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fective theories (ET)/2’3/ have become widely used ‘for qualitative
and semiquentitative predictions within QCD and other realistic field
models (for a review see’4*9/), An important point in practical appli-
cations of theése asymptotic expeansions is the calculation of coeffi-

Operator product expansions (OPE) of various kinds and ef-

cient functions (CF) entering into them, which are the only piece
emenable to evaluation in perturbation theory (PT). There exists a
certain analogy between CF and ultraviolet renormalization constants
because both of them originate from the region of large momentale/.
As 1s well known, the most convenient scheme for evaluating ultravi-
olet (UV) counterterms is the minimal subtrection (MS) scheme/7/,and
its convenience ig mostly due to. the polynomiality of counterterms
in masses/8 « This provperty leads to simple renormalization group
(RC) equations and lays the ground for some powerful methads of com-
puting RG perameters 9’3 From the ‘analogy mentioned above one may
expect that a similar property with the same consequences should
hold for CF’s. Nemely, one may hope that within the MS-scheme CF:s
can be expanded in powers of small dimensionél parameters like mo-
menta and massesiwithbut giving rise to infrared (IR) singularities.

/10/ /6,11/

These expectatioﬂs have been proved to be correct (see also

for a study of some particulai cases]),

In short, the method of/ 1% consists in the following. The for-
mal Taylor expension of Green functions.in powers of small momenta
and masses produces IR divergences, which makes asymptotic series
meaningless, However, as has been pointed out in/10[, correct asymp-
totic estimates can be restored by adding,to the formal éxpansions,
special IR counterterms, These counterterms compensate IR divergen-
ces and convert the whole series into & well-defined distribution.
The expansion& of Green functions thus obtained can be cast into a
form of OPE and ET, the IR counterterms being interpreted as compo-
site operators, ?he method of/10/ is a general one and provides the
complete treatment' of Euclidean asymptotics of Green functions.How-
ever, a natural comnection of CF's with high energies and the UV re~
normalization gets ‘somewhat ‘lost,
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In a more familiar procedure of separeting different dimensio-
nal scales via the ultraviolet R ~operation with oversubtractions

712,13/

latter approach provides a uniform treatment both for the ultravio-

this connection seems to be more transparent. Moreover, the

let renormalization and operator expansions. However, till now this
formalism has been developed only for expansions in one large eucli-~
dean momeqtum/12’13/ and large masses 3 and, as a rule, with the UV
renormalization performed at a fixed momentum point, which is incon-
venient for practical calculations. Becides, it is somewhat unclear
whether in this approach one could construct CF's without infrared

logarithms (even in the MS-scheme used for the UV renormalization).

. In the present paper we apply the method of the ultraviolet R -
operation to construct expaensions of Green functions in any num-
ber of large Euclidean momenta or/and masses. Then, short-distance
expansions 12,13/ eand effective light theories/e’B/ can be obtained
as particular cases of the above limit. We start with the MS-renorma-
lized Feynman integrals and .obtain their expansions in terms of MS-
renormalized quantities. In the next publication/17/ we apply the
technique developed here to obtain some widely used expansions and
present arguments according to which in the MS-scheme the separation
of large and small dimensional parameters can be made at zero momenta
and’ masses with CF's free of IR logarithms,.

The present work is orgenized as follows. In the first section
we recall basic notions of the R-operation. The next section contains
our derivation of an expansion of individual Feynman graphs and all
defipitions relevant to it. In the third section we obtain the corres-
ponding expansion of the generation functional for various Green
functions. In Appendices we collect prescriptions of the dimensional
regularization and combinatorial formulae of functional teohnique.

1. R_- Operation

On the whole our notation follows that of ref./1o/.

A given Feynman graph G consists of vertices and lines connect-
ing them. Each graph G corresponds to & momentum integral construct-
ed via Feynman rules. Generally speaking, such integrals may contain
divergences, and to make integral expressions meaningful, Feynman ru-
les should be supplemented by a regularization. We shall use the di-
mensional regularization 14 that is the most suitable for our pur-
poses, Some basic conventions of this regularization are given in

Appendix 1, In what follows the regularization i1is implicit.

& subgraph ¢ of the graph G consiats of vertices and Tines
(may be, not a&ll) comnecting them, chosen from the vertices and
lines of G . A subgraph may coincide withk G or be a single vertex.
A subgraph § is properly contained in G if g 1is a‘xsubgraph
and g #+ G (9 1is a proper subgraph). At last, g is a nontrivi-
al proper subgraph of G if g9 ¢ G and 3 is not a single vertex,

Call a set of subgraphs {3‘} y Jx & G s a partition of
G, if 34.“3'; = @ and each vertex of G "belongs to one (and on-
1y one) ‘g e 43u3.

Then introduce the following I/ -operation defined on.any sub-
graph § . By definition, put A(9) =4, if g 1s a single vertex.
If ¢ is a disconnected graph, then A($) = 0. In other cases Alg)
is obtained by contracting @ into a point. This point forms a new
vertex with a Feynman rule uniquely determined by ¢ and indepen-
dent of ,G(a < G). An exact meaning of Afa) will be concretiz—
ed for the cases considered.,

 Now introduce (still purely combinatorially) the R-operation
via the relation’”
RG= = 0 AGL G/{34}, .
{3y *
where summation runs over all partitions of G. " The graph q/{Q,(} is

a graph obtained from G by contracting all ‘a-\ into points
with Feynman rules determined by A (3‘*),

1)

Properties of the R-operation introduced up to this moment are
sufficient for studyihg its action on the whole PT series (Green
functions, S-matrix, etc.)/13’1-0/. The corresponding formulae are

presented in Appendix 2.

A UV R-operation removing divergences that arise in the cour-
se“ of integration over large momenta can be imagined" to be a particu-
lar case of the construction (1) with a given choive of A(9)= Ay (3)
As is known, Feynmen integrals are rendered finite 1f one subtracts
UV divergences from all their one-partiocle-irreducible (1PI) compo~
nents,l.8., those which cannot be made disconnected by removing omne
line, Therefore, define Agy (3) = 01if ¢ is not 1PIL. This require-
ment confines the summation in (1) only over those {?d} , where
3.( is either a single vertex or 1PI. Call such partitions UV-
partitions 434}:«; . The quantity Ayv (3,) is a UV counterterm.
The definition of Dyv (3) is not unique: a polynomial of external
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momenta of 9 can always be a.dded/15/, and how we shall fix this
ambiguity detexmines the renormalization scheme. Here we consider

715/

two schemes: the MS scheme 1 and momentum subtraction scheme

Rewrite (1) in the form _
RG+a (q) (2)

Then. the,. MS-scheme is given by the following recurrent relation

y 3
Bus ()=~ K Rusd) )
where K is the operator that picks out poles arising when the di-
mensionality of space of the regulaerization D = 4-2& tends to its
physical value (4 for the Minkowski space). In full analogy, the mo~-
mentum subtrdction scheme is given by

Ag (g): -t ,Rtg) (4)

where ¢ is the operator that picks out several first terms in the
Taylor expansion at a Pixed momentum point. ‘The number of terms is
determined by demending convergence of the corresponding integrals
and coincides with the momentum dimensionality dimg of 3 o If
‘dimg < 0, then Ag(9) = Ays(§= o.

Let us expound some useful properties of counterterms:

a) they are always polynomial in the external momenta of g

b) in the MS scheme they are polynomial in any dimensional pa-
rameters {like masses) and independent of the regularization parame-
ter Il /8 .

The latter property is very helpful for eveluating Ay (i) and
RG functions related to it because it allows one to nullify any di-
mensional parameter and, thus, to simplify considerably the integrals
%o be calculated’%/,

Recurrent relations (3) and (4) .can be solved Bw1101t13/16/0
Call two subgraphs nonoverlapping if they either are disjoint or one
of them is a subgraph of the other. Consider any set of nonoverlap-
ping subgraphs of G . In this set separate the system of maximal
e'lements.i.e.,helements such that there are no subgraphs from the
set containing them as a proper subgraph. If the system of maximel
elements comprises some partition of G, then we shall say that the
initial set is & forest of G . A UV forest F{3§UV is a forest
including only 1PI graphs andfor single vertices, Then (3) and 43
can be written down in the form

/15/;

Bwus (J)gfkg 5;} N(-K) g; : )
: v ,
At(ﬂ= - ;g} ”[" f!:)g, (6)
v .

where K‘t and j are operators K and T acting only on ‘the
subgraph T . Here summation runs over all possible forests of &
except those containing 3 + Inserting these -splutiims into {1),we
have ’

Rer G = Fz’ﬂw 3” M)g, 3

where Ha = ’{a for the MS - scheme and N-ar—ty for the momentum
subtraction scheme, Summation runs -over all forests of G .

2. Asymptotic Expension of Individual Feyhman Graphs

The structure of the R-operation turns out to be very conveni=-
ent in analysing asymptotic properties of Feynman integrals. It has
been used in'
tor products and in

to prove the short-distance expansion of opera-

to obtain parameters- of effective light theo-
ries originated. from the large-mass expansion of the initial ones,
In those papers, however, momentum subtraction was used for the UV
rénormalization, which complicates practical calculations. Moreover,
in phenomenological applications one offen deals with a more compli-
cated asympiotic behaviour than one Euclidean large momentum or one
large mass. Here we present an extension of the pi‘ocedure 12/ to the
cage of asymptotic expansions in large Euclidean momenta or/and mas-
ses, UV divergences being removed in the minimal way according to
the MS-scheme. As 8 rule, our consideration will be aimed at the
construction of & convenient and efficient calculational scheme for
practical applicatfions, ‘o0 that sometimes our arguments will not be
mathematically rigorous (but,of -course, they can be made rigorous at
the cost of some complications),

Let all external momenta and masBes of lines of Ci be decom=
posed into two sets {Q,uM} ani {9, m} . We are interested in the
behaviour of RN‘C,' at large values of Buclidean Q and M:

11
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Momenta Q are assumed to be Euclidean, i.e.,each component of Q
tends to infinity so that QQ/Q’R‘)'{, Meny expen¥ions consldered in

the literature are generated by limits that are particular cases of
(8). For example, short-distance expansions correspond to Q— oo

and effective light theorie§ arise at Me>» oo,

Notice an important rolé that 1PI graphs play in the course
of the UV renormalization. Indeed, 1PI components contain all infor-
mat&oﬁ about UV divergénceé of the graph, and removing UV poles
from all 1PI components of the graph renders it UV finite. In the
‘course of an asymptotic expansion procedure there also exists type
of graphs pleying an analogous role, Namely, thése are components of
the graph which absorbe all the dependence on its large parameters
{Q,M} . It is clear that to obtain an dsymptotic e?pansion, one has
to expand only these components. Let us introduce some definitions.

Call a line of :G hard if at least‘one of the following condi-
tions are fulfilled: a) the line corresponds to a particle with a
large mass M; b) a nontrivial combination of large momenta Q can
flow through it. A subgraph h € ¢ is a®hard subgraph (H - subgraph)
if it contains at least one hard line and cannot be made disconnected
by deleting one line that is not hard. A partition of (G is hard
(H -partitlon) if it contains only H—subgraphs ‘and single vertices.

It is clear that H -subgraphs are analogs of 1PI subgraphs in
the: qu -operation., Ihdeed, as follows from the definition, any
graph G - can be represented in the form of a tree graph all lines of
-which are not herd .and effective vertices are just . H -subgraphs or
1Pl " subgraphs' independent of {QS and {M“.f Thus, it is sufficient
to obtaln an expansion of each H-subgraph because all components in-
. dependent  of - Q and M -come through the expansion procedure un-. .
changed, It is clear elso that each K -subgraph is represented by a
tree skeleton graph with hard Iines and 1PI effective vertices,

) R(,’:,—operation
N, ~) .
RYG = Zf 3’7 oy (a) 4/{(;} Z}; n a, f;) T3 O

where AH is d particula.r case of the A -operation and A" (7)# o
only if g is either a single vertex or an H -3ubgraph. ;‘hus, the
summation in (9) is effectively restricted by {3 3, partitions, i.e.,
by H —pa:ctitlons. Let us describe the algorithm of evalue.ting
w)(a) . Consider a given H -subgraph A < 9' . The set of its
external momenta consists of»exterm‘a‘l momenta: of { Wq i and,

Introducia now an interxmdia‘i:e

i
-

i

perhaps, of some internal integration momenta of G {&i + Conaider

the Feynman integral ’L(Q,q,,k M m) corresponding to f  and intro-
duce the subtraction operator t‘” such that

-tV h (9, Mm) = o (A*%), 10)

t(”) one ‘can choose thé Taylor operator that picks out some
first terma in the expansion of in powers of 9, end k at
some fixed point {qr 4h, l( kk} where 9~ kk""ir « The number
of terms is equsal to JeJqHA_-f- N, where

de h
'L—(Q,‘}, ‘(} H,m)'—; o(2 3‘7' )
Rewriting now (9) in the form analogous to (2) and defining

w) (,.,)/ )
W (h)= Ru A‘r (1)

we get (modulo én.,l )
/, -
RYG = 2 ()+RGG = (1-+) RVG= 0037 (.,

where we choose G to be an H -graph., Of cmurse, the estimate O(A’”)
in the r.h.s. of (12) i1s formal because RL”)G can be divergent as
€ -» 0, nevertheless, at nonzero &€ it is a well-defined quantity.

The meaning of (12) is fairly transparent: making a sufficient
number of subtractions in H -subgraphs, one can obtain any desired
behaviour of the l.h.s. of (12) as .2-’00 + Note that the relation
(12) gives the expansion of an unrenormalized graph G+ Indeed, one

-partition consists of single vertices. The term corresponding to
it in R“ M g is G itself so that we have

= (1-R )G+ 0(17")= % 11 ALG) G/igs, + 007 13)
where the subscript means the abaence of the term including only
single vertices.

v
3

To simplify the notation, in what follows the index N will be
omitted.

To solve the problem for the MS -renormalized graphs, note that
the action of Ry is determined formally on each term 6f the ré-
normalized expreesion R g G (see (1) with A= A,c). Indeed, each
term of the kind A,.,g (3)(,‘/{,} allows the interpretation in terms
of Peyngan integrels. The whole sum R Ms G is UV -fi-
nite as € -0, so that we may expect that R, (R y¢G) will also be



UV~finite. Let us show that this is indeed the case. We have

RuBusG= 2. Z 12008 T 2 (3) C /g1, 3 1)
uveq 443 Sq/{ajuv ‘IV
Let us try to reexpress (14) in terms -of explicitly UV ~finite as
€ — 0 quentities. Note that in (14)‘operations A, and Aye do
not commute since subgraphs of H -partitions include in general
vertices formed after shrinking all subgraphs of the UV-partition to
points., One may attempt to regroup terms in (14) so that the summa-
tion would be again over partitions, that is, over disjoint subgraphs.
For this purpose we will use the representation of Ry in a form
analogous to (7).

Call an H -forest the forest including only H -subgraphs and
gingle vertices, Denote it by F{t}H « Then (11) can be cast in-

to the form
;;7,{ (159
RHq= Z‘ ” (~t£) q)
Fiky, *
where tj (- (N)) a.cts only on j . Subgtituting (7) and {15)

into {14), we get

RH qu Z‘ ZJ
ng}avc[? ‘F{’L} Cq/fﬁ]uv
The double sum in the r.h.s. of (16) can be written as a single sum
over mixed forests. These are foresis elements of which can be ei-
ther H- or 1Pl -subgraphs with the restriction that the latter do
not contain H -subgraphs from the forest. If H -subgraphs (h} and

f{‘tk)g(_Kg)G- 16)

1PI -subgraphs {u_ form the system of maximal elements of this foerest,

then their union {ﬂ} U{u} ‘(together with possible éingle verti-
ces) forms & mixed partition of G . With the help of the mixed fo-
rest F{?}uv H the sum in {16) can be rewritten in the form

: 4]

Rug G = 2, n(“Mg)q

F{?}qv.u 8 “17)
L2 (netyz G [IERIZ. ea)q
jhjviule g " h F{gch}uv” p{”‘g“}uv
8

CEEIR =l i

= 2., 0 &g (W) Ay ) G/({R}U{u})

= (hJUIui=G, hiiu=g h e /(yULe)

where § may coincide with k only as 1PI -subgraphs*‘ MJ is t§
for H ~8ubgraphs and Kg for 1PI cnes a.nd

Dy (h)= -1, 5. (- Mg) A

F'(S':Huvu .
=ty 2, [T 8ge2) Apys (2) f»/(ir} ufu}..v)
{23, 0{udyy <h Ta
/n.#‘b, r*Nuw.=¢
Relation (17) 1is the desired representation of (14) as a sum over

partitions. The operation A5 differs from Apy by the inclusion
of ultraviolet MS counter-terms of . Indeed, from (17) we have

Bg(R)= A, (Rysh)= -ty R, Ry b

= 2. ( nAHS (w)ay (ﬂ'/{u’j’uv)
‘(“}uv <R

In (17) operations Ag and A ygact independéntly because their ac-
tions are determined on disjont graphs (kﬂllr =@ )s Note that ‘in
this relation A ¢ (“) subtracts only divergences of the initial graph
G . However, the action of Ag on H -subgraphs produces new. vertices
which can give rise tc UV singularities having nothing to do with
those of G. Nevertheless, the whole expression (17) turna out to be
UV ~finite. To see that this is indeed the case, add to the expres-
aion {‘E:‘} ,J‘ AMsl“)q/{k}"resulting after the action of ﬂAB )
terms needed to meke it UV-finite. These terms supplement the sum to
the complate RH: operation Rﬁs (C;/{/t}") ’l‘he whole expression
should be unchanged, so 'that we have to redefine Ag so as to ab-
gorb the difference (%-' I'I Apyg )~ B yg) - Q/{/L}”. It can be done in
a full snalogy with formuis.e (14)-(18). Denote the quantities thus
redefined as Ag .- Clearly, Ap—Ag contains only terms with sub-
tractiona of divergences aassociated with shrinking to points gubgraphs

" (18)

{"—}H s ¢ « Making such a perrangement we get:
By Bus G = {% c g Ag (k) Rus(q/{h}n); (19)
Ap(h)=-ty 2, QAR('E) Rug (L/{tju).

{r4hl, .
Quantities AR are renormelized ones as compared to the "bare" Ag.

The explicit relation between AR and AB is gilven by




Ag(hy=2. N € Am(z(Fn)fl D (Trin).

Fftck} T# Tmin . (20}
Here F{‘E}H is an H -forest of the graph /L , and ‘/‘Z'Ml'dis* the
system of its minimal elements, i.e.» etements which have no subgraphs
from the forest. Then, T(FJ is the so-called reduced graph obtained .
from T by shrinking to points all elements of the forest F pro-
perly contained in 2 . Note mlso that to obtain (19),(20), we have
used the fact that AMs~ commutes with 'tl.. because the former is a po-—
Yynomial in all dimenaiohal parameters.

- L A -

The Rpyg~operation is linearly in Ap Dbecause of their UV-fini-
teness, This finiteness can be established by induction. If the only
H -subgraph of h is h  itself, then Ag(h)= -ty Rus h and
this is an explicitly UV -finite quantity (we assume here that ta
are chosen so that their action does not lead to infrared singuleri-
ties and postpone the discussion of other possibilities to the next
publication/w/I. Then the induction with respect to the number of
H ~subgraphs can be done via (19). Thus, N g are UV -finite. A5 &
regult, we obtain that the r.h.s. of (19) is also UV -finite as a
sum of explicitly UV -~finite terms.

Now return to our problem and notice that due to (12) RH Rnsq
is 0(AV) as A—»oo , This allows ug to rewrite Amg § in a
form enalogous to (13):

Rus G = _{%n g Ag (h) Bus (q /{A}H) * 0(2—‘7, (21)

a.nd. after that the problem of expanding the MS -renormalized Feynman
integral is almost solved. The only fact preventing us from saying

go is an incomplete factorization of large parameters {Qj Nj in

Ag (k) The point is that graphs in Bus( G /{h}y) can still

contain H -subgraphs and thus be dependent on {Q‘M} . Nevertheless,

all terms on the r.h.s. of (21) have at leagt cne H -subgraph con-

tracted into & point as compared to G, and this allows one to use '
(21) for a complete reduction of all H ~subgraphs., This reduction i
can be performed by applying (21) recursively to those graphas, that '
8till contein the dependence on {Q,M} » The recursion stops when &ll

terms on the r.h.s, of this expression do not contein any H -gubgraphs a
and all large parameters turn out to be factorized in Ag . The final
result of +this procedure cam be represented in the form

RusG = {Z}J IMcpeh) Bus (G/4n35) + O(I7%) (22) !

10

= Rus(RZIG) + 047, (z2)

Here the sum goes only over complete H -partitions {h}c « They
are camplete in & sense that the reduced graphs G/_{;L_}; " do not
contain H -gubgraphs. The Ry¢ —operation is assumed to be linear
in Cp , because the latter are UV -finite. Coefficients Cg can be
expressed vie some combinations of Ap :

C (4)._ ”[—AR(?CF))) (2 )
R * 3
heF (T3,
where F{’L’}H is & complete, H -forest, that is a forest minimak
elements of which form a& complete H -partition of L « This rela-

tion is rather useless in practice ané we prefer to obtain a recur-
rent formulae for Cp directly from (22). Rewrite the latter equation

Rue G = CrR(G)+ Rus Ras G + o(x7%).

Applying the operator t(,l to both its sides and recalling (10) we
get

¢ (q) tg Rys ((1- Ras)q)= tq‘RMS(q Z—' nck(")q/f’*f:)(-ﬂ}

#G3,

This formula determines CR(q) via CR, defined on proper subgraphs
of G and, hence, allows one to compute CR(C}) recursively start-
ing from A with only one complete H -partition coinciding with A
itself, so that Cg(h) = t) Rych . It is worth noting that the
reductionr of H ~subgraphs can be performed not only in (21), but
elso in (17) and (13). As a result, functions Cp and Cy arise na~-
turally., They can be related to Apg and Ay via relations simllar to
(23) and obey the following recurrent equations:

Co (6)= tg (RusG - e s (R 2 1800 Gffigutat)
H {unl" ¢3ay " (25)

Cu(G)=tg (G- Z M cuth) G /ARt ).

In turn, functions CR ’ CB y Cy and Ay are related to each
other (ecf. (18) and (20)):

CrG)= 2., T (~Aus (’t(F)))n Co(Zmin);
GE F{‘L‘}c TE Thin Tynin
€8 (G)=2, 1 Aus(u) Cy(G/{ud,,); " (26)

'{ ‘4_}‘0 v
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Cu(g)= Z. M (- Ay (T(F)), o
qeFr{td, © c (26)

where Tmi, 6re minimal elements of the forest F{'f:}H . Thus, Cg
can be completely expressed in terms of AMs and Ay. C

Formulae (22)-(24) give the solution of the brobiem formulated
at the beginning of this section. i

The expansion (22) has the form of an operator expansion. In-
deed, its r.h.s. contains the sum of renormalized graphs C/-{ﬂ,_}; .
A new vertex formed by shrinking h toa point may be identified with
an operator insertion. This identificatiqn is possible because CR(A)
is a power series in all external momenta of h except { QY ‘(includ-
ing some integration momenta of G , see (10)). Every term of this
geries uniquely corresponds to the Feynman rule generated by some
operator vertex, which allqws the interpretation in terms of an ope-
rator expansion. A more detail treatment of this possibility is gi-
ven in/17/ and in the next section.

3. mwiiéﬁu of Full Green Punctions

, Hithexrto we have dealt with individual Feynman graphs, whereas
in applica%ions it, is often necessary to know the form of asymptotic
geries for opﬁplicated objects, such aaigA—matrioes, Green functions,
etc,y Which include the summation over an infinite number of Feynmen
integrals. To sum up expansions of individual integrals and to cast
the_ results into & form of OPE or ET, one can resort to a very con-
venient combinatorial %echniquo developed in/10’13/. For our purpose
thoAformulae obtained in/10' are most useful because they are direct-
1y applicable to the MS -rencrmalized quantities (see Appendix 2 ).

Our consideration will be based on the following observation.
Both R ng anrd Rgs have ‘the structure of relation (1), i.e.,both of
them are particular casss of the algebraic construction of the R -
operation at a certain choice of A (3 ). To achieve a compléte ana-
logy, it is convenient to extend the summation in eq.(22) to all par-
titions and to readdress the function of separating only admissible
ones (UV -partitions for the R g -operation and complete H -parti-
tions for the R4, -operation) to Ayc and Cg setting them zero in
all wrong cases. In whai follows just this possibility is undsrstood.

Eq. (22) can be decomposed into suceessive actions of Rogand Ry,

A}

RHSq =" Runs [Ras q) + 0[_2_”), 27

12
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where R g does not affect
ty (27) permits us ‘to divide the whole problem into two -steps: first,

CTg &as has been expleined above., Eguali-

one can Tedolve the combinatorics of the Rgg -operation and then
MS -renormalize the obtained expressions.

Gongider a theory described by the interaction Lagrangian «SZ‘L-M(,; )
and the correspmnding generating functional (see eq.(%2.8). Adding
to Lint terms ;L_U,,,Dh_ with the sources {J,§ of local -composite
operafcors-{On}composed of the fields y and their derivatives, we
obtain the generating functional G( I , { U,L} ) of Green functions of
operator products 11 O4 - ‘

, LS |
<THC) e = (M504 1,0 ) G(3,19)

A ¢ ang
=( U S [ ) T05,00.3)

where 3;([)(.,()-:[6//1’-( e-‘*"'x"‘ZZ(xd)For applications one usually needs
agymptotics of Fourier transorms of expressions like the above ones

at some momenta of Jx(Xs) end masses of @ tending to infinity, so
that we should study' ¢(J{J})in thet limit. The limit corresponds

to the situation when Fourier transforms of some sources J,, are
localized at large momenta {§}—» oo and some fields {denote them
by ? ) have large masses M ~ [Q/ (see ©q.(8)). Usually, it is suf-
ficient to consider Green functions without heavy external particles

and we will assume that J <corresponds to fiélds with a Tinite mass.

Being expanded in J ., J, and coupling constants of xt_ut;the
renormalized functionnl Ryg¢ §(7,{3,})is representable as a series
of Feynman integrals, momenta and masses of which satisfy conditions
(8). Therefore, to obtain the asymptotics of Ry C;(J, {J,.,j) one
can apply relation (27) diagram by diagram., Consider at first the
effect of the Rgqg -operation, It is a particular case of (1), so that

we can use formula (42.10) with A replaced by Cgp =

Ras G MY =<Texp[Gy (T (6P RRHII )y (28)

where the action of Cp is nontrivial only on H -subgraphs and
Rg¢ i3 defined as a sum only ;w'er the.
complete H -partitions. To pick out these partitions, one can de-
mand Cgp %to be zero on graphs, the contraction of which inte a po-
int gives a vertex wlth at least one hard line. Such vertices cor-
respond to operators containing heavy fields #a or carrying large
momenta and cannot be produced by shrinking to points graphs of comp-
lete H -partitions, PFurther, we will consider only the sese when all

8ingle vertices, Moreover,
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large momenta enter a diagram through operator insertions o
‘that ¥ cdrries only & finite momentum. As & consequance, all graphs
with J at the ends of external lines are not hard and C, nulli-
fies them. The only exception is the single vertex 37¢ . Taking into
account all these remarks, we gets

Rus G(3{9m3)=XTexp(cy (Te™PP* 2% )uap)s, )

The action of Cp contracts graphs to vertices., As has ‘been explained
in the previous section, éuch vertices correspond to insertions of
gome local operators. Formally, this fact can be expressed by the
equation

where C; are CF's{ {Ch-(@)} is & complete set of local operators
composed of light fields' and their derivatives and M 1a the renor-
malization parameter (see Appendix I). The origin of the dependente

of b; on J, is the same as that of their dependence on coupling
constants. Inserting (30) into (29), we get

Ras G (3 1903) =< Texp (Legy ({2nd, )+ T2 ), . (31)

The r.h.s8, of this relation is the unrenormalized effective genera-
ting functional of the theory in the asymptotic region (8) with C;
being its effective renormalized couplings. As it is states by eq. (27),
it can be renormalized by applying the Ryg4 -cperation. Using formu-
lae (A2.11) and (A2.15) with Lgy instead of L, we have

Rus Ras 9'('1{3';5): <TCX/>(ANS (Texf’(Lfff({Jﬂle’)f ‘750)“1))>o} (32)
e (T 1) 7,60 6336 Y= L1, o9

where C; are "pare" CF's containing, in general, poles in\é + Note
that we could obtain the same representation (with "bare" CF's) by
applying to G(J, {jm} ) relation (22) expressed in terms of func-
tions Cg (ses eqs. (25)).

Thus, we have the followingtasymptotib expeansion

Rus G (5 193) ={Texp(Lioss (194, 9)+ Tp) D, + o (A*) (34)
that solves the problem we have been degling with.

.
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&
b Se)= S o=

In a subsequent publication this general formula will be used
for deriving some expansions useful in.applications.
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APPE NDIX 1. Parameter M _in the Dimensional Regularization
7 - .

The usual recipe of the dimensional reguiarizat}on consists in
réplaciné all four-dimension&l integration measures in the momentum
space by measures of infegration in a formal complex-valued D~-dimen-
sional space. Having in view RG applications we should take care of
preserving all canonical dimensions and introduce for this purpose
some unit of mass /M o Then we define the measure in the momentum
space to be

Fip e, e-tiro)

Then ¥ -functions and variational derivatives determined according

(A1.1)

to (A1.1) should sétiéfy the following natural reletions

. S (
“ fcff’ S(p)= i, g—:{—g= s(P-4) (A1.2)
and are given by
i I 'SP .
S0P = 0TS 5oy = M St (41.3)

where the superscript D marks the usual Xwithout)v ) definitions

N

of the corresponding quantities, *°
The position space measure dx can be introduced via the rela-
@am) P S dp e P_ 4

énd turné out to be

S = /"—Zt'fd”i . A . (A1.4)

b

tion

Using the above relation and the analogs of (A1.2) for the position
space, we have

Lz 52 _
S‘P‘(X} * . } '(A1 -5)

R0

e



Definitions (Al1.1), (A‘] 3) and (A1.5) fix automat:-.ce.lly the way
that fl enters .into any dimens:Lonally regularized Feynman integral,
In particular, in the p- space each connected component of Green
fuﬁct,i»ons is accompanied by the s)-function expréésing momentum
conservation and coritaining the factor ﬂ-ze. Then each momentum
loop carries ﬂze in full accordance with conventional rules. Note,
‘however, that the usual rules dealing with ZSID without ﬁ turn out
to be rather inconvenient in the context of the functional technique
(see Appendix 2). For example, each time we should keep in mind the
presence of -an extra power of jq-Ze (with respect to loop ones) per
connected component that complicates the rule accvording to which
the operation A acts. Further complications mey arise when deriv-
ing RG -equations. Definitions introduced ebove are more successful
from this point of view , and we use them throughout the paper.

APPENDIIX 2. PFunctional Technique

The meterial of this appendix is based onl13’10’18/.

The quantum expression for the Wick theorem

TE(¢)= NF () (a2.1)
can bg represented in the following functional form
Foty) = € Btp), - 12.2)

where (,3 and Y ere quantum on-shell and classical off-shell fields;
F,. and F, are linear functionals of the field ¢ of the form

T
F,;,’N (1{;): ;,f[-‘v;’:'v{x,, " Xn)- P0X)- .‘ff;(‘:;),

so that T F (t?) and N F, ~(«? ) represent time and normal ordered
functionals, respectively. At last,

de Ja S0 Dc{xhyj Fely) ;

Dix, y) = ATPw) §p, = [22 e rtxw

7y '( y k”)b ml""P—IE
Note that all the prescriptions of the previous appendix are operative
in the abovs formulsae,
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Consider the functional
_ pltprT
G(Oy)=¢ 7y .(A2,3)

where L(‘F)= "fLr'nt (tf).:/x , Lint () being an arbitrary polynomial
in v , and Uy=fdkI®)¢l) , T being a source of the field ¥ .
The unrenormelized generating functional of the Green functions of
the theory is determined by

G(7)= ¢, (7 ¢=0)= (Tt ”"’} P (A2.4)
Fr= q'/j)‘/’)

Using the conventional diegrammatic’ zepresentatlon for coefflci—
ent functions of G(J), we can introduce the.action of the R=-opera-
tion (1) on G:

R4(@)= R[e'4(9)],..]= R<TG(g 9%

The combinatorics of the above expression can be explicitly resolved
and it turns out that the action of R 1s equivalent to wmddirg some
counterterms to L(\F ):

where G, , in turn, is given by (A2.2) with

(A2.5)

RG(T)= < Texp(a(Te+IE 1)>,

A g A A A A ! | '.6
=<'T’exf([_l’(;:‘)-f J:,o-rA(Texf(L{,p).,.g,f)_ L(Y)"J‘[’—1))>‘) . (A2.6)

The last line reflects the fact that A(g) = 1 for gimple vertices.

For the particular case of the UV -renormalization we have
Aw(g) = 0 dif g is not 1PI, 8o that Ay nullifies all graphs
conteining vertices Uy (except the simple vertex Uy ). As a con-
sequence, we get

Ay { Texp (L) +38)-L($)-3¢~1) = Aqv (Te Lef) ZL§)-1)

and, for example

Rug G(3) = <TcxP(L(?)+Skf+ A"S(Te —L(g)~ i))}
Replacing L(\f) by LW)"‘ %-'DQ'A{ where A{ have a structure si-
milar to L,bp) and expanding (42.7) with respect to J_ , we can
obtain renormalized expressions for composite operators and their
products, for exemple,

(A2.7)
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Rus <TAWE"D = ( Tays (Taget)etr), ;

k,,d’f'ﬁse‘) (T[Am (TAe")Aye (TBe )+ANSCA8€ PeF> (Az 8)

and soon. Here LR and AMS are local quantities and can be repre-
sented as a sum over the set {lh;} of monomials composed of ¢ and
its derivatives as follows

Aus (Te1)= Lg = 25 2:20u(p);

Bus(Thae )= 2 2Zp, Ou(y); (42.9)

) n
L . ;
Apye (71f?f5£2 )== 2;9 E s On (YQ).
Punctions ¥ in these relationsg are pure poles in e and polynemi-

al in all external momenta end masses (in particular, 2 are indepen-
dent of fl ). Substituting (A2.9) into (A2.8), we have finally

RuslTACD, = 3. Zp, {T0, e - (A2.10)

g Lg " L
RMS<TH&eL>g=hZ'-:‘ Z 4 2y <T00mC )o+;" z2,:{Tq.e 2—(;\2.11)
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A method of constructing asymptotic expansions of indi-
vidual Feynman integrals and full Greem functions in large
Euclidean momenta or/and masses is presented. The method is
based on properties of the ultraviolet R-operation with over-
subtractions and is directly applicable to MS—-renormalized
quantities, expanding them in terms of MS-renormalized opera-
tors.
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