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1. INTRODUCTION 

Modern elementary-particle physics is spread by th~ idea 
of symmetry. According to the common opinion the symrnetry incre
ases with increasing energy or decreasing distance. ~rand-unifi

.\ I	 cation hypothesis is based on the assumption that strong, weak 
and electromagnetic interactions are u~ified into a single inIm 
teraction with a simple gauge group. However, the standard 
GUT's leave many lInresolved questions and undefined parameters. 

1 In the absence of direct experimental tests the main criterion 
for the theory to be correct becomes its aesthetic attractive

I 

j 
ne~s ~nd self-conslstency. At the same time total unification

R', should clearly include gravity. Here, however, we meet with 
.~ :1' s~rious problems, first of all the problem of divergences. 

, ~ Available versions of quantum gra~ity are nonrenormalizable. 
The most promising scheme for consistent quantum theory in

cluding gravity is based on superstrings/ 1/ . In this approach 
the fundamental object is a supersymmetric str:i,.ng, quantization 
of wh~ch requires a ten-dimensional space-time. The spectrum 

" 
~.	 of its normal modes defines the spectrum of elementary parti 

cles of an effective local theory. The symmetry group of super
l 
[:	 s t r i ng theory ispracticallyfixed: it is 50(32) or Es-xEg'How

ever, as a resuIt of reduction from the lO-dimensional to 4-di
:11 mensibnal space-time symmetry is reduced and defined by the tor no l.og i ca I properties of 'a h-dimensional compact manifold. 

The superstring theory is probably free from u l t r.avi o l e t 
divergences, which in turn may lead to a finite local theory 
on the Planck scale and further on to a finite GUT. However, 
numerous variants of .. compactification complicate the choice and 
give no unique way how to reduce the symmetry group of super
string theory to that of rrUT's. 

This problem can be approached from another side, from low 
energies, trying to construct a field theory without divergen
ces. 5uch examples do already existo They are based on extended 
supersymrnetry/2/ and historically have arised through the com
pactification of type I superstring on a six-torus/S / . It has 
been realized that an effective low-energy theory is N = 4 su
persymrnetric Yang-Mills theory finite in all orders of pertur
bation theory /4/. Later on a clas& of finite N = 2 supersym
metric models has been found /5/. Unfortunately, they are un
satísfactory from ,a ~henomenological point Df view due to 
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the presence of mirror partners of ordinary particles nonob
served experimentally. 

The search for finite theories was continued. It has been 
shown 161 that N = 1 supersyrnmetric Yang-Mills theories finite 
at a one-loop leveI can be constructed. A complete classifica
tion of chiral N = 1 theories with a simple gauge group which 
satisfy a ~ne-Ioop-finiteness condition has been given / 7 / . 

AlI these theories are described in terms of N = 1 superfields 
by a real superfield V together with a set of matter chiral 
superfields <}> a. The requirement of fini teness restri c t s the 
number of these fields and their gauge group representation. 

It is remarkable that the one-loop finiteness automatically 
leads to the absence of divergences at a two-loop leveI 16,81 
However) contrary to exte~ped supersymmetry, absence of any 
known symmetry does not allow us to prove a nonre~ormalization 

theorem / 9 1 and generalize this result to alI orders of per
turbation theory. Analysis of the three-loop approximation has 
shown / 101 that the gauge superfield propagator is also finite 

'whi le the chiral one is in general divergent. Irnpos i.ng further 
constraints on higher group Casimirs one can achieve finiteness 
at the three-loop leveI, however, nothing can be said about 
h i ghe r orders. 

In the present paper we propose an algorithm to construct 
N = 1 supersymmetric Yang-Mills theory finite to alI orders 
of.perturbation theory. Necessary and sufficient conditions 
for finiteness are defined already at the one-Ioop leveI. The 
resulting Yukawa couplings represent some functions of the gauge 
one'defined order by order of perturbation theory. As an example 
we coilsider t.he so-called N = 4d modele The realistic fini te 
Grand unification theory. is proposed based on N Q 1 supersym
metric SUeS) modelo The three-loop calcul~tion of Yukawa cou
plings is performed. 

2. ONE-LOOP FINITENESS 

Consider a general renormalizable N = 1 supersynunetri.c gauge 
theory (we use the superfield notation of ref. / el ): 

S -:::: r d4 [f d 40 ;; (egV)a <}>b __t_r_ f d2 ()WaW +
 
x a b ~CG ,a
 ( 1) 

r~ 8 3\ dabe + <}>a <}>b <1l c + h.c, + gauge-fixing + gh os t}. 

A chiral superfield ~a is in a reducible representation R 
of the gauge group G. The index a is a multi-index, it runs 
over an irreducible representations A and members of a given 
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irreducible representation S, i.e., a = IA, s l, Here V: = 
= Vl(Rl)~ and (Rl)~ = (Rt)tB 

• Matrices of an irreducible re
presentation satisfy the following conditions 

a b a 
( R i' R j] = if ijl~ R k' R i b R te = C

1

A o c ' 
(2 ) 

R~b R~a =Oij r TA' f ijk Cejk = C G oiE 

Action (1) is invariant under G if 

c c e 
d abe (Ri) d + d daiRi ) b + d bdc (Ri) a = O , 

where is totally symmetric in a. b and ç.d abc 
The theory is finite in the one-loop allroximation if 

the following constraints are fulfilled I : 

I, TA = aoG and S~ = o~ e A • (3)
 
A
 

where S~ 'is defined by 

d debc == 2Se 2 = 20r SE 2 (4)abc a g 8 A g. • 

We,note that these results were obtained by using N = 1 super
fields an~ the background-gauge formalismo In this case the prob
lem is reduced to th~ calculation of propagators of the fields 
present in action (1). Finiteness of propagators then means 
the absence of infinite charge renormalization and finiteness 
of alI amplitudes. . 

Equation (4) in fact leads to a single coupling constant 
theory where alI Yukawa couplings are equal to the gauge one. 
Indeed, picking out a purely tensoriai structure corresponding 
to a concrete realization of the chiral superfield interaction, 
we get from eq.(4) that Yukawa couplinp,s di are proportional 
to g. However, this equality may fail in higher orders due 
to the renormalization if it is not fixed by some synnnetry. 
In general, the gauge coupling g and Yukawa ones di are renor
malized in a different manner. In the three-loop approximation 
the gauge ~-funct~on vanishes when eqs.(3) and (4) are fulfil 
led, while that of the Yukawa coupling differs f r om zero 110,11/. 

This means that in general we have a set of couplings to be ta
ken into account in the analysis of divergences. The require
ment of finiteness in alI orders of pérturbation theory reduces 
the arbitrariness in the choice of Yukawa couplings expressing 
them as functions of g. 
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3. AN	 ALGORITHM TO CONSTRUCT A FINITE THEORY 

As has been mentioned, the theory is finite if this is true 
for field propagators, i.e., alI the anomalous dimensions of 
the fields vanish. Consider the anomalous dimensions of the gau
ge superfield Vand independently renormalized chiral super
fields ~i in a general multicoupling situation. Introducing 
the notation h i == d.~/161T 2, a == g2/161T 2 we have 

Yá (a, {hi n = Aió a + A20a 2 + :k A2i h i a + A 30a 3 + 
i (5) 

+ ~ A3i h i a 2 + I, A3ij h i h j a + ... , 
1 i, J . 

i 
Yi (a, {h i l) = Bl~ a +.~ B1jh j + 

J (6) 
i 2 i, I B i

+ B20 a + I. B2j h .a + 2'k h, h k + 
j	 J j,k J J 

i 3 i 2 i	 i
+ B30 a + 2 B3 ·h .a + I B3 lk h. hk a + 2 B3 'k€ h j h k he+ 

j J J j,k J J j,k, t J 

We are interested in vanishing the r.h.s. of eqs.(5) and (6). 
As far as the coefficients A and B are nonzero, this is possible 
only if h i are some functions of a. 

The problem is: to choose the Yukawa couplings h i in the form 

• 2 3h i = ai a + (:3i d + Yi a + ...	 (7) 

in arder to provide alI the anomalous dimensions to vanish in 
alI orders of pertirbation theory. We will show below that this 
problem is solvabl.e /12/. 

Starting from the two-loop apprqximation the coefficients 
of eqs.(5) and (6) are scheme-dependent. This is also true when 
due co eqs.(3), (4) the one- and two-loop anomalous dimensions 
vanish. In this sense eqs.(7) can be considered as a transition 
to an~th!!r renormalization s cheme suq]: as h i = h i (ã, hi ) , 
a = a(a, h i), and the equality h i = ai a leads to the cancellation 
of divergences in alI orders of perrurbation theory. Hence, 
the coefficients (:3.i 'Yi' etc., in eqs . (7) depend on the calcu
lation, procedure and in some schemes (regularizations) may va
nish. ~hís happens when the regularization does not break 
the symmetry responsible for the divergence cancellation. And 
vice versa, nonzero coefficients may leaa.to the restoration 
of symmetry if the intermediate regularization breaks it. Such 
an example wi1.l be considered below. 
4 

Subs t i t u t í.ngvnow h i given by eqs.(7) into eqs.(5), '(6),
 
we get
 

Y (a). = A 10 a + (A 20 + ~ A 21 a i) a 2 +a 
1	 

(R) 

+ (A30 + ~ Agi a i + ,2. A 3ij a i a j + ~ A 21 f3- i
)
a

3 
+ .•. , 

1, J 1 

yi(a) =(B
i +2 B 

i 
,a,)a +

10 j lJ J 

i i ~ i·
+ (B20 + I B2, a, + "" B2j'k a , a k + rB:j {:3 j )a 2 + 

j J J j ,k J 

i i i	 i. 
+ (B30 + ~ B3ja j + ,I Bgjkajak + ,I Bgjkeajaka€ + (9) 

J J,k J,k,e . 

+ I B;'.{:3.+ I B~'k(a.lJk+ak{:3j)+ I B~jy.)a·3+ 
j J-	 J j .k J J j J 

The requirement of vanishing of Y and alI y.then leads to 
.	 a 1the equatlons: 

~ l oop ; 

AIO =0.	 (lO"a) 
i . i O.B 10 +	 ~ B lj a ( 10b) 

.1 

These eqs. are nothing else than eqs. t3) and (4). ~qu~tion
 
(IOa) is satisfied by an appropr i a te cho í ce of ma t te r fields
 
and their ~epresentations (3), and ~qs. (10&) determine
 
the coefficients Ui' This system of ~inear equations has a so

lution when the number of eqs., i.e.,. the number of indepen

dently renormalized fields, does not exceed that of Yúkawa
 
cou~lings. In the case of equality the matrix a 1 becomes
 
a square one~ and the solution is unique if it is nonsingular,
 

o i . fi.,	 detB 1- ~ O. 

2 o'loep-s: 

A 20 +	 ~ A 21 a i = O , (1"1a)
i 

B i	 ~ Di ~ B i ~ B i Q O20 + .... 2· a . +."" 2"k a .ak + "" lJ' /-'j = •	 (llb)
J J J J,k J J j 

Equation (lia) looks like a new constraint on ai' but it is 
flOt SOk It is satisfied automatically for ai determined from 
eq s s (IOb). This fact has been checked by direct comput.a t í.on rv-", 
and it i s a consequence o f a general theorem/13/ which states: 
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If an N = 1 sup'ersymmetríc gauge theory is finite at; L -loops 
(Le., a Ll, the Green functions are finite), then the gauge 
propagitor is finite in (L + 'I) loop, i.e., the (L + l)-loop 
anomá10us dimension of the gauge field vanishes. ' 

EquatioJ\s (1Ib) deÉine the coefficients {3i' The exist-ence 
of a solution here is guaranteed by that of eqs~ (IOb), 
because the homogeneous part contains the saroe matrix B1 • No 

ínew constraint ar ses , Since according to IE>,S/ the one-100p 
finiteness automatical1y leads to the cancel1ation of two-10oP 
div.ergence s ~ a l l, the coefficients f3 i = O. 

3 Loops t . 

( 12a) 
A80 + I A 8i a i + 1: A31j a i a j + I A 2i f3 i = O ,
 

i t, j i '
 

i ~ B i ~. Bi ' ~ B i a . 
B 80 + ~ 3j a j +.w 8jka f k + "~" 3 "tt a "a k f + ( 12b) J "i,k l,kll. J, J 

i 1	 i 
+ ,I. B f3. j +.. 1: a2jk (a i 13 k + ak f3 j ) + ~ B lj )' i = O '. 

2 j i J,k	 J 

The situatiorr-hére is entirely 1ike that oftwo-loops.

Tn~, {irs~ eq. is satisfied automatica11y due t~ the mentioned
 
Lheorem. nireet ca1cu1ati~ns have a1so been performe~/1~/:
 
Equations (12b) give us the coefficients )' i ' and again we have
 
the same matrix 8 1 , 

-Obvidus1y, th~ saroe mechanism wi11 take p1ace in alI orders. 
Choosing h. .as functions of a (like eqs. (7)), orre cano a1ways 
make anoma\ous dimensions ~o va.nish; and this, in turn, means 
t:tte finiteness of the theory in alI orders .of perturbati.on 
th~ory, i.e., alI the physica1 a~p1itudes ca1cu1ated in an ar
b~trary beforehand known order wi11 be f{nite. In any giv~n 
regularization, even if it breaks supersymmetry, the coeffi 
cients a i' f3 i')'i ' etc., once ca1cu1ated wil1 Lead to the can
cellation of alI d~vergences. Regu1arization dependence wi11 
cance1 in the expressions for physica1 observables~ 

thus~ the necessaiy and sufficient condition ror finite
ness is the existence of a solution of eqs. (10): a) eqs. (3) 
and (4) shou1d be fu1fil1ed; b) the number of independently 
renormalized fields shou1d DOt exceed the number of Yukawa 
cpup1ings; i.e., the matrix B1 shou1d be nonsingu1ar. 

4.	 THE RESTORATION OF SYM}ffiTRY BY THE YUKAWA-COUPLING 
FINE-TUNING 

The fact that to provide finiteness, we need the fine tu
ning of Yukawa couplings in every order of pertirbation theory 
ITlay provoke the feeling of dissatisfaction, however, this si 
tuation is not new. The saroe tllning heIps to restore the S)~
met-ry of a given classical Lagrangian at the quantum leveI 
if it is broken by regularization. Consider an example of 
the restoration of extend~d sppersymmetry in the component 
field fqrmulation of N = 4 supersYITlITletric Yang-Mills theory. 
Here the use of ordinary dimenstonal regularization obviously 
breaks supersymmetry because transition to 4,- Z{ dimensions 
breaks the balance between bosonic and ferm~onic degrees 
o~ freedom. This leads to nonvanishing of the Yukawa ~-function 

in the two-Ioop approxirnation /14/. At the same time the gauge 
I3-'functio'n that s hou l d be equal to the Yukawa one duc to-
the N = 4 invariance does vanish and gets a nonzero contribu
t í on on1y at the three-1oop Leve l , lf in this s i t ua t í.on one 
restores a broken supersymmetry by fine tuning o f the Yuk awa 

coupling, i.e.; puts h ~a+ i-a2. then the two-rl oop Yukawa 

~-function vanishes, and hence according to the theorem!13/ 
there vanishes the three-Ioop gauge ~-function. This fact has 
been check ed in refs. /.15/. Thus, a fine tunlng of the coup l í ng s 
provides the restoration of supersymmetry and 1eads to a finite 
supersymmetric. theory. . 

5.	 ,N == 4d MODEl. 

As an 'example illustrating the algorithm propo~ed to const
ruct finÍte theories we consider the s~-called ~ = 4d model/ln~ 
This model contains the same set of fields as N = 4 su~ersym~ 

metric Yang-Mills theory, namely, one gauge superfield V and 
three chiral superfields $A in the ajoint representation 
of a gauge group. The diff~rence from N = 4 theory is that 
instead of a f-type Yukawa interaction here is a d-type coup
ling. The superpotential is 

À 4 2 ~ lj k 
Wy	 = -3 f d x d () ~ d ijk $ A$ A$ A • (13)

1 A == 1 

Here d ijk is a tota1ly symmetric group structure constant. 
For de f i rri t enes s we shall consider the group SUCo), o ~3. 

Realization of the proposed algorithm for the N = 4d model 
looks as follows: 
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(i) Use of the properties of d ijk in SU(n) group to caLeu
late the anomalous dimensions of the fields V and ~A. 

(ii) Substitution ofh == ,\2/1877 2 in the form of eq. (7) 

h =: aa + f3a 2 + ya 3 + ... 

ipto the expressions for anomalous dimensions (8,9) to deter
mine the coefficients a, f3, y, etc. 

Based on the three-loop calculations of ref. 1101 we realize
 
the ptoposed program up to the three-Ioop leveI. The result is
 

2n 2 48n'2(n 2 - 10) '2 
h = --a(l - ----- ~a + ••• ), (14)
 

n2 _ 4 (n 2_ 4) 2 .
 

where n refers to the group SU(n) , and ~ == ~'(3) is the Riemanian 
(-function. We assert that alI the amplitudes calculated within 
the N = 4d model by using the ,dimensional regularization with 
Yukawa conp l í.ng (14) will be f i ní.t e up to t he three-loop Le ve I . 
The question about any symmetry of the N = 4.d modei responsible 
for its finiteness is s~ill open. 

6. FINITE REALISTIC SUPERSYMMETRIC SUeS) MODEL 

We apply the proposed method for constructing a finite Grand 
unified. theory based on a supersyrnmetric SU(5) modelo As has 
been· mentioned, a complete classification of the models satis
fying the one-Ioop finiteness condition (3,4) has been given 
in ~ef. 17/. It presents a model based on SU(5) gauge group 
with five t ypes of c.hiral super-multiplets: 5, 5, ro, Tõ and 24. 
If one additionally requires: 

a) at least, three families of quarks and leptons without 
mirror partners, 

b) necessary e1ementary Higgs fields that can be arranged 
to break SU(5) gauge graup up to SU(3)xSU(2)xU(I) and subse
quently to SU(3)xU(I), , 

c) the absence ofaxial anomalies, 
there arises a setof fields characterized by the weights 
of each multiplet, r e spec't i.ve Ly r (4, 7; 3, O, 1). This example 
was considered in detail in ref. 116,17. The available chiral 
fields ~an be assigned as follows: 24 are Higgs_fields which 
will break SU(5) down to SU(3)xSU(2)xU(1); 4(5+5) are also 

The fields are labelled as follows /16/
 
a) matter fields
 

5: 'Pai' i = 1, 2. 3 I 
10: A~f3, i = 1. 2, 3 

'I 

b) Higgs fields 

5: a = 1, 2. 3, 4 <l> a ' ,.r: ... 
a 

5 : , a = 1, 2, 3, 4<t>aa. 

,\,a
24: - f3 • 

Here a, f3 = 1•... ,5 are the SU(5) nd i.ce s . The matrix I is t.raí 

ce l e s s , and A is ant í symme t r i c , 
In the general case the Yukawa type interaction can be de

scribed by the following superpotential: 

W - Aa ~ 'i' Aaf3 ..!. B a <t>a A f3y Aõo af3yôo
Y - ij aa lf3 j + 8 ij a i i e + 

- f3 a -.l /3 y 1 t - ... , af3.à 

+ Ca b <l> aa <l> b I {3 + 3 O I f3I y I a {- 2"Ka b <l> aa <l> bf3 A. + 

(15)f3 a 1 k af3 
+ Fia 'I' ia <l> a I f3 + 2- G ij 'I' ia'!' jf3 A k ' 

whe r e I~= -.!_(Àk)~Ik'Àk is an SU(5) matrix, and sunnnation 

over repeate~2indices is understood. The last three terms would 
lead to a large violation of the baryon and lepton number at 
the tree~level and to a B-L ll0nconservation and usually a~e 

ignored. • 
Th~ one-Ioop finiteness copditions are* 

Ci>: . .a. * b 24 * ; i * i 12 2 

I
 
4 ,1.. A i j A ij + ........- I C a e Gbe + \4 .I Ea-eE be == --- g ôab
 

l,j 5 e \ r.e 5 

a * b 24 :I; 

\ 

24 * 12 2 ( 16) . <1>: 3 I B.. B., + -5 I C ea 7- I F. F. b == --- g Ô bCe b + 
i ,j lj lj e .., i la 1 5 a' 

"I~I. \ 
Higgs f i.el.d s the par t of wh í ch will be used for breaking 
the electroweak gauge group; the remaining fields 3(5+10) are 

ref. / 61 "Acco rd ng to we put g= gsUSy=i2~NON"SUSY.íidentified with matter fields. 
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a * a 24 * "k * k 12 2

'V: ,4	 ~ A ik A jk .+ 5" 2. F ia F ja + 4 ~ G ir G jf ="""5 g oij 24 12 

a, k a ~,k t1> 4 : T a 3 ,",,: -'5' 

a *a a *a i *j i *j
A: 2 ~ A ki A k i + 3 l B ik B 'k + 2 2 Ea b E a b + 2 ~n 0kP- GkE a,k J a,k J ~,b k, r, ' ( 16) 

18 2
 
= --g O"5 lJ 

~: l + ~1 DÓ + l F ia Fla = 5g 2 .Ca b êa b a,b	 i,lI. 

They leave rather lar~e arbitrariness in the matrices A, B, C, 
D, E, F, G. In ref. /1 ,17/ some speci f i c axamp Le s of solutions 
to these equations have been considered. We discuss below some 
generali.zfltion of one of these. examf"l]es which provides us with 
a theory finite to alI orders. 

ConsiQer a superpotential 

d2 3 af3yoa a f3y ou 
W = d i ~a 'V {'3 Aaf3 +- 2- e .<1\ A i A 1 +
 

y 1 í=1 1 i i 8 i == 1
 

( 17) 
+ d ia <l>f3 Ia + ~ ~a ~tJ i Y + d ~ (~~ + 'P~ )<I>~ 2,a

3 4	 4 f3 3 {3 y a 5 1::0:1 'I 1 1 f3
 

Superpotential (17), contrary to t ha t of ref. /16/. con t a í ns 
individual couplings for each interaction. To get a nonsingular 
matrix loB we have a1so to i n t roduce the fifth interac

1(lOb),
tion -d The second term in this interaction leads to B-L 
nonconse rvaj.don and should 'be suppr e-ssed. 1 n our case the 
constant d&- is not chosen a rb i t r ary , rather it i s defined 
from eq. (lOb). 

Superpotential (17) is chos~n so that theie are five arbi
trary	 constants di and ffive indepe:hdently_ r ano rmal i aed fields, 
name l y , 'li i ' <I> i ' <1>4' A i and ~. The f. í e l d s <I> i and <I> 4 are renorma
lízed	 like 'li i and <1>4 .respectivel~}, because they enter i nr o 
the potential (17) in t:he same wa;y and belong to the s ame 
representation of SUeS). Sub s t i t ij t i ng eq. (17') into eq . (16) 
we get the following linear systkm of eqs. for ai; 

5 . 

. 24 12 I
 
'lii'	 4a 1 + "'5a 5 == 5
 ;'	 ( 18)

I
" 48 12

3a 2 + --a5 =~1 5 5
 

18
 
A. i :	 2al + 3a2 = 5 ' 

( l'8~ 

.	 21

!,:	 a 3 + ---a 4 + 2a 5 = 5. 

r	 ~ 

L
I',
 Thus , the mat-rí.x. 8 1 is nonsingular
-/

l	 24
 
4 O O O T 

I	 48
 
O 3 O O 

5
 
72576
 

24 O I, ; detB1 =2"5/: o.: ,B1= , O O O 
5
! 

2· 3' o. O' O 

21

O O 1 2
 

5
 

Solving eqs. (18) we get 

3 .. 1 15	 (19)
a õ = O • 
a 1 =5 ' ~2 =="5 " a3 =, ~' 4 4 é 14' 

Hence, to provide one-loop finiteness, one does not need a B-L 
violating interaction in agreement with nef , /16.11/. 

Since the one-loop finiteness ,automatically leads to 
t he two-loop one, allthe fjj =-0 •. 

In the three":loop approx1mation, using the expression for 
propagators /10.11/ , with the heLp: of "SCHOON$CHlpll comput.er 
program /18/ , we get; the followíng system o f eqs. for Yi: .I 24 96,

4y 1 + --y 5 = - K ,
 i 5 25
 

l 
~ 

48 222
 . ~ 3r 2 + -5-·YI) ;0= -125" K,
;(. 

24432
!li' --Y3 = --, K.lrl 5 25
 
I~ 18
l~

'1 ~ 2Yl + 3Y2 = --,K,
125
 

21 621 1215 .. :
 
Y3 + -Y + 2y = (- - ----)K K = 6<,(3)

5 4 6. 20 49 ' 

11
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This	 gives 

24 18 
Y1 =E K , Ys =TK , (20)

}'5 == O. 
74	 867 

y == ---K = ---K,Y42	 125' 1372 

).
Thus, to provide finiteness of alI amplitudes up to t'he three I 

lo, 

Loop Leve l , ORe should connect the coup l ng s h i with a oi"í 

in the following manner:	 !' 

3 ( 48 ((3 2h1==-al+-~- )·a),
5 5

1 216 2h =	 -a(1 + --C:(3) a )
3 2 5 

Note tpat at the three-loop 
for fin1teness. Like in t4e 
h 5 =0. This is due to the 
tne fields W,~ and A up to 
lation 

r 
2">''l'	 + Y<1>. = YA . 

h 2 ==	 i. a (1 - 1l!..(3) a2:) , 
o 5 25 (21) 

15 867 c: 2 , h 4 == -a(1 + ---- (3) a ), h s = O.
14 245 

leve1 four coupltrtgs are sufficient 
one- and two-loo~ approximation 

fact tbat anomalous dimen~ions of 
three-loops are conne~ted by ~he re

(l2} 

Comb-il\atorical arguments basedQn that the fir~t two t~rms 
i'n eq. (17). are symmetric in W,<1> and;\. probab l y , allow us-
to assert that eq. (22) is valid in a ll ord.ers like for y~,....y_. 

But even if it is not so, the B-L vielating irrteraction is <1> 

strongly suppressed. 
Superpotebtial (17) can be generalized ~y introducing 

a mixing matrix o.f t he, Kobayashi -Maskawa type . For Wy t h i s. 

would result in nondiagonal interactíon Iike/16 1 .~ Kij~t'l'iAj 
1.J 

or.~ Kij <l>j v, 1\ j ,where K is some unitary matrix. In the first 
1. j 

case tog~ther with the second term in (~7J ttis lead~ to nondia
gonal propagators in the three-loop order that does nnt allow 
us to achieve finiteness. The second case is free from this 
difficu1ty: the ~heory remains fiÓite with eqs. (21) being 1:
unchaI\ged.	 'I1

So far we have considered the massless case. One can add . I ~ 

lnass te~s. The most general Supersymmetric mass terrns are I, 

given by	 oI,. 

12 

1 2
W ==	 d3M ab <1>a <1> b + "'2d 4 MO ~ M 

Here	 coefficients M O and have a dimension of mass and areMab 
not restricted by the finiteness requirement. The potentia1 
Wv " W

M 
is extremized by 

~ == Modiag(2', 2, 2, - 3, -3) 

that	 breaks SUeS) to SU(3)x SU(2)xU(1) in the usual fashion. 
o The introduction of explicit soft supersymmetry br~aking 

terms /17/ is a l so pos s í.bl e , By providing the one-loop finite
ness by an appropriate chnice of supersyrnmetry breaking para
meters, higher-loop finiteness can be achieved by fíne-tuning 
of them as calculable functions of the gauge coup1ing a like 
eq , (7). 

7. CONCLUSION 

In conclusion we summarize some results: 
i) We propose a method to construct finite fie1d theories 

which provide~ us with a whole c1ass of quantum fie1d theory 
models withou~ ultraviolet divergences. This class is not re
stricted by the kuqwn examp1es of N = 2 or N = 4 supersymmetries. 

ii) Theproposedfinite unified supersymmetric theories, 
which can be ca11ed FUST's, are ~istinguished among alI GUT's. 
They contain a fixed set of fie1ds (a fixed number of families) 
and lead to strict connections between the'amplitudes of dif 
ferent processes due to a single coupling constant. 

iii)As has been mentioned in the introduction, reducing' 
the superstring theory from a 10 to 4-dimensiona1 space-time 
one can get a finite GUT with the gauge group depending on 
the way of compactification. It would be very interesting to 
find such a compactification that 1eads to a theory obtained 
by our method. Then, TIlay be, it would become clear what kind 
of syrnmeiry (if any} is responsible for the cancellation of di
vergences. 

Iv) The existence of a whole class of finite quantum field 
theoryo models with interaction brings us back to the founda
tiens of quantum field theory. Absence of divergences a1lows tIS 

to make formal expressions meaningful in the intera~tion repre~ 
sentation, such as the state vector', Hamiltonian, etc. This 
means that a nonformal meaning there acquire both the interac
tion representation and the Shrodinger representation~ Thus, 
thewell-knownproblem of quantum field theory, which is usually 

13 
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ígnared in madern pragmatie appraaehes, finds its salutian 
in finite thearies. 
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EpMyrneB A.B.' Ka3aKOB n.u., TapacoB O.B. £2-86-17 
KoHetiHbJe TeopHH senHKOro o6be,IJ;HHeHHH c N = I cyrrepcHMMeTpHeH 

Tipe.o;no~eH anropHTM rrocTpoeHHH N = I cyrrepcHMMeTpH'!Hb~ 
TeopmJ: .IJHra-MHJlJlCa, KOHetiHbiX EO BCeX rropH,o;KaX TeOpHH B03My~e
HHH. Heo6xo,o;HMbie 11 .o;ocTaTotiHbJe ycnoBHH KOHetiHOCTH orrpe.o;enHmT
CH y~e B O)J;HOITeTJleBOM rrpH6Jl~eHHH. Knacc TaKHX TeOpHH )J;OCTa
TO'IHO rnHpoK H He HCtieprrbJBaeTcH N = 4 HJlH N = 2 cyrrepCHMMeTpH
tiHbiMH MO,D;eJlHMH. p aCCMOTpeH PHA ITpHMepoB KOHetiHb~ TeOpHH. 
Tipe.o;naraeTcH peanHCTHtiecKaH KoHetiHaH N = I cyrrepCHMMeTpHtiHaH 
SU(S) Mo.o;enb BenHKoro ofbe,D;HHeHHH c TpeMH rroKoneHHHMH ~epMH
OHOB H Heo6XO)J;HMb~H XHrrCOBCKHMH MYJlbTHITJleTaMH. 

Pa6oTa BbiiTOJlHeHa B ITa6opaTopHH TeopeTHtieCKOH ~H3HKH OH5UL 

fipenpHHT 06'be]lHHeHHoro HHCTHTyra .IIJlepHblX HCCne]lOBaHHii. ny6Ha 1986 

Ermushev A.V., Kazakov D.I., Tarasov O.V. E2-86-17 
Finite N = I Supersymmetric Grand Unified Theories 

We propose an algorithm to construct N = I supersymmet
ric Yang-Mills theories finite in all orders of perturbation 
theory. Necessary and sufficient conditions for finiteness 
are determined already in the one-loop approximation. The 
class of such theories is wide enough and not exhausted by 
N = 4 or N = 2 supersymmetric models. Several examples of 
finite theories are considered. Finite realistic N = 1 super
symmetric Grand Unifield theory is proposed which is based 
on SU(S) gauge group and contains three fermion families 
with necessary Higgs multiplets. 
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