

E2-86-169

D.Yu.Bardin, S.Riemann, T.Riemann

ELECTROWEAK ONE-LOOP CORRECTIONS TO THE DECAY OF THE CHARGED VECTOR BOSON

Submitted to "Zeitschrift für Physik C"

1986

1. Introduction

A unique approach is emerging of precision calculations of electroweak radiative corrections to basic parameters and processes within the Glashow-Weinberg-Salam (GWS) theory /1,2/. It seems worthwile to treat the W-decay width within this approach as has recently been done for the 2-boson decay /3/. Whereas electroweak corrections to W-decays into two quarks have not been considered so far in the literature, we feel also some usefulness of a reexamination of decays into leptons /4,5/ ¹:

$$W \rightarrow l \nu(r), \quad l = e, \mu, \tau, \quad (1)$$

$$W \rightarrow q_{\mu} \overline{q}_{d}(\ell), \quad q_{\mu} = \mathcal{U}, \mathcal{C}, \quad q_{d} = d, \mathcal{S}, \mathcal{B}.$$
⁽²⁾

The calculational scheme is defined as follows: 1. On mass shell renormalization combined with the relations

$$Sin^2 \Theta_w = S_o^2 = 1 - \frac{M_w^2}{M_z^2}, \quad g = e/S_o$$
 (3)

2. Numerical determination of the gauge boson sector through α', G_{μ}, M_{Z} . Especially, it follows that

$$M_{w} = M_{z} \left[\frac{1}{2} + \frac{1}{2} \left(1 - \frac{4A^{2}}{M_{z}^{2}} \right)^{1/2} \right], \qquad (4)$$

$$A = A_{o} \left(1 - \delta \Gamma \right)^{-1/2}, \quad A_{o} = \left(\frac{\pi d}{\sqrt{2} G_{\mu}} \right)^{1/2}, \quad \delta \Gamma = \frac{d}{4\pi} X. \qquad (5)$$

The $\delta/$ is shown in Fig. 1. It contains the electroweak one-loop corrections to muon decay /1,7/ and is also responsible for the radiative mass shift of the gauge boson masses $M_{W,Z}$ compared to $M_{W,Z}^{(o)}$ as being calculated in Born approximation from other observables.

¹⁾Although we do not consider the production of heavy fermions, the inclusion of the mass-corrected phase-space factor /6/ would lead to a quite good description of such process based on the results presented here.

Объсанисчирий киститут **BECHENX** HCC.SE.FORMAN

Alternatively, instead of M_2 one may choose the W-boson mass as an experimental imput and derive M_2 iteratively:

$$M_{2} = M_{w} \left(1 - \frac{A^{2}}{M_{w}^{2}}\right)^{-1/2}$$

(4a.)

3. The use of electroweak form factors allows a clear and simple interpretation of observables in the GWS theory without need of process-dependent changes of basic parameters of the theory. 4. Instead of the fine structure constant α , the \mathcal{M} -decay Fermi constant \mathcal{G}_{μ} is used for the normalization of weak processes:

$$\frac{g^2}{gM_w^2} = \frac{\pi d}{\ell s_0^2 M_w^2} = \frac{G_m}{\sqrt{2}} \left[1 - \delta \Gamma + O(d^2) \right]. \tag{6}$$

The last point deserves some comment. The only independent coupling used to calculate cross sections and to define Born approximations. $\delta \uparrow$ perturbatively connects \measuredangle and G_{μ} . The $\measuredangle \equiv \alpha(o)$ The is a truly low energy coupling constant, whereas $G_{\mu\nu}$ even if measured from a low energy process (e.g. muon decay) is connected with an energy scale of the order of $M_{Z, W}$, the masses of the exchanged particles which determine the dynamics of weak processes. Inserting into (6) instead of α (0) the α (M_{2}) $\approx 1/128$ drastically reduces the correction δr to some smaller $\delta r'$. So, \dot{G}_{μ} is the preferred coupling for all weak processes. Along the lines described we calculate the electroweak form factors mass, and of M_{μ} , the higgs boson mass. To be physically welldefined, hadronic partial widths should remain finite in the limit of vanishing masses of the produced light quarks ($\mathcal{U}, \mathcal{L}, \mathcal{S}$). We take into account the undetected emission of one real photon without any cut corresponding to the proper definition of a width. Together with the loop corrections, this ensures an infrared finite result and, in accordance with the Kinoshita-Lee-Nauenberg theorem /8/. the absence of mass singularities. Masses of quarks of "intermediate weight" M_r and M_p also may be neglected both due to the same reason and since their proper mass effects are very small, $M_e^2 \neq M_{\mu\nu}^2 \approx 3 \times 10^{-3}$. Therefore, we only take into account nonvanishing mass corrections from the top-quark which may be treated

within perturbative QCD /9/. For quark production we add the QCDcorrection due to one-gluon exchange. In Section 2 the derived formulae are presented, and Section 3 contains numerical results. In the Appendix some details on bremsstrahlung and on the loop functions used may be found.

2. Formulae

The following matrix element corresponds to the diagrams of Fig. 2:

$$M_{ij} = g K_{ij} \mathcal{F}_{ij}^{w} \mathcal{E}_{\mu}^{w} (q) \overline{\mathcal{U}} \mathcal{Y}_{\mu} (1 + \mathcal{Y}_{5}) \mathcal{U}, \qquad (7)$$

where k_{ij} is the Kobayashi-Maskawa mixing matrix ($k_{ij} = \delta_{ij}$ for leptons), $\mathcal{E}_{\mu}^{w}(q)$ is W-boson polarization vector and the form factor $\mathcal{F}^{W} = 4 + \delta \mathcal{F}^{W}$ may be taken from /7/. Compared to Z-boson decays /3/, there are two differences. While Z-boson decay is described by two form factors $\mathcal{F}_{4,\ell}^{Z}$ in the approximation adopted here, for the decays (1,2) the full matrix element is projected by the W-boson couplings onto one structure $\mathcal{F}_{\mu}(4+\mathcal{F}_{5})$. On the other hand, the gauge-invariant separation of photonic corrections from pure weak ones is possible in Z-boson decays but not in W-boson decays. Intrinsically, the electrodynamics of a charged, massive vector boson is well-defined only in conjunction with some other, broken gauge interaction. As a consequence, a gauge-invariant QED correction to W-decay cannot be separated. To get a physically meaningful result, one has to add to $/M^{/2}$ of (7) the bremsstrahlung contribution $\delta \mathcal{F}^{\delta}$ of Fig.3. Finally, the normalization \mathcal{G}^{2} of the widths will be replaced by \mathcal{G}_{μ} (see(6)):

$$\Gamma_{ij}^{w} = \left| K_{ij} \right|^{2} C_{i} \frac{G_{\mu}}{\sqrt{2}} \frac{M_{w}^{3}}{6\pi} \beta_{ij}^{w} \left[1 + \frac{d_{s}(M_{w})}{\pi} D_{i} \right], \qquad (8)$$

$$\beta_{ij}^{w} = 1 - \delta \Gamma + \delta f_{ij} , \quad \delta f_{ij} = \mathcal{L} \delta \mathcal{F}_{ij}^{w} + \delta f_{ij}^{\ell} . \tag{9}$$

The electroweak radiative corrections in (8) are contained in one form factor \int^{W} which measures the channel-dependent deviation of the coupling strength from G_{μ} . The explicit expression for \int^{W} is derived in the Appendix. Into (8) we included the one-gluon-exchange correction whose strength is determined by the strong interaction constant $\omega_{s}(A_{w})$. For quark production is

 $C_i/3 = D_i = 1$ and for lepton production $C_i = 1$, $D_i = 0$. Since gluons are flavour-blind, these corrections are the same both in W- and Z-boson decays, and we may take them from the latter /6/.

3. Results

If not stated otherwise, the discussion will be based on the following set of parameters: $M_2 = 93$ GeV, $M_4 = 40$ GeV, $M_H = 100$ GeV. From (4,5) one iteratively derives $\delta \Gamma = 0.070 \pm 0.002$, A = 38.65 GeV and $M_W = 82.03$ GeV. A systematic tabulation of M_W for a wide range of parameters may be found in /10/. The error quoted for $\delta \Gamma$ is due to the hadronic vacuum polarization /10/. The error correlation between M_2 , M_W , and A may be derived most simply from the relation $\delta_{D}M_W = A$, an expression equivalent to (4,4a):

$$(M_{w}^{2} - A^{2}) dM_{2}^{2} - (2M_{w}^{2} - M_{2}^{2}) dM_{w}^{2} = M_{2}^{2} dA^{2},$$
$$dA = \frac{1}{2} A_{o} d(\delta r).$$
(10)

An immediate consequence of (10) is that for an experimental error of $\delta M_2 = 100$ MeV as is expected from e^+e^- -annihilation near the Z-boson pole at SLC/LEP, the uncertainty in M_W is mainly due to δM_2 ¹:

$$\delta M_{w} = \frac{M_{w}^{2} - A^{2}}{2M_{w}^{2} - M_{z}^{R}} \frac{M_{z}}{M_{w}} \delta M_{z} = 1.2 \delta M_{z} .$$
⁽¹¹⁾

Equation (11) estimates the influence of an experimental uncertainty in M_2 on the theoretical prediction of $\int w'$, namely for $\delta M_2 = 100 \text{ MeV}: \delta \Gamma w' \Gamma = 3 \delta M w' H' = 0.45\%.$

In Born approximation, both the leptonic and hadronic decay channels of the W-boson have equal probability (up to the factor $|\kappa_{ij}|^{\ell}C_{i}$):

¹⁾For $SM_2 = 50$ MeV the error of A has to be taken into account too.

5

In case of three generations, the total width becomes

$$\Gamma_{o_{s}tot}^{W} = \Gamma_{o,t}^{W} + \left(\frac{M_{w}}{82.0}\right)^{3} \mathcal{L}.174 \, \text{GeV}, \tag{13}$$

where we have separated out the decay rate into final states containing a t' -quark, since M_t is yet unknown.

The discussion of radiative corrections in the scheme chosen has to comprise the influence of $\mathcal{M}_{\mathcal{W}}$ and $\mathcal{J}^{\mathcal{W}}$, both of them being dependent on $\mathcal{M}_{\mathcal{H}}$ and $\mathcal{M}_{\mathcal{H}}$ (of course, $\mathcal{M}_{\mathcal{H}}$ is representative for any quark doublet with a large mass splitting). For given $\mathcal{M}_{\mathcal{W}}$, the one-loop corrections are contained in $\mathcal{J}^{\mathcal{W}}$ shown in Fig. 4. As may be explicitly seen from (9, A.4-6), the influence of the charges of the final particles is extremely small so that we may neglect the channel-dependence of electroweak corrections henceforth:

$$\beta_{\nu\ell}^{w} - \beta_{q_{\mu}\bar{q}_{d}}^{w} = 0.046\% .$$
(14)

The magnitude of $\delta f = f - l$ is typically of an order of 0.7%. As has been expected in the Introduction, it is really small compared to $\delta f \simeq 7\%$ and $\delta f'' \simeq 6\%$ and is due to the use of $G_{\mu\nu}$ instead of \propto (0).

An interesting feature of observables is their dependence on yet undetermined parameters of the theory, the masses M_{\perp} and M_{\parallel} . A smooth dependence of the form factor f^{W} on M_{H} is negligible in the interval 100-1000 GeV, and is weak between 10 and 100 GeV (smaller than 0.1%). The influence of M_{\perp} is more interesting as may be seen from Fig. 4. Whereas δf^{W} approaches a nearly constant value of -0.8% for large M_{\perp} , one observes a sharp peak at about 82 GeV; the \pm -quark mass has its largest influence for comparably small values. This may easily be understood. As a result of the renormalization procedure, certain selfenergy functions and their derivatives contribute to M_{W} , f^{W} , f^{W} . Those of them which represent loops with \pm -quark exchange show some threshold behaviour near $M_{\perp} = M_{\perp}/2$ and $M_{\perp} = M_{W}$ (for $M_{\mu} = O$) leading to the peak of f^{W} (see also the Appendix). The f^{W} -dependence on M_{μ} is as follows:

$$\frac{d\Gamma^{w}}{\Gamma^{w}} = 3 \frac{dM_{w}}{M_{w}} + dp^{w} = -\frac{3}{2} \frac{M_{z}^{2} A_{o} A}{M_{w}^{2} (\ell M_{w}^{2} - M_{z}^{2})} d(\delta r) + dp^{w}$$

$$= -0.58 d(\delta r) + dp^{w}.$$
(15)

In Fig. 5 we plot

$$\delta^{W} = \frac{\Gamma^{W}(m_{\mu}, M_{H}) - \Gamma^{W}(40 \text{ GeV}, M_{H})}{\Gamma^{W}(40 \text{ GeV}, M_{H})}$$
(16)

This quantity exhibits the combined dependence of through M_{W} and \int^{W} on M_{L} , M_{H} at fixed M_{Z} . In contrast to the form factor \int^{W} , \int^{W} is nearly independent of M_{L} up to $M_{L} = 100 \text{ GeV}$ and then strongly raises due to \mathcal{F} . Evidently, the electroweak radiative corrections are not necessarily small in the scheme chosen here. The best prospects to measure $\int w$ are in the reaction $e^+e^- \longrightarrow W^+W^-$ at the threshold where the shape of the cross section is determined mainly by $(E - E_{thr})/r^{w}/11/$. This reaction also allows a precise determination of $M_{\mu\nu}$, may be, with even better accuracy than that of $M_{\rm Z}$ /12/. Then, one should use $M_{\rm W}$ as an experimental input and calculate M_2 from Eq. 4a. Within such an approach all the radiative corrections in W-decay are contained in ho^w , which simplifies the above analysis considerably. As a consequence, now they are small (not exceeding 1.5%) even for quite large masses of the t-quark and the higgs boson. They are comparable to the uncertainty from the gauge boson masses (at $\delta M^{W} = 100 \text{ MeV}, \delta \Gamma^{W} / \Gamma^{W} \simeq 0.5\%$ and, of relevance in the quark channel, to the error in QCD-corrections ($\delta d_s/d_s \simeq 20\%$ for $d_s /\pi \simeq 5\%$, yielding to a $\delta \Gamma^w / \Gamma^w \simeq 0.8\%$). A plot of \int^w against \mathcal{M}_w , with parameter \mathcal{M}_μ , has been shown for the leptonic decay channel in /5/. Strictly speaking, this may be compared to our results only when we adopt M_w as an independent input quantity since $\int^{W} [M_{2}, M_{W}(M_{2}, m_{y}, M_{H}); M_{z}, M_{y}]$ is different from $\int^{W} [M_{2}(M_{W}, M_{z}, M_{H}), M_{W}, M_{z}, M_{H}]$. But since this difference is $O(\mathcal{A}^{2})$. one may neglect it. Really, we agree with /5/ within the accuracy of their figures.

To summarize, in a slightly different and more transparent representation we reproduce the results of /5/ for the leptonic and show additionally for the quarkonic decay channels of the W-boson that electroweak radiative corrections are below one percent for a wide range of m_{ℓ} , M_{μ} if Γ^{w} is written in terms of M_{w}, G_{w} .

This is smaller than the expected experimental accuracy for $\int^{-\kappa}$ so that the Born approximation (12,13) remains applicable with high precision.

Appendix

Here we present the expressions contributing to the electro-weak form factor $\rho^{\, \psi}_{\, \cdot}$:

$$P^{w} = 1 - \delta \Gamma + 2 \delta \mathcal{F}^{w} + \delta \mathcal{f}^{\beta}.$$

(A.1) The bremsstrahlung of Fig. 2 for the process $W \rightarrow f_u f_d f'$ has to be integrated over the complete photon phase space. The matrix element is

$$M_{g} = \overline{u} \left(K_{u} \right) \left\{ \left| Q_{d} \right| \mathcal{O}_{\mu} \frac{2K_{dd} + \widehat{p}\xi_{\lambda}}{2K_{dp}} + \left| Q_{u} \right| \frac{2K_{ud} + \xi_{\lambda}\widehat{p}}{2K_{u}p} \mathcal{O}_{\mu} - \right. \right.$$

$$-\frac{1}{q\cdot p} \left[\left\{ q_{\nu} \delta_{\mu} + P_{\mu} \delta_{\mu\nu} - \left(P_{\nu} + \alpha \left(q_{\nu} - P_{\nu} \right) \right) \delta_{\mu\mu} \right] \right] \mathcal{U}(\mathcal{K}_{d}) \mathcal{E}_{\mu}^{\mathcal{K}}(P) \mathcal{E}_{\mu\nu}^{\mathcal{K}}(q),$$
(A.2)

where Q = O(I) corresponds to the unitary ('t Hooft - Feynman) gauge and $Q_{\mu} = \int_{\mu} (I + \int_{S})$. The calculation has been done using SCHOONSCHIP /13/. It is a nontrivial but a straight-forward application of the methods developed in /14/. The result is the same in both gauges:

$$\begin{split} \delta f^{\ell} &= \frac{d}{\mathcal{T}_{I}} \left\{ P_{IR} \left[-\left(1 + Q_{u}^{2} + Q_{d}^{2} \right) + Q_{u}^{2} \ln \frac{M_{w}^{2}}{m_{u}^{2}} + Q_{d}^{2} \ln \frac{M_{w}^{2}}{m_{d}^{2}} \right] + \\ &+ \frac{77}{24} + \frac{11}{4} Q_{u} Q_{d} - \frac{7}{3} \left(Q_{u}^{2} + Q_{d}^{2} \right) - \frac{1}{4} \left(Q_{u}^{2} \ln^{2} \frac{M_{w}^{2}}{m_{u}^{2}} + Q_{d}^{2} \ln^{2} \frac{M_{w}^{2}}{m_{d}^{2}} \right) \right\} \\ &= 0.6\ell \end{split}$$
(A.3)

The sum of $\delta \neq 0^{\circ}$ and of diagrams of Fig. 1 with photon exchange (which are taken from /7/) is infrared-finite:

$$\delta \int_{QEQ} = \frac{d}{T} \left[\frac{85}{18} - \frac{T_{1}^{2}}{3} + \frac{3}{4} Q_{u} Q_{d} \right].$$

It differs from the result quoted in /15/ for $Q_{\alpha} = O$ (leptonic decay mode) in the 't Hooft Feynman gauge by a nonlogarithmic gauge-

(A.4)

dependent term from the vertex correction. The rest of diagrams of Fig. 1 together with $-\delta f = -(\alpha/\mu_{\pi}) X$ will be used to define $\delta f''$:

$$\delta f^{w} = \frac{\Delta}{4\pi s_{0}^{2}} \left\{ W(-1) - W(0) + W_{F}(-1) + \frac{5}{8}R(1+R) - \frac{H}{2} - \frac{9R}{4(4-R)}lnR + \left[-1 + \frac{1}{2R} + \frac{2(4-R)^{2}}{R}Q_{u}Q_{d} \right] \left[V_{I}(W,Z) + \frac{3}{2} \right] + 2R \left[V_{2}(W,W,Z) + \frac{3}{2} \right] \right\}.$$

Here, $k = 1 - S_0^2$, the W-functions and $V_{i,2}$ again are from /7/, their t-quark mass dependence from /3/. A closer inspection shows that the peaking of \int^W mainly is due to $W_F(-1)$, the finite part of the W-boson wave function renormalization constant which has an extremum at $f = \frac{m_i^2}{M_W} = 0.862$ for $M_i = 76.2$ GeV, $M_W = 82.0$ GeV, if $M_2 = 93.0$ GeV. The M_{i} -dependence of $W_F(-1)$ is

$$W_{F}(-1,r) = W(-1,0) + lnr - \frac{f}{2} - r^{2} + (1-r^{3})ln/1 - \frac{1}{r}/.$$

Finally, we get the gauge-independent co-factor of G_{μ} in W-decay

$$f'' = 1 + \delta f'' + \delta f_{\text{QED}} . \tag{A.6}$$

The channel-dependence is contained in two terms:

$$\int_{\mathcal{V}} -\int_{qq'} = \frac{d}{\mathcal{T}} \left\{ \frac{3}{4} + \frac{1-R}{R} \left[V_{1}(W, 2) + \frac{3}{2} \right] \right\} \left(Q_{\nu} Q_{p} - Q_{q} Q_{q'} \right) = 0.046\%,$$
(A.7)

for $M_2 = 93$ GeV, $M_H = 100$ GeV, $M_L = 40$ GeV. The dependence on M_L , M_H is only due to their influence on $M_{W'}$ (i.e. of order χ^2).

References

- 1. A. Sirlin, Phys.Rev. D22 (1980) 971.
- Proc. Workshop on Rad. Corrections in SU(2)xU(1), Trieste, 1983; eds. B.W.Lynn and J.F.Wheater (World Scientific, Singapore, 1983) and refs. cited therein.
- 3. A.A.Akhundov, D.Yu.Bardin and T.Riemann, JINR Prepr. E2-86-617 (1985), and refs. cited therein.

- K. Inoue, A.Kakuto, H.Komatsu and S.Takeshita, Prog. Theor. Phys. 64 (1980) 1008.
- 5. M.Consoli, S.Lo Presti and L.Maiani, Nucl. Phys. B223 (1983) 474.
- 6. D.Albert, W.Marciano, D.Wyler and Z.Parsa, Nucl. Phys. B166 (1980) 460.
- 7. D.Yu. Bardin, P.Ch.Christova and O.M.Fedorenko, Nucl.Phys. B197 (1982) 1.
- T.Kinoshita, J.Math.Phys. 3 (1962) 650;
 T.D.Lee and M.Nauenberg, Phys.Rev. 133 (1964) B1549.
- 9. V.Novikov et al., Phys. Repts. 41C (1978) 1.
- 10. D.W.Lynn and R.G.Stuart, Nucl. Phys. B253 (1985) 246.
- L.Ginzburg, G.Kotkin, S.Panfil and V.Serbo, Novosibi rskprepr. TP-3 (127) (1982).
- 12. M.Katuya. Zeitschrift f. Physik C28 (1985) 509 and refs. cited therein.
- 13. H.S.Strubbe, Comp. Phys. Com. 8 (1974) 1.
- D.Yu. Bardin and N.M.Shumeiko , Nucl.Phys. B127 (1977) 242;
 A.A. Akhundov, D.Yu. Bardin, O.M.Fedorenko and T.Riemann, Yad. Fiz. 42 (1981) 1204 (in Russian), Dubna-prepr. E2-84-787 (in English).
- 15. W.J.Marciano and A.Sirlin, Phys. Rev. D8 (1973) 3612.

Received by Publishing Department on March 24, 1986.

WILL YOU FILL BLANK SPACES IN YOUR LIBRARY?

You can receive by post the books listed below. Prices - in US 8, including the packing and registered postage

D1,2-82-27	Proceedings of the International Symposium on Polarization Phenomena in High Energy Physics. Dubna, 1981.	9.00
D2-82-568	Proceedings of the Meeting on Investiga- tions in the Field of Relativistic Nuc- lear Physics. Dubna, 1982	7.50
D3,4-82-704	Proceedings of the IV International School on Neutron Physics. Dubna, 1982	12.00
D11-83-511	Proceedings of the Conference on Systems and Techniques of Analitical Computing and Their Applications in Theoretical Physics. Dubna,1982	. 9.50
D7-83-644	Proceedings of the International School-Seminar on Heavy Ion Physics. Alushta, 1983.	11.30
D2;13-83-689	Proceedings of the Workshop on Radiation Problem and Gravitational Wave Detection. Dubna, 1983.	ns 6.00
D13-84-63	Proceedings of the XI International Symposium on Nuclear Electronics. Bratislava, Czechoslovakia, 1983.	12.00
E1,2-84-16	O Proceedings of the 1983 JINR-CERN School of Physics. Tabor, Czechoslovakia, 1983.	6.50
D2-84-366	Proceedings of the VII International Cónferenc on the Problems of Quantum Field Theory. Alushta, 1984.	e 11.00
D1,2-84-599	Proceedings of the VII International Seminar on High Energy Physics Problems. Dubna, 1984.	12.00
D17-84-850	Proceedings of the III International Symposium on Selected Topics in Statistical Mechanics. Dubna, 1984. /2 volumes/.	22.50
D10,11-84-818	Proceedings of the V International Meeting ' on Problems of Mathematical Simulation, Programming and Mathematical Methods for Solving the Physical Problems, Dubna, 1983	7. 50
	Proceedings of the IX All-Union Conference on Charged Particle Accelerators. Dubna, 1984. 2 volumes.	25.00
D4-85-851	Proceedings on the International School on Nuclear Structure. Alushta, 1985.	11.00
Orders for	the above-mentioned books can be sent at the ad	ldress:

Urders for the above-mentioned books can be sent at the address Publishing Department, JINR Head Post Office, P.O.Box 79 101000 Moscow, USSR

SUBJECT CATEGORIES OF THE JINR PUBLICATIONS

Inde	x Subject
1.	High energy experimental physics
2.	High energy theoretical physics
3.	Low energy experimental physics
4.	Low energy theoretical physics
5.	Mathematics
6.	Nuclear spectroscopy and radiochemistry
7.	Heavy ion physics
8.	Cryogenics
9.	Accelerators
10.	Automatization of data processing
11.	Computing mathematics and technique
12.	Chemistry
13.	Experimental techniques and methods
14.	Solid state physics. Liquids
15.	Experimental physics of nuclear reactions at low energies
16.	Health physics. Shieldings
17.	Theory of condenced matter
18.	Applied researches
19.	Biophysics

Бардин Д.Э., Риманн С., Риманн Т. Е2-86-169 Однопетлевые электрослабые поправки к распаду заряженного векторного бозона

В рамках стандартной теории вычислены электрослабые радиационные поправки к парциальным ширинам распадов W-бозона, $\Gamma(W \rightarrow 1\overline{v}, \overline{u}d, \overline{cs})$. Результаты представлены в терминах электрослабого формфактора ρ^{W} . Изучается его зависимость от массы t-кварка m_t и массы бозона Хиггса Мн. Показано, что типичная величина $\rho^{W} - 1$ - порядка 1%, разница $\rho_{1v}^{W} - \rho_{qq'}$ очень мала (0,045 %). Детально обсуждается используемая схема вычислений.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Bardin D.Yu., Riemann S., Riemann T. E2-86-169 Electroweak One-Loop Corrections to the Decay of the Charged Vector Boson

The electroweak radiative corrections to the decay widths of the W-boson, $\Gamma(W \rightarrow 1\bar{v}, \bar{u}d, \bar{c}s)$, have been calculated in the standard theory. The results are presented in terms of an electroweak form factor ρ^{W} , and their dependence on m_t and M_H (masses of t-quark and higgs boson) is studied. Typically, $\rho^{W} - 1$ is of an order of one per cent. The difference $\rho^{W}_{Iv} - \rho^{W}_{qq'}$ is negligible, 0.045%. The calculational scheme used is described in detail.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986