14) operations Δ_{H} and $\Delta_{\text {MS }}$ do not commute since subgraphs of H-partitions include in general vertices formed after shrinking all subgraphs of the UV-partition to points. One may attempt to regroup terms in (14) so that the summation would be again over partitions, that is, over disjoint subgraphs. For this purpose we will use the representation of R_{H} in a form analogous to (7).

Call an H-forest the forest including only H-subgraphs and single vertices. Denote it by. $F\{\tau\}_{H}$. Then (11) can be cast into the form

$$
\begin{aligned}
& \Delta_{H}(h)=-t_{k} \sum_{\substack{F\{g\}_{H} \\
g \neq h}} \prod_{g}\left(-t_{g}\right) h ; \\
& R_{H} G=\sum_{F\{h\}_{H}} \prod_{h}\left(-t_{h}\right) G,
\end{aligned}
$$

where $t_{g}\left(\equiv t_{g}^{(N)}\right)$ acts only on g. Substituting (7) and (15) into (14), we get

$$
\begin{equation*}
R_{H} R_{M S} G=\sum_{F\{g\}_{u v} \subseteq G} \sum_{F\{h\}_{H} \subseteq G /\{g\}_{u v}} \prod_{h}\left(-t_{h}\right) \prod_{g}\left(-K_{g}\right) G \tag{16}
\end{equation*}
$$

The double sum in the r.h.s. of (16) can be written as a single sum over mixed forests. These are forests elements of which can be either $H-$ or 1 PI -subgraphs with the restriction that the latter do not contain H-subgraphs from the forest. If $H-s u b g r a p h s\{h\}$ and 1 PI -subgraphs $\{u\}$ form the system of maximal elements of this forest, then their union $\{\boldsymbol{h}\} \cup\{u\}$ (together with possible single vertices) forms a mixed partition of G. With the help of the mixed forest $f\{\{g\} u v, H$ the sum in (16) can be rewritten in the form

$$
\begin{aligned}
& R_{H} R_{M S} G=\sum_{F\{g\}_{u v, H}} \prod_{g}\left(-M_{g}\right) G \\
= & \sum_{\{h\} \cup\{u\} \in G}\left(\prod_{h}\left(-t_{h}\right) \sum_{F\{g \subset h\}_{u v, H}}\left(-M_{g}\right)\right)\left(\prod_{u}\left(-K_{u}\right) \sum_{F\{v \subset u\}_{u v}}\left(-K_{v}\right)\right) G
\end{aligned}
$$

$=\sum_{\{h\} \cup\{u\} \subseteq G,}, n_{i u=\phi} \prod_{h} \Delta_{B}(h) \prod_{u} \Delta_{M S}(u) G /(\{R\} \cup\{u\})$,
where g may coincide with h only as 1PI-subgraphs; M_{g} is t_{g} for $H^{- \text {subberaphs and }} K_{g}$ for ${ }^{1} \mathrm{PI}$ ones and

$$
\begin{aligned}
& \dot{\Delta}_{B}(h)=-t_{h} \sum_{F\{g \subset h\}_{u v, H}}\left(-M_{g}\right) h \\
&=-t_{h} \sum_{\substack{\{\tau\}_{H} u\{u\}_{u v} \subset h \\
h \neq \tau, \tau \cap u=\phi}} \prod_{\tau, u} \Delta_{B}(\tau) \Delta_{M S}(u) h /\left(\{\tau\}_{H} \cup\{u\}_{u v}\right)
\end{aligned}
$$

Relation (17) is the desired representation of (14) as a sum over partitions. The operation Δ_{B} differs from Δ_{H} by the inclusion of ultraviolet MS counter-terms of h. Indeed, from (17) we have

$$
\begin{align*}
& \Delta_{S}(h)=\Delta_{H}\left(R_{M S} R\right)=-t_{h} R_{H} R_{M S} h \\
& =\sum_{\{u\}_{u v} \leqslant R}\left(\prod_{u} \Delta_{M S}(u)\right) \cdot \Delta_{H}\left(R /\{u\}_{u v}\right) .
\end{align*}
$$

In (17) operations Δ_{B} and $\Delta_{M S}$ act independently because their actions are determinad on disjont graphs ($\ell \cap U=\phi$). Note that in this relation $\Delta_{M S}(\dot{4})$ subtracts only divergences of the initial graph G. However, the action of $\boldsymbol{\Delta}_{B}$ on H -subgraphs produces new vertices which can give rise to UV aingularities having nothing to do with those of G. Nevertheless, the whole expression (17) turns out to be UV -finite. To see that this is indeed the case, add to the expresaion $\sum_{\{u\} v V} \prod_{u} \Delta_{M S}(u) G /\{h\}_{H}$ resulting after the action of $\prod_{h} \Delta_{B}(h)$ terms needed to make it UV-finite. These terms supplement the sum to the complete $R_{\text {Mg }}$ operation $\mathcal{R}_{\text {AS }}\left(G /\{h\}_{N}\right)$. The whole expression should be unchanged, so that we have to redefine Δ_{B} so as to absorb the difference ($\left.\sum_{\left\{\mathcal{U}_{\mathcal{U}}\right.} \prod_{u} \Delta_{M S}(u)-R_{M S}\right) \cdot G /\{K\}_{H}$. It can be done in a full analogy with formules (14)-(18). Denote the quantities thus redefined as Δ_{R}. Clearly, $\Delta_{R}-\Delta_{B}$ containg only terms with subtractions of divergencem associatod with ohrinking to points aubgraphs $\{h\}_{H} \leqslant G$. Making such a verrangement we get:

$$
\begin{aligned}
& R_{H} R_{M S} \mathcal{G}=\sum_{\{h\}_{H} \leq G} \prod_{h} \Delta_{R}(h) R_{N S}\left(G /\{h\}_{H}\right) ; \\
& \Delta_{R}(h)=-t_{K} \sum_{\{\tau \neq h\}_{H}} \prod_{\tau} \Delta_{R}(\tau) R_{M S}\left(h /\{\tau\}_{H}\right)
\end{aligned}
$$

Quantities Δ_{R} are renormalized ones as compared to the "bare" Δ_{B}. The explicit relation between Δ_{R} and Δ_{B} is given by

$$
\begin{equation*}
\Delta_{R}(h)=\sum_{F \in \tau \subseteq h\}_{H}} \prod_{\tau \neq \tau_{\text {min }}}\left(-\Delta_{M S}(\bar{\tau}(F))\right) \prod_{\tau_{\text {min }}} \Delta_{B}\left(\tau_{\text {min }}\right) \tag{20}
\end{equation*}
$$

Here $F\{\tau\}_{H}$ is an H-forest of the graph h, and $\left\{\tau_{\text {min }}\right\}_{\text {is }}$ the system of its minimal elements, f.e., elements which have no subgraphs from the forest. Then, $\overline{\mathcal{Z}}(F)$ is the so-called reduced graph obtained from τ by shrinking to points all elements of the forest F properly contained in τ. Note also that to obtain (19), (20), we have used the fact that $\Delta_{\text {MS }}$ commutes with t_{h} because the former is a polynomial in all dimensional parameters.

The RMS -operation is linearly in Δ_{R} because of their UV-finiteness. This finiteness can be established by induction. If the only H -subgraph of h is h itself, then $\Delta_{R}(h)=-t_{h} R_{M S} h$ and this is an explicitly $U V$-finite quantity (we assume here that t_{h} are chosen so that their action does not lead to infrared singularities and postpone the discussion of other possibilities to the next publication $/ 17 /$). Then the induction with respect to the number of H -subgraphs can be done via (19). Thus, Δ_{R} are UV -finite. As a result, we obtain that the r.h.s. of (19) is also UV -finite as a sum of explicịly $u \mathbb{L}$-finite terms.

Now return to our problem and notice that due to (12) $R_{H} R_{\text {MS }} G$ is $O\left(\lambda^{-N}\right)$ as $\lambda \rightarrow \infty$. This allows us to rewrite $R_{M S} G^{G}$ in a form analogous to (13):

$$
\begin{equation*}
R_{M S} G=-\sum_{\{h\}_{H}} \prod_{h} \Delta_{R}(h) R_{M S}\left(G /\{h\}_{H}\right)+O\left(\lambda^{-N}\right) \tag{21}
\end{equation*}
$$

and after that the problem of expanding the MS -renormalized Feynman integral is aimost solved. The only fact preventing us from saying so is an incomplete factorization of large parameters $\{Q, M\}$ in $\Delta_{R}(k) \quad$ The point is that graphs in $R_{N S}\left(G /\{h\}_{H}\right)$ can still contain H-subgraphs and thus be dependent on $\{Q, \mathbb{K}\}$. Nevertheless, all terms on the r.h.s. of (21) have at least one H-subgraph contracted into a point as compared to G, and this allows one to use (21) for a complete reduction of all H-subgraphs. This reduction can be performed by applying (21) recursively to those graphs, that still contain the dependence on $\{Q, M\}$. The recursion stops when all terms on the r.h.s. of this expression do not contain any H-subgraphs and all large parameters turn out to be factorized in Δ_{k}. The final result of this procedure can be represented in the form
$R_{M S} G=\sum_{\{h\}_{H}^{c}} \prod_{h} C_{R}(h) R_{M S}\left(G /\{h\}_{H}^{c}\right)+O\left(\lambda^{-N}\right)$

$$
\begin{equation*}
\equiv R_{M S}\left(R_{a s}^{(N)} G\right)+O\left(x^{-N}\right) . \tag{22}
\end{equation*}
$$

Here the sum goes only over complete H-partitions $\{h\}_{H}^{c}$. They are complete in a sense that the reduced graphs $G /\{h\}_{H}^{c}$ do not contain H-subgraphs. The $\mathrm{R}_{\text {MS }}$-operation is assumed to be linear in C_{R}, because the latter are UV -finite. Coefficients C_{R} can be expressed via some combinations of Δ_{R} :

$$
\begin{equation*}
C_{R}(h)=\sum_{h \in F\{\tau\}_{H}^{c}} \prod_{\tau}\left(-\Delta_{R}(\tau(F))\right) \tag{23}
\end{equation*}
$$

where $F\{\tau\}_{H}^{c}$ is a complete. H-forest, that is a forest, minimal elements of which form a complete H-partition of h. This relation is rather useless in practice and we prefer to obtain a recurrent formula for C_{R} directly from (22). Rewrite the latter equation as

$$
R_{M S} \mathcal{G}=C_{R}(G)+R_{M S} R_{a s} \mathcal{G}+O\left(\lambda^{-N}\right)
$$

Applying the operator t_{G} to both its sides and recalling (10) we get
$C_{R}(G)=t_{G} R_{M S}\left(\left(1-R_{a S}\right) G\right)=t_{G} R_{M S}\left(G-\sum_{\{h \neq G\}_{H}^{c}} \prod_{h} C_{R}(h) G /\{h\}_{H}^{c}\right)_{(24)}$
This formula determines $C_{R}(\mathcal{G})$ via G_{R} defined on proper subgraphs of G and, hence, allows one to compute $C_{R}(G)$ recursively starting from h with only one complete H-partition coinciding with h itseIf, so that $G_{R}(h)=t_{h} R_{M S} h$. It is worth noting that the reduction of H-subgraphs can be performed not only in (21), but also in (17) and (13). As a result, functions C_{B} and C_{H} arise na~ turally. They can be related to Δ_{B} and Δ_{H} via relations similar to .(23) and obey the following recurrent equations:

$$
\begin{aligned}
& C_{H}(G)=t_{G}\left(G-\sum_{\{h \neq G\}_{H}^{c}} \prod_{h} C_{H}(h) \cdot G /\{h\}_{H}^{c}\right) .
\end{aligned}
$$

In turn, functions C_{R}, C_{B}, C_{H} and Δ_{H} are related to each other (cf. (18) and (20)):

$$
\begin{equation*}
C_{R}(G)=\sum_{\mathcal{G} \in F\{\tau\}_{H}^{F}} \prod_{\tau \neq \tau_{\text {min }}}\left(-\Delta_{M S}(\bar{\tau}(F))\right) \prod_{\tau_{\text {min }}} c_{B}\left(\tau_{\text {min }}\right) ; \tag{26}
\end{equation*}
$$

$C_{B}(G)=\sum_{\{u\}_{u v}} \prod_{u} A_{M S}(u) \cdot C_{H}\left(G /\{u\}_{u v}\right) ;$

$$
\begin{equation*}
C_{H}(G)=\sum_{\mathcal{G} \in F\{\tau\}_{H}^{c}} \prod_{\tau}\left(-\Delta_{H}(\dot{\tau}(F))\right), \tag{26}
\end{equation*}
$$

where $\tau_{\text {min }}$ are minimal élements of the forest $F\{\tau\}_{H}^{c}$. Thus, C_{R} can be completely expressed in terms of $\Delta_{M S}$ and Δ_{H}.

Formulae (22)-(24) give the solution of the problem formulated at the beginning of this section.

The expansion (22) has the form of an operator expanaion. Indeed, its r.h.s. contains the sum of renormalized graphs $\mathcal{G} /\{h\}_{H}^{c}$. A now vertex formed by shrinking h to a point may be identified with an operator insertion. This identification is possible because $C_{R}(h)$ is a power series in all external momenta of h except $\{Q\}$ '(including some integration momenta of G, see (10)). Every term of this series uniquely corresponds to the Feymman rule generated by some operator vertex, which allows the interpretation in terms of an operator expansion. A more detail treatment of this possibility is given in ${ }^{17 /}$ and in the next section.

3. Expanaion of Pull Green Functions

Hitherto we have dealt with individual Feynman graphs, whereas in applications it is often necessary to know the form of asymptotic series for complicated objects, such as S.-matrioes, Green functione, etc., which include the summation over an infinite number of Feynman integrals. To sum up expansions of individual integrala and to cast the results into a form of OPE or ET, one can resort to a very convenient combinatorial technique developed in $10,13 /$. For our purpose the formulae obtainod in ${ }^{10 \%}$ are most useful because they are directly applicable to the MS -rencrmalized quantities (see Appendix 2).

Our consideration will be based on the following observation. Both $R_{\text {MS }}$ and R as have the structure of relation (1), i.e., both of thom are particular ceases of the algebraic construction of the R operation at a cortain choice of $\Delta(g)$. To achieve a complete anslogy, it is convenient to extend the summation in eq. (22) to all partitions and to readdress the function of separating only admisaible ones (UV -partitions for the R_{MS}-operation and complete H -partitions for the $R_{d s}$-operation) to $\Delta_{M S}$ and C_{R} setting them zero in all wrong cases. In what follows just this possibility is understood.

- Eq. (22) can be docomposed into suceessive actions of $R_{\alpha 5}$ and $R_{M 8}{ }^{\prime}$

$$
\begin{equation*}
R_{M S} G=R_{M S}\left(R_{a s} G\right)+O\left(\lambda^{-N}\right), \tag{27}
\end{equation*}
$$

where $R_{\text {ms }}$ does not affect C_{R} as has been explained above. Equality (27) permits us to divide the whole problem into two steps: first, one can resolve the combinatorics of the $\mathrm{R}_{\text {as }}$-operation and then MS -renormalize the obtained expressions.

Consider a theory described by the interaction Lagrangian $\mathcal{X}_{\text {int }}(\varphi)$ and the correspanding generating functional (see eq. (A2.8). Adding to $\mathscr{X}_{\text {int terms }} \sum_{n} J_{n} O_{n}$ with the sources $\left\{J_{n}\right\}$ of Iocal composite operators. $\left\{O_{n}\right\}$ composed of the fields φ and their derivatives, we obtain the generating functional $\mathfrak{G}\left(\mathcal{J},\left\{J_{n}\right\}\right.$) of Green functions of operator products $\prod_{\alpha} O_{\alpha}$:

$$
\begin{aligned}
& \left\langle T \prod_{\alpha} O_{\alpha}\left(x_{\alpha}\right) e^{L+J \varphi}\right\rangle_{0}=\left(\left.\prod_{\alpha} \frac{\delta}{\delta J_{\alpha}\left(x_{\alpha}\right)}\right|_{J_{n}=0}\right) G\left(J,\left\{J_{n}\right\}\right) \\
& =\left(\left.\prod_{\alpha} \int \frac{d K_{\alpha}}{(2 \pi)^{D}} e^{i \kappa_{\alpha} x_{\alpha}} \frac{\delta}{\delta J_{\alpha}\left(K_{\alpha}\right)}\right|_{J_{n}=0}\right) G\left(J,\left\{J_{n}\right\}\right),
\end{aligned}
$$

where $J_{\alpha}\left(x_{\alpha}\right)=\int d K_{\alpha} e^{-i \not \alpha_{\alpha} x_{\alpha}} J_{\alpha}\left(x_{\alpha}\right)$.For applications one usually needs asymptotics of Fourier transorms of expressions like the above ones at some momenta of $J_{\alpha}\left(\mathcal{K}_{\alpha}\right)$ and masses of φ tending to infinity, so that we should study $\mathcal{G}\left(\mathcal{J},\left\{\mathcal{J}_{n}\right\}\right)$ in that limit. The limit corresponds to the situation when Fourier transforms of some sources J_{n} are localized at large momenta $\{Q\} \rightarrow \infty$ and some fields (denote them by ϕ) have large masses $\mathrm{M} \sim / \mathrm{Qt}$ (see eq. (8)). Usually, it is sufficient to consider Green functions without heavy external particles and we will assume that \mathcal{J} corresponds to fields with a Inite mass.

Being expanded in J, J_{n} and coupling constants of $\mathcal{Z}_{i n t}$, the renormalized functional $R_{\text {MS }} \mathcal{G}\left(J,\left\{J_{h}\right\}\right)$ is representable as a series of Feynman integrals, momenta and masses of which satisfy conditions (8). Therefore, to obtain the asymptotics of $R_{M S} G\left(J,\left\{J_{n}\right\}\right)$ one can apply relation (27) diagram by diagram. Consider at first the effect of the $R_{a s}$-operation. It is a particular case of (1), so that we can use formula $(A 2.10)$ with Δ replaced by C_{R} :

$$
\begin{equation*}
\operatorname{Ras}_{\operatorname{as}} G\left(J,\left\{J_{n}\right\}\right)=\left\langle\operatorname{Texp}\left(C_{R}\left(T e^{L(\varphi, \phi)+\sum_{n} J_{n} D_{n}+J \varphi}-1\right)\right)\right\rangle_{0}, \tag{28}
\end{equation*}
$$

where the action of C_{R} is nontrivial onily on H-subgraphs and single vertices. Moreover, $R_{a s}$ is defined as a sum only over the complete H-partitions. To pick out these partitions, one can demand C_{R} to be zero on graphs, the contraction of which into a point gives a vertex with at least one hard line. Such vertices correspond to operators containing heavy fields ϕ or carrying large momenta and cannot be produced by shrinking to points graphs of complete H-partitions. Further, we will consider only the sase when all
large momenta enter a diagram through operator insertions so that J carries only a finite momentum. As a consequence, all graphs with J at the ends of external lines are not hard and C_{R} nullifies them. The only exception is the singie vertex $\mathrm{T}_{\boldsymbol{\varphi}}$. Taking into account all these remarks, we get

$$
\begin{equation*}
R_{\text {as }} G\left(J,\left\{J_{n}\right\}\right)=\left\langle T \exp \left(C_{R}\left(T e^{L(\varphi, \Phi)+\sum_{n} J_{n} O_{n}}-1\right)+J \varphi\right)\right\rangle_{0} \tag{29}
\end{equation*}
$$

The action of C_{R} contracts graphs to vertices. As has been explained in the previous section, such vertices correspond to insertions of some local operators. Formally, this fact can be expressed by the equation
$C_{R}\left(T e^{L(\varphi, \phi)+\sum_{n} J_{n} O_{n}}-1\right)=\sum_{r} C_{R}^{r}\left(\left\{J_{n}\right\}, M, m, \rho^{4}\right) O_{r}(\varphi) \equiv L_{\text {eff }}\left(\left\{J_{n}\right\}, \varphi\right)_{g}$ (30)
where C_{R}^{r} are $C F^{\prime \prime} ;\left\{O_{r}(\varphi)^{2}\right\}$ is a complete set of local operators composed of light fields and their derivatives and μ^{μ} is the renormalization parameter (see Appendix I). The origin of the dependence of C_{R}^{r} on J_{h} is the same as that of their dependence on coupling constants. Inserting (30) into (29), we get

$$
\begin{equation*}
\operatorname{Ras} G\left(J,\left\{J_{n}\right\}\right)=\left\langle T \exp \left(L_{\text {eff }}\left(\left\{J_{n}\right\}, \varphi\right)+J_{\varphi}\right)\right\rangle_{D} \tag{31}
\end{equation*}
$$

The r.h.s. of this relation is the unrenormalized effective generating functional of the theory in the asymptotic region.(8) with C_{R}^{r} being its effective renormalized couplings. As it is states by eq. (27), it can be renormalized by epplying the $\mathrm{RmS}_{\text {m }}$-operation. Uaing formulae (A2.11) and (A2.15) with $L_{\text {eff }}$ instead of L, we have
$R_{M S} R_{a_{S}} C\left(J,\left\{J_{n}\right\}\right)=\left\langle T \exp \left(\Delta_{M S}\left(T \exp \left(L_{\operatorname{eff}}\left(\left\{J_{n}\right\}, \varphi\right)+J \varphi\right)-1\right)\right)\right\rangle_{0} ;$ (32)
$\Delta_{M S}\left(T e^{L_{e f f}+J \varphi}-1\right)=\sum_{r} C_{B}^{r}\left(\left\{J_{n}\right\}, \epsilon_{,} \cdots\right) \cdot O_{r}(\varphi)+J \varphi \equiv L_{e f f}^{R}+\varphi J$
where C_{B}^{r} are "bare" CF's containing, in general, poles in" E. Note that we could obtain the same representation (with "bare" CF's) by applying to $G\left(J,\left\{J_{m}\right\}\right.$) relation (22) expressed in terms of functions ${ }^{\prime} C_{3}$ (seo eqs. (25)).

Thus, we have the followng asymptotic expansion

$$
\begin{equation*}
R_{M S} G\left(J,\left\{J_{n}\right\}\right)=\left\langle\operatorname{Texp}\left(L_{e f f}^{R}\left(\left\{J_{n}\right\}, \varphi\right)+J_{\varphi}\right)\right\rangle_{0}+o\left(\lambda^{1-N}\right) \tag{34}
\end{equation*}
$$

that solves the problem we have been dealing with.

In a subsequent publication this general formula will be used for deriving some expansions useful in applications.

Acknowledgements. The author is grateful to Profs. V. A. Matveev, V.A.Meshcheryakov, D.V. Shirkov and A.N. Tavkhelidze for continuing support and valuable comments. I thank also K。G. Chetyrkin, S.A. Larin and A.V. Radyushkin for discussions and F.V. Tkachov for: critical reading the manuscript.

APPENDIX 1. Parameter μ in the Dimensional Regularization

The usual recipe of the dimensional reguiarization consists in replacing all four-dimensionial integration measures in the momentum space by measures of integration in a formal complex-valued D-dimensional space. Having in view RG applications we should take care of preserving all canonical dimensions and introduce for this purpose some unit of mass μ. Then we define the measure in the momentum space to be

$$
\begin{equation*}
\int d p=\mu^{2 \in} \int d^{D} p, \quad \epsilon=\frac{1}{2}(4-D) . \tag{A1.1}
\end{equation*}
$$

Then δ-functions and variational derivatives determined according to (A1.1) should satisfy the following natural relations

$$
\begin{equation*}
\int d p \delta(p)=1 ; \quad \frac{\delta \varphi(p)}{\delta \varphi(q)}=\delta(p-q) \tag{A1.2}
\end{equation*}
$$

and are given by
where the superscript D marks the usual "(without μ) definitions of the corresponding quantities. I ,

The position space measure $d x$ can be introduced via the relation

$$
(2 \pi)^{-D} \int d x d p e^{i p x}=1
$$

and turns out to be

$$
\begin{equation*}
\int d x=\int^{y^{-2 \epsilon}} \int d^{D} x . \tag{A1.4}
\end{equation*}
$$

Using the above relation and the analogs of (A1.2) for the position space, we have
$\delta(x)=\mu^{2 \epsilon \delta^{D}(x) ;} \frac{\delta}{\delta \varphi(x)}=\mu^{2 \epsilon} \frac{\delta^{D}}{\delta \varphi(x)}$

Definitions (A1.1), (A1.3) and (A1.5) fix automatically the way that $\boldsymbol{\mu}$ enters into any dimensionally reguiarized Feymman integral. In particular, in the p-space each connected component of Green functions is accompanied by the $\boldsymbol{\delta}^{\boldsymbol{D}}$-function expressing momentum cọnservation and containing the factor $\mu^{-2 \epsilon}$. Then each momentum loop carries μ^{26} in full accordance with conventional rules. Note, however, that the usual rules dealing with δ^{D} without $\boldsymbol{f}^{\boldsymbol{A}}$ turn out to be rather inconvenient in the context of the functional technique (see Appendix 2). For example, each time we should keep in mind the presence of an extra power of $\mu^{-2 \epsilon}$ (with respect to loop ones) per connected component $/ 10 /$ that complicates the rule according to which the operation Δ acts. Further complications may arise when deriving $R G$-equations. Definitions introduced above are more successful from this point of view, and we use them throughout the paper.

APPENDIX 2. Functional Tochnique

The material of this apperidix is based on $13,10,18 /$.
The quantum expression for the Wick theorem

$$
\begin{equation*}
T F_{\tau}(\hat{\varphi})=N F_{N}(\hat{\varphi}) \tag{A2.1}
\end{equation*}
$$

can be represented in the following functional form

$$
\begin{equation*}
F_{N}(\varphi)=e^{l} F_{T}(\varphi) \tag{A2.2}
\end{equation*}
$$

where $\hat{\varphi}$ and φ are quantum on-shell and classical off-shell fields; F_{T} and F_{N} are linear functionals of the field φ of the form

$$
F_{T, N}(\varphi)=\sum_{n} \int F_{T, N}^{n}\left(x_{1}, \cdots, x_{n}\right) \cdot \varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)
$$

so that $T F_{T}(\hat{\varphi})$ and $N F_{N}(\hat{\varphi})$ represent time and normal ordered functionals, reapectively. At last,

$$
\begin{aligned}
& l=\frac{1}{2} \int d x d y \frac{\delta}{\delta \varphi(x)} D^{c}(x, y) \frac{\delta}{\delta \varphi(y)} ; \\
& D^{\prime}(x, y)=\langle T \hat{\varphi}(x) \hat{\varphi}(y)\rangle_{0}=\int \frac{d p}{(2 \pi)^{p} i} \frac{e^{-i p(x-y)}}{m^{2}-p^{2}-i \epsilon}
\end{aligned}
$$

Note that all the prescriptions of the previous appendix are operative in the above formulae.

Consider the functional

$$
\begin{equation*}
G(J, \varphi)=e^{\Sigma(\varphi)+J \varphi}, \tag{A2.3}
\end{equation*}
$$

where $L(\varphi)=i \int L_{\text {int }}(\varphi) d x \quad, L_{\text {int }}(\varphi)$ being an arbitrary polynomial in φ, and $J_{\varphi}=\int d x J(x) \varphi(x), \mathcal{J}$ being a source of the field φ. The unrenormalized generating functional of the Green functions of the theory is determined by

$$
\begin{equation*}
\mathcal{G}(J) \equiv \mathcal{G}_{N}(J, \varphi=0)=\left\langle T e^{L(\hat{\varphi})+J \hat{\varphi}}\right\rangle_{0} \tag{A2.4}
\end{equation*}
$$

where G_{N}, in turn, is given by (A2.2) with $F_{T}=G(J, \varphi)$.
Using the conventional diagrammatic representation for coefficient functions of $G(J)$, we can introduce the action of the R-operation (1) on G :

$$
\begin{equation*}
R G(J)=R\left[\left.e^{\ell} G(כ, \varphi)\right|_{\varphi=0}\right]=R\langle T G(J, \hat{\varphi})\rangle_{0} . \tag{A2.5}
\end{equation*}
$$

The combinatorics of the above expression can be explicitly resolved and i.t turns out that the action of R is equivalent to adding some counterterms to $\mathrm{L}(\varphi)$:

$$
\begin{align*}
& R G(J)=\left\langle T \exp \left(\Delta\left(T e^{L(\hat{\varphi})+J \hat{\varphi}}-1\right)\right)\right\rangle_{0} \\
&=\langle T \exp (L(\hat{\varphi})+J \hat{\varphi}+\Delta(T \exp (L(\hat{\varphi})+J \hat{\varphi})-L(\hat{\varphi})-J \hat{\varphi}-1))\rangle_{0} \tag{A2.6}
\end{align*}
$$

The last line reflects the fact that $\Delta(g)=1$ for simple vertices.
For the particular case of the UV -renormalization we have
$\Delta_{u v}(g)=0$ if g is not $1 P I$, so that $\Delta u v$ nulufies all graphs containing vertices $J \varphi$ (except the simple vertex $J \varphi$). As a consequence, we get

$$
\Delta_{u v}(T \exp (L-(\hat{\varphi})+J \hat{\varphi})-L(\hat{\varphi})-J \hat{\varphi}-1)=\Delta u v\left(T e^{L(\hat{\varphi})}-L(\hat{\varphi})-1\right)
$$

and, for example

$$
\begin{equation*}
R_{M S} G(J)=\left\langle T \exp \left(L(\hat{\varphi})+J \hat{\varphi}+\Delta_{M S}\left(T e^{L(\hat{\varphi})}-L(\varphi)-1\right)\right)\right\rangle_{0} \tag{A2,7}
\end{equation*}
$$

Replacing $L(\varphi)$ by $L(\varphi)+\sum_{i} \cdot J_{i} \cdot A_{i}$ where A_{i} have a structure similar to $L(\varphi)$ and expanding ($A 2.7$) with respect to J_{i}, we can obtain renormalized expressions for composite operators and their products, for example,

$R_{M S}\left\langle T A(x) e^{L}\right\rangle_{0}=\left\langle T \Delta_{M S}\left(T A(x) e^{L}\right) e^{L_{R}}\right\rangle_{0} ;$

$R_{M S}\left\langle T A B e^{L}\right\rangle_{0}=\left\langle T\left(\Delta_{M S}\left(T A e^{L}\right) \Delta_{M S}\left(T B e^{L}\right)+\Delta_{M S}\left(A B e^{L}\right)\right) e^{L_{R}}\right\rangle_{0}^{(A 2 . \theta)}$
and soon. Here L_{R} and $\Delta_{M S}$ are lacal quantities and can be represented as a sum over the set $\left\{O_{n}\right\}$ of monomials composed of φ and its derivatives as follows

$$
\begin{align*}
& \Delta_{M S}\left(T e^{L}-1\right) \equiv L_{R}=\sum_{n} Z_{n} \cdot O_{n}(\varphi) ; \\
& \Delta_{M S}\left(T A e^{L}\right)=\sum_{n} Z_{A n} \cdot O_{n}(\varphi) \tag{A2.9}\\
& \Delta_{M S}\left(T A B e^{L}\right)=\sum_{n} Z_{A B}^{n} \cdot O_{n}(\varphi)
\end{align*}
$$

Functions $\&$ in these relations are pure poles in ϵ and polynomial in all external momenta and masses (in particular, Z are independent of μ). Substituting (A2.9) into (A2.8), we have finally

$$
\begin{equation*}
R_{M S}\left\langle T A e^{L}\right\rangle_{0}=\sum_{n} Z_{A_{n}}\left\langle T 0_{n} e^{L_{R}}\right\rangle_{0} \tag{A2,10}
\end{equation*}
$$

$R_{M S}\left\langle T A B e^{L}\right\rangle_{0}=\sum_{n, m} Z_{A n} Z_{B m}\left\langle T O_{n} D_{m} e^{L_{R}}\right\rangle_{0}+\sum_{n} Z_{A B}^{n}\left\langle T O_{n} e^{L_{R}}\right\rangle_{0}(A 2.11)$

References

1. Wilson K. Phys.Rev., 1969, 179, p. 1499.
2. Weinberg S. Phys.Lett., 1980, 91B, p. 51; Ovrut B. and Schnitzer H. Phys.Rev., 1980, D21, p. 3369.
3. Kazame Y. and Yao Y. P. Phys. Rev., 1980, D21, p. 1116.
4. Buras A.J. Rev. Mod. Phys., 1980, 52, p. 199.
5. Shifman M.A., Vainstein A.I. and Zakharov V.I. Nucl. Phys., 19.79, B147.
6. Chetyrkin K.G., Gorishny S.G. and Tkachov F.V. Phys.Lett., 1982, 119B, p. 407.
7. t'Hooft G. Nucl. Phys., 1973, B61, p. 455.
8. Collins J.C. NucI. Phys., 1975, B92, p.477.
9. Vladimírov A.A. Theor.Mat.Fiz., 1980, 43, p. 210 ; Chetyrkin K.G. and Tkachov F.V. Phys.Lett., 1982, 114B, p. 340.
10. Tkachov F.V. Phys.Lett., 1983, 124B; Pivovarov G.B. and Tkachov F.V. INR preprint P-0370, Moscow, 19884.
11. Chetyrkin K.G. ot al. INR proprint P-0337, Moscow, 1984.
12. Zimmormann W. Ann. Phys., 1973, II, p. 570.
13. Zavyalov O.I. Renormalizèd Feynman diagramms. Koscow, 1979.
14. t'Hooft G. and Veltman M. Nucl.Phys., 1972, B44, p. 189.
15. Bogoliubov N.N. and Shirkov D.V. Introduction to the theory of quantized fields. Moscow, 1976 ,
16. Stepanov B.M. and Zavyalov O.I. Yad. Fiz., 1965, 1, p.922; Zimmerman W. Ann. Phys., 1973, 77, p. 536.
17. Gorishny S.G. JINR, E2-86-177, Dubna, 1986.
18. Vassiliev A.N. Functional methods in quantum field theory and statistical mechanics, LSU, Leningrad, 1976.

Will you fill blank spaces in your library?
You can receive by post the books listed below. Prices - in US 8, including the packing and registered postage

D1,2-82-27	Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.	$\mathbf{9 . 0 0}$
D2-82-568	Proceedings of the Meeting on Investiga- tions In the Field of Relativistic Nuc- Lear Physics. Dubna, 1982	$\mathbf{7 . 5 0}$
D3,4-82-704 Proceedings of the		

| D11-83-511 | Proceedings of the Conference on Systems and
 Techniques of Analitical Computing and Their
 Applications in Theoretical Physics. Dubna, 1982. | $\mathbf{9 . 5 0}$ |
| :--- | :--- | :--- | :--- |
| D7-83-644 | Proceedings of the International School-Seminar
 on Heavy Ion Fhysics. Alushta, 1983. | $\mathbf{1 1 . 3 0}$ |
| D2:13-83-689 | Proceedings of the Horkshop on Radiation Problems
 and Gravitational Wave Detection. Dubna, 1983. | $\mathbf{6 . 0 0}$ |

$\begin{array}{lll}\text { D13-84-63 } & \begin{array}{l}\text { Proceedings of the XI International } \\ \text { Symposium on Nuclear Electronics. } \\ \text { Bratislava, Czechoslovakia, 1983. }\end{array} & \mathbf{1 2 . 0 0}\end{array}$
E1,2-84-160 Proceedings of the 1983 JINR-CERN School

D2-84-366 Proceedings of the VII International Conference on the Problems of Quantum Field Theory.
Alushta, 1984 .

D1,2-84-599 Proceedings of the VII International Seminar on Bigh Energy Physics Problems. Dubna, 1984.
017-84-850 Proceedings of the ifi International Symposium on Selected Topics in Statistical Mechanics. on Selected Topics in Sta

D10,11-84-818 Proceedings of the V International Meeting on Problems of Mathematical Simulation, Programming and Mathematical Methods for Solving the Physical Problems. Dubna, 1983
Proceedings of the IX All-Union Conference on Charged Particle Accelerators.

D4-85-851 Proceedings on the International School on Nuclear Structure. Alushta, 1985.

Orders for the above-mentioned books can be sent at the address: Publishing Department, JINR Head Post office, P.O.Box 79 101000 Noscow, USSR

Горишний С.Г.
0 построении операторных разложений и эффективных теорий в MS-схеме. Общий формализм

Предложен метод построения асимптотических разложений фейнмановских интегралов и полньх функций Грина по большим евклидовым импульсам и /или/ массам. Метод основан на свойствах ультрафиолетовой R - операции с перевычитаниями и может быть прямо применен к MS-перенормированным величинам при раз ложении их по MS-перенормированным операторам.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1986

Gorishny S.G.

E2-86-176
On the Construction of Operator Expansions and Effective Theories in the MS-Scheme.

General Formalism

A method of constructing asymptotic expansions of individual Feynman integrals and full Green functions in large Euclidean momenta or/and masses is presented. The method is based on properties of the ultraviolet R -operation with oversubtractions and is directly applicable to MS-renormalized quantities, expanding them in terms of MS-renormalized operators.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986

