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Operator product expansions (OPE) of various kinds/ 1/ and ef­

fective theories (ET}/2,3/ have become widely uaed 'for qualitative 

and semiquantitative pre~ictions Within QCD and other realistic field 
models (for a review see/ 4 , 5/ }8ÃD impoftant point ~n practical appli ­

cationa of theae asymptotic expansions isthe calculation of coeffl ­
cient fun~tions (CF) entering into the~, which are the only piece 
aroenable to evaluation in perturbàtion theory (PT). There exists a 
certain analogy between CF and ultraviolet renormalization conatante 
because both of them originate from the region of large momenta/6/. 

As is well known, the most convenient acheme for evaluating ultravi­
olet (UV) counterterms is the minimal aubtraction. (MS) acheme/7/,and 

its convenience ia mostly due to the polynomiality of counterterma 
in masses/S/. This property leads to simple renormalization group 
(RG) equations and lays the ground for some power{ul methQds of com­
puting RG parameters/9/ . From the 'analogy mentioned above one may 
expect thãt a similar property with the sarne conaequences should 
hold f'or ÇFJs. Namely, one may hope that wi thin t he MS-scheme CF,:; 

can be expanded in powers of small dimensional parameters like mo­
menta and masses.without giving rise to infrared (IR) singularities. 

, .. -:	 , /10/ /6 11/
These expectat10ns have been proved to be correc~ (see also ' 
for a study of some partic~lar cases). 

In short, ~he method of/ 10/ consiat~ in the follow1ng. The for­
mal Taylor expansion of Green functions,in powera of emall momenta 
and masses produces IR divergences, which mnkes asymptotic serias 
Ineaningless. However, as has been pointed out in/ 10f , correct asymp­
totic eatimates can be restored by adding,to the formal ~xpansions, 

speeial IR counter-t erma , These count er-t arma companaate IR divergen­
ces and convert the whole serias into a well-defined distribution. 
The expenad.one of Green f'unc t Lona thus ob t af.ned' can be caat into a 
forro of OPE ahd ET, the IR counterterrns being interpreted as compo­
si te oper-at-or-s , The method of/ 10/ ia a general one and provides the, 
complete treatmení' of Euclidean asymptotics of Green functions.How­

ever, a natura! connection of CF's wit~,high energies ~nd the UV re~ 

no.rmalization geta nomewhat 'lost. 
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In a more familiar procedure of separating different dimensio­
nal scales via the ultraviolet R -operation with oversubtractions 
/12,13/ this connection se~ms to be more transp~rent. Moreover, the 
latter approach provides a uniform treatment both for the ultravio­
let renormalization and op~rator expansions. However, till now this 
formalism has been developed only for expansions in one large eucli­
dean mome~tllin/12,13/ and large masses/3/ and, as a rula, with the UV 

renormalization performed at a fixed momentum point, which is incon­
venient for practical calculations. Becides, it is somewhat Unclear 
whether in this approach one could construct CF's without infrared 
logarithms (even in the MS-scheme used for the UV renormalization). 

. In the p'resent paper we apply the method of the ultraviolet R ­
operation/157 to construct ,expansions of Green functions in any num­
ber of Iar,e Euclidean mo~enta or/and masses. Then, short-distance 
expansions 12,13/ and effective light theories/2,3/ can be obtained 

as particular cases o~ the abova, limit. We start with the MS-renorma­
lized Feynman integraIs and .obtain their expansions in terms of MS­
renormalized quantities. In the next pUblication/17/ we apply the 
technique developed he,re to obtain some widely uaed expansions and 
present arguments according to which in the MS-scheme the separation 
of large 'and amall dimensinnal parameters can be made at zero momenta 
and' masses with CF's free of IR l~garithms. 

The present work is organized as follows. In the first section 
we recall basic notions of the R-operation. ~he next section contains 
our derivation of an expansion of indiviuual Feynman graphs and alI 
defi~itions televant to it. In the third section we obtain the corres­
ponding expansion of the generation funct20nal for various Green 
functions. rn Appendices we cóllect preacriptions of the dimensional 
regularization and combinatorial formulà~ of functional teohnique. 

1. R - Operation 

On the whole our notntion followe that of ref./10/. 

A given Feynman graph G consists of vertices and lines connect~ 

ing them. Each graph G corresponds to a momentum integral oonstruct­
ed Yia Feynman rules. Generally speaking, such integraIs may contain 
divergences, and to maka integral expressions meaningful, Feynman ru­
las should be supplement~d by a regularization. We shall use the di­
mens~Gnal regularization/141 that 1s the most auitable fo~ our pur­
poses. Some basic conventions of this regularizati~n are given in 
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ApIlendix 1. In what f'ollows the regularization ia implicit. 

A subg-raph ,- of the graph G oonsists of vertices and tines 
(may be, not alI) connecting them, chosen from the vertices and 
lines of G. A subgraph may coincide with G or be asingle vertex. 
A subgraph , is properly contained in G lf ~ ,is a. subgraph 
and ~ ..... G ( 3 ia a pz-opez subgraph}, At Last., 8 is 'a nontrivi­
aJ.. pxoper subgraph ,of G íf a I: G and ~ ia: ne t a single vertex. 

Call a set of subgraphs {f.,( J ,:J-t ~ Cf ,. a part-ition of 
G, if ~-' na-,. = ~ and each vert.ex of G' belongs t o -one (and on­

ly one >- ~ é { ,.,(3. 
Then introduce the following A -operation defined on.any sub­

graph a . By def'inition, puf .6(9) =' i,.' if ~ ia a single' vertex. 
If S: is a disconnected graph, then A (:n O. In other oases 'AlI)IC 

is obtained by contracting 1 into a po~pt. This point forms a new 
vertex wi th a Feynman ruIe wIiquely determined by 1 and indepen­
dent of ,G( ~ S: G}. An exact meaning of A (3) will.. be concretiz­
ed for the cases considered. 

Now introduce (still purely' combinatorially) the R-op-ération 
via the relation/15/ 

RG= z, n à (3") <1/{3.}, 
~~~~ tA . (1-) 

where .sununation runs over alI partitioná of G. r The gz-aph c:; /{~~l ia 
a graphobtained from G by contracting 'all ~ "" into points 
wi th Feynman rules determined by A (~~). 

Propertiea of the R-operation introduced up to thia moment are 
aufficient for atudyihg ita act~on on the whole PT serias (Green 
functions, S-matrix, etc.)/1 3,10/. The correspond1ng formulae are 

presented in Appendix 2. 

A UV R-operation removing divergences that arise in the cour­
ae' of integration over large momenta can be imagine~ to be a particu­
lar caae of the construotion (1) with a given oho í.oe of A (1) == 'A~v (3) 
As· ie known, Feynman integrala are rendered finite if one aubtracta 
UV divergences from alI their one-partiole-1rreducible (1PI) compo-
nente,i.e."those wh1ch cannot be made diaconnected by removing pne 
line. Therefore, define A...v (a) '" o if ~ is not 1PI. Thia require­
merrt' confines the summation in (1) only over those f I"'} ,where 
3Á is either a single vertex or 1PIo call .such partitions UV~ 

partitiona 13,(,1cw • The quantity. Al(v(J-) ia a UVcounterte-rm. 
The def'inition of A lt " ( 3 ) is not unique: apolynomial of externe.1 
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momerrta of.~ can .alwa,y.s be added/ 15/ , and now we shall 'fix thia 
~biguity deterndnes ~he renQrmalization acheme. Here we consider 

15/•two schemes: the MS acheme / 7/ and momentwn subtr-ac t í.on acheme/

Rewrite (1) in the form 

(2 )RCi ;:: Rlf + A (q). 

Then t he. MS-scheme is given by the f'ollowing recurrent relatiop 

(3)
A"'5 (8) == - K /R HS a, 

where 1(. ia the operator that picks out poles arising when the .di­

mensionality 01' space 01' the regu~arization D = 4-26 tenda to its 

physical value (4 for ~he Minkowaki space). In ~ull analogy. -the mo­

mentum subtraction schéme ia g1von by 

iii: (3) = - t: ~1; 3,	 (4) 

where 1; ia the operator that .picks out several firet terma intho 
Taylor expansion at a fixed momentum point. 'The number 01' terms ia 
determined by demanding convergence o~ the cQrresponding integra~s 

.,and coincides with the momentum dimensionali ty dimg 01' a /15/. 11' 

dimg ~ O, then Ô-tJ3) = AHs. (3)-= o. 
Let us ~xpound some useful properties 01' count~rterms: 

a) they are always polynomial in the externaI momenta 01' 3 /15/; 
b) in the MS scheme they are polynomial in any dimensional pa­

ramet~rs (like masses) and independent 01' the regularization pararne­
ter JI /8/. 

The latter	 property ia very helpful for e.valuating fl H S CJ) and 
RG functions related to it because it allows one to nu1lify any di­
mensional parameter and. thus, to simplifyconsidernbly tho integraIs 

to be calculated/ 9/. 

Reeurrent relations () and (4) ,can be solved expI1oitly/1 6/ .
 
Call two subgraphs nonoverlapping if they either are disjoint or one
 
01' them ia a subgraph 01' the other. Consider any set 01' nonoverlap­

ping subgraphs 01' G • In this set separate the eystem 01' maximal
 ! I' 

•olemen1s,i.e.,_elements such that ~here are no ~ubgraphs from the 
set containing them aa a proper subgraph. 11' the syatem 01' maximal 
elements oomprises some partitioD o-r G. the.D Vle shall sa.y that the 
initial set ia a forest Df G • A UV forest Ff 33uv ia a forest 
1nc)uding only 1PI gra~ha and/or single verticea. ~hen (3) and \41 
can be written down in the form 
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AH~ (3)~	 ~ ~ L ~ (-K7:J 3 ; (5 ) 
. - F/?:}qV 

(6) 
C>~t (3) t, ~ fl {-i;'f:) a) 

(J Ff?:J'lV ~ , 
~~6	 " 

where K"'t:. and J .ar-e operators K and t: actlng only on 'the 
subgraph "t .. Here sUJDmation runs oy.er aâ.L poaaã.bLe i'orests 01' 9' 
except those cerrtat.ní.ng 3 • InsertiJ18 th~ae 'S9lutÜms int-O (1) .we 
have 

-R -, n {- H!J} r.I': ~ c.rr "1 -	 Fi. 1. q , ri 7 J (1 ) 
IJ~v,q 

where H3 -= /}/I for the MS - .acheare end H3 =T:1 for the. 'momerrtum 

subtracti-on scheme•.Summation Tuns -over ,al1 farests of' G 

2. '&'SYlDpto'tlc Eg»anaion ~ Individual Peyhman -Graphs 

The structure 01' theR-operation turna ()ut tQ .b.e very conv.eni­
ent _in analysing 6symptotic propertiea 01' Feynman integrals. It nas 
been used in/12~131 to prove the short-di~tance expansion 01' apera­
tor prDducts and in/3/ ~o obtain parameters-ot effective 11ght theo­
riaa otiginated.from the lar~e-mass expansion ~f the initial ones. 
In those papera, howeverJ momentum subtra~tion was used for the -UV 
r-enormal1.zat:lOR9 which complicates pract;ical calculations. Moreover, 
1n p~eno~enological applieations one of'ian deals with a~ore com~li­

cated asymptoti~ behaYiour than one Euciidean ~arge momentum or one 
, .	 - /12/

l~ge maaa.. Here lV'e present an extension of :the procedure to the 
case -oi asymptotic expanaâona in large Euclidean momenta or/and ,mas­
aes. UV divergences being removed in the minima1 way according to 

f
the 115-scheme. A-aR rule, our ~onsideration will be aimed at the j 
eonstruction ~f-a convenient ~d effi~ient ca~culational ~che~ tor 
pract1~1 applications, 'ao that aometdmea our argwnent-s will ,not De 

'11 

11 

mathematically rigorou-s (but ,-of -counae , they can be made r1gorous :at 1 

the cost 01' some cumpliçati,ons). 

Let ~l external .momenta and masSes of ;tines 'Of q be1iecolll ­
posed 1nto two seta -{Q.J4}- anti '{~1 rn.} • ·We' .are intereated in tbe fi 

behav10ur of RHSr:; llt large values of Euclidean Q and 14: I·
II 

I 
-;r-ItiJ._ ~n.-st; !J. rv 1'1 ~ "'--+ 00 ; RH~ 4--. 1 (8) 

17--'	 ,... ~ . I.pt.. 
," 

I" 
:il':li l' 
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Momenta Q are assumed to be Euclidean, i.e.,each component of Q 

tenda to infinity so- that errr/if'_).-1 .. Many expenáí.ons conaí.der.ed in 
the literature are generated by limita that are particular casea of 
(8). For example, short-diatance expansions correspond to q~oo 

and effective light theories arise at M.... 00 • 

Notice an important ro~e that 1PI graphs play in the course 
of the UV renormalization. Indeed, 1PI components contain alI infor­
maiio~ about UV divergÊmce~ of the 'graph, and removing UV' poles 
from alI lPI components of' the graph renders it UV finite. In~the 

~o~se of an asymptotic expansion procedure there alao exists type 
of graphs playing an analogoua role. Namely, thêse are components ~f 

the graph which absorbe alI the dependence on its large parameters 
{Q,M} • It is clear that to obt-ain an S:symptotic expansion: one- has 

to expand only these componente. Let us introduce some definitipns. 

Call a line of .q hard if at leastl~ne of the following condi­
tions are fulfilled: a) ·the line corresponds to a particle wi th a 
large mass M; b) a nontrivial combination of large momenta Q can 
flow through it. A subgrrwh h.~' <r is a'~·hard subgraph (H - subgr-aph ) 

if it contains at least one hard line and cannot be made disconne~ted:- '''. ~., 

by.deleting one line that is ~ot hard. ,A parti~ion of q ie hard 
(H -parti tion) if i t contaãna only H-áubgraphs "and single vertices. 

• t C ~ • ' ~ • " • 

It is ~lear 'that H -subgraphs are analogs of 1PI subgraphs in 
the, Rq v -operation. Ihdeed, as follows from the definition, an:y 

graph G ! can be represented in the forro of a tree graph alI lines of 
'~hich are not hard .and effective verticea are just . H -subgraphs or 
1Pl ~ aubgr-apha: independent of {Q ~ and {MY'.' Thus, it ia sufficient 
to obtai~ an expanaion of each H-subgraph because alI components in­

, dependent of ,. Q and Moome t hnough the expansion pr-ocedure un-s. . 
changed. It ia clear also that each H -subgraph is represented by a 
tnee akeLe t on gnaph with hard lines and 1PI effective ver-t í ce s , 

o. ",' " R(N'Introduc'e now an ~nterm·edi.a'te. tf -operation 

(N) _ ' "'> fi tlN)r":';"A _ . , (,v) , I
RH q- ,L-t 3 H (7:1 '-f, :(J3:= ~,.n iln~) q>llJH (9) 

{I], 1/)" 3 ' .(AI) 
~1 )where ~H is a particular case of the li -operation und .A H (1 -;. O 

only if 3 ~s either a Bin&le verter. or an H ,subgraph. ~hUB, the 

aummation, in (~,) ,ia etfective:I;,Y' res~r~ct~d '!?y la J" part1tio~s" i.e., 
by H -Rartit í.ons., Let us de acz-Lbe the algori thm 01" evaluating

(/11) -, r 11 t'!. ,A,.. (a l . Consider a given H -subgraph A.. s: 7 • The aet of i ts 
externaI momerrta consista of,hexternal m0menta, of G {Q, '<J, L and, 

6. 

,) 

perhaps., of some interna1 integration momenta of q { lJ. Conaider 

the Feynman integral I... ('1,,,,", k, H., tn.) corresponding to la- and intro­
t CN J duce the subtrac~ion operator such that 

(~- 1-(N') l (Q, 'h. k, N, ""-) = O (;\1-N)., (10) 

(#) . 
As t bne·can choose the Taylor operator that picka out some
 
firat temia in the expansion of l in powers of ,.. and. k at
 

some fixed point { "1-:::: q..~, ~ =- k..J, where CJ.-k..- k~-1- . The numbez­

of terms ia equal to J~61tHh.. + f\I , where 

,k(q,'h k H, m..) ~ O( ~ .lesç , H h.).
J 

Rewriting now (9) in the form analogous to (2) and defining 

Ol'(~) ...L (N) /R (N) AA H 'h- = -(... Il.-,H ( 11) 

we get (modulo ih.- À ) 

R(N } r A(N)(,-.) t.:ROI)~ - (If -l:: (N) R(N)~ - O(,.l-,v')
H ...., = H.... + H '-i - - . H ~ - , (12) 

where we choose C; to be an H -graph. Of oouz-aa, the estimate O(A-H) 
(111.in the r.h.s. o~ (12) is formal because RH G can be divergent as 

€- .....,. O, never t he Leae , at nonzero f: i t ia a well-defined quanti ty. 

The meaning of (12) is fairly tranaparent: making a sufficient 
number of subtractions in H -subgraphs, one can obtain any desired 
behaviour of the 1. h. s , of (12) as ~~ 00. Note that the relation 
(12) gives the expanaion of an unrenormalized graph q. Indeed, one 
H -partition consista of single v~rticea. The term correaponding to 

(/li)
i t in R H G ia q i taelf so that we have 

q = (1-R';")t;+ O(A-W
) = -{"Z; ~ A~{3) ÇIrOJH + O(À-1,(13) 

\ 10TH' 

where the subscript meana the abaence of the term including' only
 
singIe verticea.
 

~o simpllfy the notatio~, in what follows the index N will be 
om1tted~ 

To solve the problem for the MS -renormalized grapha, notethat 
the aetion of R H ia determined formally on each termóf tlie re­
normalized expreasion R M$ G (aee (1) with ~ '!! AH~). Indeed, each 
term of the kind n A HS (')filr'JewallowB the interpretation in terms 
of Pey~an integrala. ~he whole sum R HS G ia UV -fi ­
nite as E -'> O. so that we mo.y expect that R H (R'HSG) wi.l~ also be 
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UV-finite. Let us show that this ia indeed the CRse. We hav€ 

RH RHS:4 == L L.. n A H {Il ) nvÓ.-N$(3) (q/fjJcH')/{I.-] (14)
{3JU y E q i/{yws;,. Cf/la111v II 3 H_ 

Let us try to reexpress (14j in terms ~f exp11citly UV -finite as 
t= .....,. O quantLt í.es , Note that in (14-) ·-ope-ration~ A H and .1iH~ do 
not commut~ since subgraphs of H -partitions include in general 
vertices forrned af~er shrinking alI aubgraphs of the UV-paxtition to 
points. One may att~mpt to regroup terrns in (j4) so that the summa­
tion would be again -over partitions~ that is, over disjoint subgraphs. 
For this purpose we will use the representation of RH in a~orrn 

analDgous ~o (7). 

,Call an H -forest the forest including only H -subgraphs and 
single v.ertices. Denote i t by. F{ 't'}H ,. Then (11) can be cast in­
to the form 

ti H (l.)= -t:« Z: n (-ta) It,;
 
Ff1J-H s
 

(15 )3t- h.. 

RH <; = 6 n (-t/t,) 4,
 
F{LJ R..
 

H 

~N)) 
where ta ( =. t.1I a ct s only on ti . Su-bstituting (7) and {l5) 

'into {1'4), we get 

RHRN S '<; =L L n {-t-fa-J n(-Ka)t;. -(16)
•	 FíaJuvÇ;.,q F{h-lHt;;, Qlr3]uv h. ~ 

The double sum in th€ ~.h.s. of (16) can ne written as a single sum 
Dver mixed foreats. These are forests elements of which can be ei ­
the~ H- ,or -UI -subgraphs with the re-striction that the Lat t er' do 
not contain H -subgrapha from t he forest. If H -subgraphs {h. ~ and 

1PI -subgraphs {~J form the system of maximal elements af this forest, 
then t.heir union {~J V{ uj '(together with possible àingle verti ­
~es) forma a mixed partition of ~. With the help of the mixed fo­

rest P{~ 1tlV H the SUID in t l61 can be rewri tten in the form 
.J 

Rt( RH8	 q = L n (- Ma) ç 
(17 )F'3j"'~-H. a 

'" L.. {n c-t,J L f- Hi )) ( 1].(-1<,,) L <-If"J) 4 
lhlU{u:JkC: 1a. F!Qch}	 P{ucu

1 
') d uy, H ,	 ' 'J'IV 

a 

::: L .',n à B ()1-) Il A,H~ (u.) G/( {l\V,{LL~)~ 
{h!U\.U.~EC::) hOL4=:=f/I It., tA. , ,. .' 

where g II!ày coincide with h.. only ~s 1PI -sub~raphs;' Ma is ta 
:for H 'l"'subgraphs and Ka :for .1PI ones and 

6& fi)	 ~ -:t,,- L (- H3) ~ ... 
F{3 c. k3u~ H ' , 

J '. 

= - i.J...	 L n Ã B (7:) Ll H S (u) i/(i~}H o! ti.}14v). 
{~jHU{U}UVc.b. 'l;u 
~??::J -r:nu-=iÍ 

Relation (17) is ~he desired representation of (14) as a SUID 9ver 
partitione. The operation li 8 differs from A H by the incluaion 
of ultraviolet MS counter-terms of t . Indeed, from' (17) we have 

,AIS (K..) = /iH (Ii,.,s~) ==. - -tI&.. 1?H ·RN S t 
., (18) 

=.	 La ( n.AMS~'( U.»)·ii H (/{/.f uJuv). 
~'fl,l.4v ER. 

~ 

In (17) operat í.ons A 8 and li. 1'1$ act. LndependéntLy because their ac­
tions are determined on diajont grapha (/(n u: • 4J ). Note 'that ~in 
thia relation ÂH~ (iI) subtracts only dd.vez-gencea of' the initial graph 
G • However', the action of li. a 6n H -subgraphs produces new. verticea 
which can give riae to UV singularitiea having nothing to .do with 
those of G. Neyertheless, the whole expression (17) turns ·out to be 
UV -f1nfte. To seethatthi~ is indeed the case, add to the expres­
sion {~j ~ A H s l q) Q/ { 4JH :r: esulting after the action of nA 8 (Á) 

j~~	 . ~ . 
I"terms needed to make i t YV-.fini.te. These terms auppLemerrt the sua to j:: 

the complete R HI opere.tion li",.! (C; I{ la.jH). The' whole expression 
ehould be unehanged , s.o 'that we have to redefine As BO as to ab­

sorb th. differ.e.nce (k~u 1J I!JHí(CL)-F1",s)·q/{iL1H. It can be done d,n 
a :tull analogy with form~ae (14)-(18). Denote tha quantitiea thU8 

r~defined as AR '.' Clearly, AR - A a containe only terms wi th sub­ 'I::I,' tract10ns of divergence. associated with 8hrinking to pointa 8ubgraphs t.~1 

{Ia..iH ~ (/ •.Making such a l'errangement we get: 
I;. 

H 
I" = La n AR (I..) R1'1$ (qj{hJH);R	 RH$ ~ {hJH~Ç ( 19) :11Ir.. 

I' .,AR (J.,) =- -tA. L 'J Â R ('r:) RII$. (l/{7:JfI). 
{~+-J..311 

Quantit1~s 61{ B.l'e renormalized ones a8 compared to the "bare" ~B. 

The explicit relation betw90n AR, and AI!. 18 g1ven by' 

, '!( 
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A (!"'}-; L . n (-ÃM~(i(F"}JJ n ~B ('Z:"rn.:n-:).R 
FfTS A.3 7:* 7:m l h- . . "e~1L (20}u 

He~e F{~JH is an H -forest o f' tlie graph "- ,and {r/>LLh..liS the 
system of'its minimal elements~i.e.,eLements which have no subgraphs 
from the forest. Then, 13'( F) is the so-ca-lled reduced graph obtained o' 

from_ ~ ·by shrinking to points alI elements of the f~rest F pro­ jÍ,
perly contained in '?: • Note also that to obt af.n (19). (20)., we have Ir 
used the fact that li.H.S ' commutes wi th -t,,- because the former is a po­ ;I! 
lynomial in alI dimensional parameters. .' 

The RMS -operation is li.nearly in Â R be.cause of their UV--fini­
teness. This- finiteneas can be established by induction. If the only 
H -s~bgraph of h. is Jz, itaelf, then IiR(Á}=-"tJ... Pr,.,s h and 
this is an explícitly UV -finite quantity {we assume here that ~~ 

are chosen so that their action does not lead to infrared Bingu~ari­
ties and postpone the discussion of other possibilities to the next 
publication/17/ }. Then the induct±on with respect to the number of 
H -subgraphs can be done. via (1-9-). Thus, !:J. R are UV -finite. As a 
resuIt, we ol>tain that t he r.h.s. oi: (19) is also UV -finite as a 
sum ~f explip~tly 

Now re.turn to 
ia- O(J.-#) as 

form analogous to 

R,.,.s Cf =-/L 
, {kJh. J 

• ti 

U~ -finite terroso 

our problem and notice that due to (12) 

.Â-~oo • This e.LLowa us to rewrite R M S 

(1]): 

n 6~ (h..) RH S (~/{h.]H) + O(Â-'j 

R:H RHS €I 
C; 'in a 

(21 ) 

and after that the problem of expanding the MS -renormalized Feynman 
in~egral is almost solved. The only fact preventing us from saying 
ao is an incomplete factorization of large parameters {~j HJ in 
Â R (t..) The point ia that graphs in R 5.( q /{hl tt ) can stillN 

córrtad,n H -subgraphs and t hus be dependent on {Q,.1ij J. NevertheIess, 
all'terma on the r.h.s. o~ (21) have- at least one H -subgrapn con­
tracted into a point as compared to G, and this allows one to use 
(21) for a complete reduction of al~ H -subgraphs. This reduction 
can. be performed by applying (21) recursively to t~ose grapha, tfiat 
still contain the depencrence on {Q,M}. The recursion stops when a11 Jterms on the r.h.s. of thia expression do not contain any H -subgraphs 
and alI large parameters turn out to be factorized in 11/f • The final 
resul~ of this procedure can be repreaented in the form I
R~sq= L n CR(Ii} K,.,s (<;/fAjL:) + O(J- N ) 

(22 ){h.J~ h. "11 J 

lO 

:: RMS ( ~~;:J4) + O(À:~N). 
(22) 

Here the sum goes orrLy ovar complete H -partitions f h.}~ • They 

are complete in a sense that the reduced graphs G/{4J~ do- no t 

contain H -subgraphs. The RMs. -operat1on is assumed to be linear 

in CR ,because the latter are UV -finite. Coefficients dR can be 

e.xpresaed. via some combinations of AI{ : 

c, (I,,) =: L n c- ~R (?:: (F))) (23) 
A~F r1'3~ -r ) 

where F {"t'3~ ia a complete, H -toreat, that is a. foreat, minimal 
elemente of which form a compl~te H -partition of k . This rela­
tion ia rather useless in practice and we prefer to obtain a recur­
rent f'ormuLa for CR directly :r-:z::om (22 )-. Rewr~ te the latter equatfon 

as 
NR !; Cf =. CR (q)+ R",s Ras C; + O{:J..- }.

N 

Applying the operator t~ to both its sides and recalling (10) we 

get 

CR;(q>= tej RHs. {(1- Ras}-C;)= 1:-4 RM S (4- L nC~(h)qÁhj:l. 

Thís formula determinea 
of G and , .herice , allows 
ing from h with only one 

i tself, so that C R (h) = 

reductiorr cf H -subgraphs 
alao in (1"7) and (13). As 
turally •. They can be related to A 6 and t!1tfvia relationa similar to 
.(23) and obey the following recurrent equations: 

C s (G)= tCí (/{HS G- L n <« (It.) L n~HS{U) G.~I.CU{ul \\. 
{Jdc;!C h. {u Á.= l.4 ~l' JH JUvJ.I 

tf n r/J3C1 v (25) 

C11 ( Cf) == -te; ( C; - ~ n CH (iL). c I{h Jc ).
{la.tqSc. t; H 

•
In t ur-n , functJ.ons 
other (cf. (18) and 

CR (t;) =- L­
(1E F{7:J; 

{h~C;J~ h V(Z4} 

C~(~) via CR. defined on proper Bubgraphs 
one to compute CI\( q.) l'ecursively start­

complete H -partition coincidíng with ! 
t k. RMS h. • It is worth no-tLng that the 
can be performed no t only in (21 J, but 

a result, functions C&. and Ct-J arise na;" 

, ,
CB (ei)=- L n A I1S (u)· Ctf (q/{q~lIv); 

.[ t-tJ", v u.. , 

II 

C R , 
11 

Ca ' CH and I!H are related to each 
(20»: 

n t- ,ôMS (":f.(F)) n C s {7:~~)j 
?t~m~ ~~~ 

(26) 



,l ~ 

l, 

I:
I! 

C (<i) == L.. n {-A H {~( F)), 
(26)H I:qEF{-r:J~ -e . . 

where r #nÂ.h- are minimal elements of the forest F {'t 3: • Thus, CR ,I 
I 

can be complet~ly expressed in terms of IJ. MS arid 11H • H 

Formulae (22)-(24) give the solution of the problem formulated 11

!
·t

!
at the beginning of this section. 

The expansion (22) 4as the form of an operator expausian. In­

deed, its r.h.s. contains the sum of renormalized graphs Gli~1~. 
A new vertex formed by shrinking ~ to a point may be identified with I, 
an operator insertion. This identificatiQn ia possible becauae ~R(A) { 

ia a power seriea in a'l.L externaI momenta of h. except {Q ~ '(includ­
I 
! 

ing some integration momenta of G, see (10». Every terro of this 
serias uniquely corresponds to the Feynman rule generated by some j 

II 
operator vertex, which all~ws the interpretation in terma of an ope­
rator expanaion. A more detail treatment of this possibility is gi­

ven in/17/ and in th~ next section. I: 
3. Expana16ne of Jull 'Green Functiorie 1 ~ 

Hither~o we hav~ dealt with individual Feynman graphs, whereaa
 
in appl~catiops +t, is 9ften necessary to know'the form of asymptotic
 

!li" 

series for o~~plicated objects, such a~~~, -matrioes, Gre8n tunotion4, 
etc., ~i.ch include the summation over an infinite number of Feynman 
integraIs. To sum up expansions of individual integraIs and to cast 
the resulta into a form of OPE or ET,one can resort to a very con­
venlent comblnatorial 'technique developed in/f O,13/. For our purpose 
the' formulae obtained in/101 are most uaeful because they are direct­
ly applicable to the MS -renormalized quantl.tiee (aee Appendix 2 )'. 

Our consideration will be based on the following obaervation.
 
Beth R riS aa4 R have 'the structure of relation (1), i.e., both of
as 
thom are partioular caso. of the algebraic construction of the R­

operation at a ·certain choice of A (~ ). To achieve a complete ana~
 

lo~, it ie conTenient to extend the summation in eq.(22) to alI par­

titions and to readdre•• the tunction of 8eparating only admisslble
 
ones (UV -partition~ for the RM~-operation and complete H -parti ­
 : i
tions for tho Rei, -op.ratio~) to ~HS and 8etting them Zli'ro inCR li 
all wrong caso•• In what tollows ju.t this possibility ia understood. 

~ lEq. (22) can be deoompo.ed into auo ••ssiY. aotioDS of Ror.$ and R..... I 

1 
(27 )RMS q 1::.' R/tt5 ( RClJi. C;) -r O (Â-,v), i 

,..I
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I, 

where R MS does not affect CA as has been .expleined above , Equali ­
ty (27) permits us ~o ~lvide the whol~ probLem into ·two 'eteps: first, 
one can z-eào Lve the combinatorics of the Ra.s -operation and then 
MS -r~norkalize the obtained expressions. 

Gonsider a the~ry described by the interac~ion Lagrangian ~ikt(' 
and the ~orrespDnding generating funciional (see ~q.(A2.8). Adding 
to ~i~'t terms L.. .[Jn,.Dh.- with the sour-cee {ah-l of lo-cal -compoa.írt e 

.h­
op.erators· {Oll]cumposed of the fielas 'P and -their der-í.vet í.vea, we 
ob t af,n the generating functi·onal q{ 3 ,{ ~h.j ) er Green f'unct Lona of' 
opera~0r pnoduc t s n Da( : ' 

<T '10", (x"') e L:::J'1'>0 = (fJ ';;~"'(X"') J:l..= )C:(~ (J.. I) 

_( nf J/(g( e i 1<c("Xr;( ~ I ) r-'{ ) 
- ol (231)3> b -3 (I( \. _ ''i J) (Jh,. ~ ~ 

o( -A.) Jh-- O 

wheze :la( (Xd.) = /41(11{ e-Cl(tIlX'Jf:J. (x'd)For applica'tions one usua-lly needs 
asymptot~cs of Fourier transorms of expressions l~ke the ~boYe ones 
at some ,rnomenta of 3g(.[Kõ<) and masses of Cf tending to infini~yf so 
that we should study' q(~f:J~) in that limit , The limit cor-responds 
to the ~ituation when Fourier trangforms'of aome souroes Jn are 
localized at large -moment.a -lqJ~ 00 and some .fields .{denote them 
by f ) have large masses M -- I Q-/ (aee -e-q, (in).. Usually, i t is suf' ­
ficient to conaider Green functions without heavy external particles 
and we will asswne that:J -coza-eaponds to fi~lds wi th a fini te maas , 

Being .expanded in .[1 , J-n.. and coupling constan.t..s.of X LlLt)iihe 
renormalized functiona.l RH S q{.:7){Jh.Y) i~ representable as -a series 
o~ Feynman integrals, momenta and masses af whi~h satisfy conditluns 
(8). Therefore, to obtain the aaymp t ot ã ca of RH S c (d,J {J"j) one 
can apply relation (27) diagram by diagrame Consider at first the 
effect of the RQS -operation. It is a particular case 01' {1), so that 
we can use formula (A2.10) wi th 1J. replaced by CR ': 

Ra.!;q(~{JhJ)=<Tex-!~{CR (r.e·L("ep)+ ~ ?ILOIL+.:7~ 1))>0 :I (28) 

where the a~tion of CR iE nontrivial only on H -Bubgr~hs and 
a í.ng.Le v-er-tLces , Moreover, RaSo i'8 defined as a sum only ove r the, 
compl-ete H-parti t í-ona, 'To pick out these partit}.ons, orre can .ae­
mand c~ to be z~ro on graphs~ the contrac~ion of which iuto -a po­
intgives a vert~x'with at least one .hard line. Such verti~es ~or-

zeapond to openacor-s containing heav.y fields cp or carrying larga 
momenta and ca.nnot be p:roduced. by shrinking to .points ,graphs of 'comp­
lete R -partitions. Further~ we will conslder only ~he oaB~ ~hen all 

-13 
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l~rge moménta enter a diagram through operator inaertions so I: 
'that !J carries only a finita momentum, As a conae.quence , alI grapha 
wiih D at the endá 'of externaI lines are not haxd and CR null~­

fies t hem, The only exception ia the aingle vertex : [Ir . Taking into i: 
account alI theae remarks, we get& d 
Ras q(~{::Jh-J)=<Te~f(CR (Te r.('f

J + ) + ~ :Jho~i)+ Jif»o . (29 ) ;1 
The action of cR contracta graphs to vertices. As has ·been explained 
in the previous section, such verticea correspond to inaertions of .' 1 
some local operators. Formally, this fact can be expreaaed by the 
equation \ 

1
CI\ (reL 

("f)+)+ ~ :Jh.O~ 1)=~ c; ({:ih! H., m.l.f) o; (ep)= Leff({~h.lJ 'f~ (JO) ! 
, ~ 

where C~ are CF's;' {O,.. ('PH is a complete set of local operatora 
composed of light fields' and their derivatives and f1 i~ the renor­
ma1ization parameter (see Appendix I). The origin of the dependenêe 

-r
of CR on Jh.. ia the same as that of their dependence on coupling 
constants. Insertihg (JO) inio (29), we get 

Ras c: (~{ JhJ) =<Texp(L ~/f ((Jh.l.) r)+ :J'f»0 ()1) 
, ~ 

!Tbe r.h.s. of·tbis relation ia the unrenormalized effective genera­
ting func~ional of the theory in the asymptotic region .(8) with C; 
being its effective reno~alized couplings. Aa it ia statee by eq.(27), 
it fan be renormalized by applying tbe ~M~-operation. Using formu­ . I 
lae (A2.11) and (A2.15) with Leu instead of L, we have 

RH5 /?ets ç (J., {JAf) =<Text(fiNS tr~Xf(Leoff({JJ,f; 'f)_+ :1'1')-1)) >0; (J2) 

11,.u; (Te Lef./+J! 1)= ~c';({:Jh.~~')'Dr(r)+:J'f= L~ff + r!J} CB) 

r . 
where Cs are "bare" CF'a containing, in general, peles Ln ~ • Note 
tbat we could obtain the sarne representation (with "bare" CF'a) by 
applying to G( ~ , {Jk.l ) relation (22) expressed in terma of _func­
tiona .Cr! (see -e qa, (25) j. .! 

Thus, we have the following_aaymptotic expa~sion 

f1MS cf (~(J';J) =<TexflLR~ff.({[Jh.t''f)+Jr)>o + o(i1
-
II

) (J4) 

t:pat solves theproblem W8 baye been de&11n& wi th. 
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In a subse~ueht publication this general formula will be used
 
for deriving some expanaíons useful in.applications.
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APPENDIX 1. ParBmet-~r N in the Dimensional Regularization
I 

The usual recipe of the dimensional reguíarization consista in 
r~placing alI four-dimensiortá.l integration meaaures 'in 'the momentum­
space by mea~urea of integration in a foimal complex-valued D-dimen­
sional space., Having in view RG applications we ahou'Ld take care of 
preserving a Ll, canorrí.ced, dimensions and introduce for this purpoae 

some uni t of maaa f' . Then we define the measure in the momentum 
space to be 

fdp == filé f d}) ~ == f (4-])). 
(A1.1) 

Then ~ -functions and variational derivatives determined according
 
to (A1.1) ahould a~ti~fY the following natural relationa
 

fdf S'(p}== :i j c;cp(?1 == ~(f'-~) (A1.2)Õ'f(q;.)
 
and are given by
 

s- -2.E ; ~J)..r (f) =: fi -Z(: ~(f) ; (A1.J)
b'f (lfJ == fi S9'(~)
 

where the superscript D marks the usual "(WithoutJjW ) definitions
 
of the coz-z-e spondd ng quanf í, t Lea , 'I.'
 

The position space measurc dx can be introduced via the rela­
tion 

(:l.:n-)-:JJ f cIx clf> e 'cf'lt= i 

and turns out to be 

f Jx = fI-ZE:-fd~ . (AJ. 4) 

Uaing the above relation and the analoga of (A1.2) for the position
 
apace, we have
 

" ]j 
~ 'Z.€ í> 

, t ~(x) ~ rUJ(x) ; (A 1.5 )b 'f(x) = r b 'P(x} 

. j\ 

]5, 



Definitions (A1.1), (A1.J~ and (À1.5) fix automatically the way 

that ~. enter~ .into any dim~nsionallY regul~ized Feynman i~tegral. 
In particul~t in the p- Biace each connected component of Greeri 
fu~ctions is accompaní.ed by the ~])-function expre~aing momentum 
cQnaervation and containin~ the fector ~-2E. Then eaeh momentum 
Loop carri~s .t'2~ i~ full accoz-dance wi th conventiona1. rulea. Note, 
however, that the uaual rtíles dealing.with 'b" without r turn out 
to be rather incon~eni~nt in the context of th~ functional t~chnique 

(aee Appendix 2). For example, each time we 2hould keep in mind the 
pr-eaence of'~ extra power of f4-Z~ (wi th respect· toloop onea) p'er 
connected component/10/ that comp~i~atea th~ rule according ~o which 
the 'operation l:i. acta, Further complicati.ons may ari.s~ when deriv­
ihg RG -equationa. Definitiona introduced abbve are mor~ succeasfUl 
from this point of vie~t and we use them throughout the paper. 

A,P P E N D I I 2. lUnctional Techn1gue 

The material of this appetidix ia based on/13,10~18/. 

The quantum express10n for the Wick theorem 

{A2.1)T!=r(r) = N~{~) 
can b~ represented in th~ following functional torro 

PN (r) = e I. F:rIJr) , (A2.2) 

~ ,

where 'f and 'f are quantum on-ahell and classical -off-Hhell fields; 
F.,. and F" are linear functiQnala ot: the .field ., of: the forro 

~N {r} = ~fFT~Il(1C'" ...}x... ). y(x,) ... ~(~'~)} , - ­

ao that T F qw (r) and N F 11 .( r ) represent time and normal ordered 
tunct1onals, respect1vely. At last, 

i - .!. f JxJIJ $' D~~ fI-' -b . 
- 2. J (J b'-tf()l-) v Jr1~ b11'lJ J 

;De{x] 'I) = <T ~(:X) r(lIf~ = i!!t.... e-ip{1(~Y) 
u o o f2u?i m'--lil:.. iE. 

.. .. 
Note that alI the prascript10ns of the previous appendix ar-e o~rative ! 
in th8. above f.ormulae.. 
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Conaider the tunctionnl 
,ri ( r; (if) 't" Jy>
'-i ::1,'1),::::: e , '.,(.A2 • .3) 

where· L (ep)= iJLc/lt ('f)clx ,Li".'t (~o) being an arbitrary polynomial 
in Y' ,and ar = !d,. :J(~)'f('f.) .J ;] being a aource of the f1eld 'f 
The unrenormalized generating functional of the Green functions of 
the theory ia determined by 

q{'J)= qN (~r~o)= <TeL(cP)"" 'Jaf>ooJ (A2.4) 

where G ,in turn, is given by {A2.2} with F;,.::: q(J,I/f).N 

Usd.ng t he conventional dd.agr-emmat í,c ':repreaentation for coeffici­
ent functions of G( J ), we can introduce the. action -or the R-opera­
tion (1) on G: 

RC; (~) = R[ e ea{~J 'f) JIf=Ó J= R <r<; (~ r).>o . (A2.'5 ) 

The combinatorics of the above expresaion can be explicitly reaolved 
and i.t turns out that the action of R ia aquivalent toaddirig some f 

11counterterms tu L( 'f ): 
!: 

RC; (J) = <Texf( Â (Te L r;) .,.~t..1.)}>o 

( 
(A (rn (" A) A A )1 h"rT7 J\ ·.(A2.6)

~I eXf L(íf).,.J'f-t-4 lexf L{lf)+J'f - LUf)-"J<p-1,//Ó· 

The last line refl~cta the fact thatA (a) = 1 for simple vertices. 

For the particular case of tne UV -renormalization we have 
lluv(~ ) = O if 3 ia not 1PI, ao that liuv nullifiea alI grB:phs 

contai.ning v~rtices a'f (except the simple vertex tI'f ). As a cori­

~eguence, we get 

A~v (-r.e)(~(t-{f) +-~~)- L(f)-.J~ -1);=: À~ v (rpeLl;~ L l.f)-1) 
and, for example 

-R MS.G(.'.J) =: <lfex(>(L(1) +:11 + 6 MS (rreL('êl L (r) -1)) >0 . 
(A2.7) 

Replacing L( 'f) by LW)+ f-~4·Aí where Ai have a atructure si­
milar t-o Lt~) and expanding (A2.7) wi th respect to 8'\. ,we can 
obtain renormalized expressiona for composite operatora and th~ir 

producta,'~or ex~ple. 
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~HS (TA()<)eL>ó = <TAMS ('PAf'J.)eL)eLR>o; 
.. . L (	 . L (A2 8)

KH~ <~ IlB e.>o =- (T Ã HS1 (TA e L) 6 Ht (rBeL)+.lJ Hs (ABe j)eLI{>O • . 

and soon; Hera- LA and 11 HS '8.re lacal quantities and can be rep.re­
sented as a sum aver the set fo~} af monomials composed of 'f and 

its derivatives as follows 

l1 H S	 (7'e L _1) == LR = ~ 2...: O~ Cf) j_ I 
. ~ 

a MS (TAe
L 

) == ~ l. fJ 11-' 011. (Cf); (A2.9) 

I1M S (TfJ8 e l.) =. ~ Z:~·O/l. t-e).
h.­

Functions ~ in these relatipns are pure poles in € and polynomi­
al in alI externaI momenta and masses (ln particular, Z ar~ indepen­
dent of f ). Substituting (A2 •.9) into (A2.8}, we- have finally 

RHS<r fi e L)o = ~ -lA t\. <'T' Oh. eLR)	 (A2.1'0)o 

h-	 O) 

RMS<rr fl8e L>o= ~ lAta- ZBm. (rohome 
LK,1a+{. z:ã(7'q.e L 

2.(A2. 11 ) 
~ 
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ropHmHHH c.r. EZ-86-176 
0 nOCTpOeHHH onepaTOpHNX pasrro~eHHH H s~eKTHBHb~ TeOpHH 
B MS-cxeMe. 06~H ~opMarrnsM 

ITpenrro~eH MeTon nocTpoeHHH acuMnTOTH~eCKHX pasrro~eHnH 
~eHHMaHOBCKHX HHTerparrOB H llOITHb~ $yHK~HH fpnHa no 60ITbmHM 
eBKITHAOBhlM HMllYITbCaM H /nnn/ MaccaM. MeTOA OCHOBaH Ha CBOH­
CTBax ynbTpa~noneTOBOH R - onepa~HH C nepeBhl~HTaHHHMH H MO~eT 
6hlTb npHMO npnMeHeH K MS-nepeHopMnpoBaHHb~ Benn~nHaM npH pas­
rro~eHHH nx no MS-nepeHOPMHPOBaHHb~ onepaTopaM. 

Pa6oTa BhlnOrrHeHa B Tia6opaTopnn TeopeTn~ecKOH ~H9HKH OHHH. 

CoofiuleHHe Ofu.emmeHHOfO HHCTHTyta HAepHblX HCCneAOBaHHH. Jly6Ha 1986 

Gorishny S.G. 
On the Construction of Operator Expansions 
and Effective Theories in the MS-Scheme. 
General Formalism 

EZ-86-176 

A method of constructing asymptotic expansions of indi­
vidual Feynman integrals and full Green functions in large 
Euclidean momenta or/and masses is presented. The method is 
based on properties of the ultraviolet R-operation with over­
subtractions and is directly applicable to MS-renormalized 
quantities, expanding them in terms of MS-renormalized opera­
tors. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, JINR. 
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