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t. Introduction

The theory of self-adjoint extensions represgents a powerful heuristic
way how to construct Hamiltonians of quantum systems in the cases when
the correspondence principle yields an incomplete information ogly.
For instence, Hemiltoniane describing the pecint-interaction phenomena
in quantum mechenics are obtained as self-udjoint extemnsions of the
corresponding free Hamiltonians with the interaction points removsd/h2<

As another 1llustration, one can consider Schrddinger operstors
with singuler potentials/3'4/. When the potential is singular enough,
the correspondence principle provides us with & differentidl operator
which is not essentially self-audjoint (e.s.a.). In this case, it is
natural to approach the problem by constructing all self-adjoint ex-
tensions of this operator. After that one must select the appropriate
one among them ; it requires, of course, an sdditional physical infor-
mation. There aré other gquantum-mechanical problems to which the theo--
ry of self-adjoint extensions can be applied, e.g., a one~-dimensional
model of three-particlé collisions’ ”/. '

Perticularly interesting sre the situations when a quantum parti-
cle moves on a spatisl manifold which consists of several more simple
parts. As an example, let us recall the free-electron (or metallic)
model of organic molecules in which one assumes that the y-electrons
move only along the graph [7 representing the molecule (cf., e.g.,
Ref.6 or Chap.6 of Ref.7 for the cne-dimensional case). Suppose
that the motion along the line fh of I is described by the Hamil-
tonian

2
4
H, = ~ L4 + V. (x
3 2,2 Vi)

with a suitaebly chosen domeinm in Lz(f’,dx) , where the coordinate x
parametriges [} «,[0,13]. The full Hamiltonian H of the model is
now obtained as an sppropriate self-adjoint extension of the operator
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constructed by "gluing toget-
her" the line Hamiltoniems H,.
The distinret parts of
such a "configuration space"
are not necessarily of the
same dimension. In the present
paper, we are going to discuss
the most simple situation of
this kind, where the manifold
consistes of a halfline atta-
ched to a plame, i.e., the
dimensions are one and two,
respectively. The motion in
either part is assumed to be free. Notice that one may regard the
sketchéd situation also as a motion in IRZ subjected to a point in-
teraction with some internal structure (compare to Ref.8). Such an in-
terpretation, however, does not suit to the model we are going to. dis-
cuss, for which analysis of the motion on the halfline is essential..

Fig.t. The graph ' for an

anthracene molecule-.

.

Let us resume briefly contents of the following sections. First
of ali, we comnstruct the class of admissible Hamiltonians as self-ad-
Joint extensions of the operator obtained by "glu;ng together" the A
free Hamiltonians for the motion on the halfline and the plane (Sec-
tion 2). Since the direct characterization of these extensions obtai-
ned from the von Neumann’s theory is not very suitable for practical
calculations, we deduce in Section 3 an alternative classification
of theh using singular boundary conditions, In Section 4, we analyze'
the scattering on the point singularity, with a particular attention
paid to the reflection coefficient for the particle travelling initi-
ally along the halfline. In conclusion, we discuss a possible applica-
tion of the present analysis to modelling the quantum point-contact
spectroscopy.

2. Admigsible Hemiltoniane

Let us consider a particle, an electron for definiteness, moving on
the manifold G which consists of two parts - of the plane m2 and
of the halfline R™.=(-00,0] which are connected at a point P as
sketched on Fig.2 . The state Hilbert space of such a system is there-~
fore orthogonal sum of the state spaces referring to the plame and to
the halfline. If we neglect the possible internal degrees of freedom
(spin of the electromn, for 1nstance), we have

PN '

} .
“ = 1%(6) :=

(1)
= 12@®%) e 1%(r").
Since the electron motion is sup-
posed to be free except at the
point P , we start construction
of Hamiltonian with the operator

Fig.2. The manifold G.
df Hy = HO,IQHO,Q ’ (2)
) where Ho are restrictione
1
of the respective free Hamiltonians on the two perts of G , mamely
- ol
0,1 -~ .2 !
' dx (3a)

L and
|
fopm 8 (3b)
i D(Ho 2) C (R \siP}) 4 L
The aymbol COQQ) denotes conventionally the set of all infinitely

differentiable functions with e compact support contained in .

The operator Ho is not self-adjoint. It is ‘well khown 9 that
the deficiency indices of HO y are (1,1}, and the same is true for
Ho , €8 we shall show a 1itt1e later. Consequently, the deficlency
indices of ‘HO' ere (2,2) so there is a four-parameter femily of self-
adjoint extensions. Let us construct them in detail.

We use the poler coordinates in the plane with the centre at P

and decompose the space 12 (H ) in the following way ‘
2@2) = 2@, rar) @ 120,20 = © PR ,ran) € (Mg, s ()
n=-~c0
where the fumctions *
A !m(y04=.(2w)'1/2 0¥ pel0,27)

form the "trigonometric" orthomormsl basis in L2(O,23) . Using the
f atandard procedure (cf.Ref.9, appendix to Sec.X.1), one obtains the

decomposition
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where
2
no--L 14 a?
m ar® T dr 2’

D(h) = CH(R*\ {of)

and the domain Dmin consists
the functions ¥: p(r,p) = £

(5)

(6)

of all finite linear combinations of
r)Ym(P) with fe¢ D(hm) . The defici-

ency indices of the vperators hm on L (m+,rdr) are easily found

The latter are unitarily equiva
2 1
§o. .4 nm-g
m ar? r

on D(hm) = D(hm) » BO we have

N

n(ho) 1,

.

n
o

n(h ) for m#o0 .

lent to

(7

The second relation follows from Theorem X.10 of Ref.9, while the
: s i ’ ‘

first one verifies directly (a solution to the deficiency equations

will be presented below). The relations {5) and (7) yield

%]
nlly ) € 2, mn) =1 .

= - 00

(8a)

Ve want to show that equality holds in the last relation. To this emd
one has to check that the functions Y d y&(r,P) = H(“)(ijT r) wit;
of equal to 1,2 for the plus and minus sign, respecgively, whiéh

span the deficiency subspaces (cf.(11) below) belong to »(g*

This can be performed in a strai

) .
0,2
ghtforward manner using integ;ation

by parts and broperties of the Hankel functions. The relation (2) then

gives
n(Hy) = n(Ho’1) + n(HO,2) =2
Any self-adjoint extension of H

H=Kon ,
h ]

. (8b)

0 is therefore of the form

(9a)

where K 1is a self-azdjoint extension of the operator K0~ on
?®") e (L@®*,rar) ® {1y}) defined by :

Kqy := Ho’1 @'(hO®I) (9v)
and h denotes closure of the operator
h:= @ h (9¢)
meg O ’
mF0

which is e.s.8. due to (7). ,

Now we must choone suitable bases in the deficiency subspaces
zt = Ker(Kg il ) . It is essy to find that Z, 1is spanned by the

functions

P = r,00 , gft) = (0,8, (102)
Wh’er.e

£,00 = &8, g= T

(1)
fz(r) t= (2#)1/2 Hél)(er) .

In the same way, the functions

PARREEING N R S R I (10b)
form a basis in X_ . The self-adjoint extensions of K, are now spe-
cified by isometries K;-evz_ y 1.e., by 2x2 unitery matrices U .
The von Neumann's theory gives & prescription how the extension KU
can be ¢onstructea for en arbitrary U ! its domain D(KU) consists
of all the functions which are of the form

- ( (=) (-) NERED: (=) (-)
=y eyttt v uy T vy v el w7 H g, 02)

with ';peD(KO) and c‘,czsc , where u;)k are the elements of U .

One might write down an'expression for KUI as a linear combination

of KOV‘ and the deficiency functions. Instead, we are going to deri-
ve a8 more transparent expression for the action of Kﬁ .

14 ]



3. Boundary Conditions

Por practical calculations, it is more convenient to characterize the
extensions Ky by appropriste boundary conditions. In this wey, we
are sble to describe Kﬁ completely since KUC Kg y 8nd it ie easy
to see that

2 2

ay a“p. dpg
*o 3 _ 1 2 _1_re :
Kof’{ dxz 4 12 r dr (13)

+
for each f = {%,spz} from D(KS) .. The deficiency functions gog')
are, however, singular around P , but we can eliminate this difficul-
ty by defining the regularized boundary values/10

. ¢ir)
I‘0(50) °T %i'on Inr °

. (14)
L,(p) := ln [p(r) - Ly(p) Inx ] ,
-0 )
which will be used together with

pio) = Um PG, g{O) = lm 2 g x) .

In particular, the standard expansions of Hankel functidns/“/ yield

- _ s, _ 21

Lo(fz)- = -Lo(fz) =7 !

L,(t,) =%+%(J4-m2) , (15)
- 1 24 '

L(F) =3 - Fy-1m2) ,

where f=0.577216... 1is the Euler s constant.
Before proceeding further, we shall split the set of the matrices
U characterizing the extensions into five disjoint classes @

Clasg I : contains all U such that 1 Uy —u22—.det U f: o,
Class II : contains all non-diagonal U such that 1+u‘”-u22-
-det U=0 , .
. -1 0
Class I : consists of the matrices io with we(0,27) ,
0 e
. . ei‘u 0
Clas I¥ consists of the matrices o . with we(-H7T) ,
Class V : conteins the matrix ('é ?) .

Now we can formulate the mentioned result @

Theorem : Every self-adjoint extension of the operator Ho ts of the

form HU = KU ®h , where the operator KU is specified uniquely by
the following boundary conditions. If f = {V1,q%} belongs to D(KU),
then

(i) for U of the class I, we have

py0)

AP (0_) + BLy(p,)
(16a)
Li(py) = Cy,(0_) + DLy(p,)

where the coefficients are related to the matrix elements of U by

) E(i—ugz) +g(uy, -det U)

A ('16b)

1-&u”-u22—detU

X Yot
B = — (160)
Z T+u”-u22-detU ’
. u

12 3
(o} (164).

1+u”-u22-detU ’

1+u,,+u,,+detU

sz-mz*i 122 , (16e)

41 1 +ug, —u22-detU

(1ii) if U DVbelongs to the class II, then

(17e)
L,(p,) = Pp,(0) + Gp/(O)
where
p.2alilez 2 M2 (17b)
xr Uy x 14»u11 ’
¥F= L {_+£u + 12 (1-u,.)L, (T )} (17¢)
JZ u £ 1" 22'" %20 :
21
1.+u .
G = -2 —11 ‘ (174)
vz Uy :
(111) for U of the class III, the boundary conditions read
p0)=0 .
(18)

x ]
Ly(py) = 7 (etg 5) Lolp,)



(iv) if U Dbelongs t6 the class IV, we have

,%’(o_) = \/—12:(1 -tgg )501(0_) ’
(19)
Lolgp) = 0
(v) finally, if U= —5 § , then
90 = Ly(py) = 0 . (20)

Proof : Suppose first that U belongs to the class I'. We express
¥109¢0 from (12) and insert into (16a) ; it yields the equations

E+ u€ = A +u”)'-r BulzLO(fZ) 5
uypt = Auyy + B[Lo(£)) +uypLotEy)]
u12L1(f2) = C(1+u”) + Du,zLO(fz) ,

Ly (2,) + uy Ly (F)) = Cuyy + DILG(E,) +uy,L0(E,)]

Now we substitute from (15), then the solution for 1+u,,-u,,-detl E
# 0 is given by (16b-e). In & similar way, one obteins the relations
(17)-(20).

Next one has to check that the mapping from the set of matrices
U ‘to the set of boundary conditions is injective. This is easy for
the classes III-V ., Assume further that there are U,U' of the class
II both leading to the conditiomns (17), i.e., E=E’, etc. Then we
have G/E = G'/E’ and F/E=PF/E° so0
g+ 211"1
1 -y,

1+u”_ 'l+u‘1
- w,, - 1T-u, °nd
22 22

g + Ell.|1

1 - Usp

Now one has to multiply the second equation by £ and to subtract it
from the first ome. It yields Uso i ué2 . Substituting this back to
the first equation, we get Wyq = Byy - Finally, the relatione Uy =
= uik for Jjk = 12,21 follow from (17b) ; one has to notice that
Iuj |<1 since U 4is unitary and non-diagonal.

V' The argument is most complicated for class I . Assume again that
there afe U,U" which yield the same values of the coefficients (16b-
-e). Then we have

i

, 23k - ) S ' (21)
J+u”-u22—detU 1+u11—1122-detU

for jk=12 and 21 . Moreover, the relations (16e) and (16b) after

substituting for & give
tEu, tu,,+detU

1 '-tu“ tu?2+det»U ! > ;
1 +uqy —u22—detU

1+u1.I -u22-—detU
It further implies

.

1+ ay, = e (1 + u“) ,

(228)
1 - u,, = (1 - u22) ,
where we have denoted
- ~-det U
o('=l+u"1 u22 de . ] (23
1+u‘1 —u22-det !
The relations (21) can be similarly rewritten as
(22b)

Uy, SAUgy 5 Uy Sy o

Hemce (1 +uy¢)(1=upp) +uyplyy = [(1 40 (1 - ugp) +ujus, ], and
combining thie relation with (23), we get K" =& .Since « 1is non-
zero by assumption, we obtain « =1 } then U=U" follows from (22).
a

In this way, we have been able to characterize the operators HU
by means of the boundary conditions. The relations (16b-e),(17b-4)
do not show explicitly which values the coefficients may assume. It
becomes more clear, if one uses a suitable parametrization of the
matrix U , such as (29) below.

4. Scattering on the Singularity \

LS,

Now we are going to discuss the extensions HU , with & particular
attention paid to scattering on the singular point P . We shall di-
stiguish two cases 3 )

(a) U _diagonal : going through the boundary conditions (16),(18)-
-(20), one finds easily that they separate. We can express them in
the form )



p3(0) = Ap(O) (242)

DLy(p,) (24p)

0

Ly (py)
where the coefficients are with the usual license written as

. E+ €uy,y
Class I : A=z ———
1+u1}
(notice that both A and D are real ; this remains true for
non-disgonal matrices U - cf.(30a,d) below)

r W
2

Class III ¢ A=oc0 , D= ctg

2
1 o -
'_2(1-.1785) ’ D=0

]

<

s
I

Class

Class V ¢ A=D=o0-

Hence the system separates for a diegonal U into two independent
subsysiems and its Hemiltonian is of the form

. n(4) (D)
Hy=Hy 1 @Hyp (25)

where Héfz is the halfline Hamiltonian (cf.Ref.9, Sec.X.1) specified
by (24a) and Hé?% = héD)eﬁ. is the two-dimensional point-interaction
Hamiltonian (cf.Ref.12). Scattering by this point interaction as well

as reflection on the halfline should be considered separately ; passa-
ge of the electron between the two parts of the configuration manifold
is impossible.

.

2 and vice

(b) U _non-diagonal : now the transitions from R~ to R
versa become possible. First of all, we shall discuss in detail the

situation when U belongs to the class I . Let us consider reflection

of the electron moving initislly along the halfline towards P . Using’

the bouﬁda5y conditions (16), it is easy to see that the function
fy = (P1,pp) with

eikx . aUe"ikx

f?(x) , ' (26a)

poe) = Bpd") (ke (a6

for & given k>0 belongs locally to D(HU) if
“
21 . k 23
(A-ik)[1 + Z(f-D+1n3 )]'*TBC
\ 2i Xk 21
(A+1K)[1 + 2(p -D +In3 )] +57BC

GU—‘

(278)

- 10

— — p——

g _ 2iCk
v = 71 K1, 21
(A+ik)[l+], (34-]3 +1n§)}+-5-30

. (27v)

Moreover, it holds .

2
d 2,,U
(-'_—k) =0
dx2 P, ’

(-a -kz)Pg"o ’

-1 fU given by the relations (26) end (27) is-a generalized eigen-
vector of Hy , and laU] is therefore nothing but the reflection
coefficient at the point singularity.

The relation (27a) shows that the reflection coefficient depends
on the chosen Hamiltonian Hy . In perticular, |ag|=1 holds if U
becomes diagonel so BC=0 ; the electron can be then only reflected
at P . On the other hand, occurrence of the transition from R~ to
R2 means '

fagl <t . (28a)

We shall check-directly that thie inequality holds once U 1is non-
diagonal. To this end, we shall use the following explicit parametri-
zation of a unitasry 2x2 matrix

) ei(“+5)cosﬁ ei(;_“)ainﬁ'
U = el , (29)
-ei(m_é)sinﬁ e'i(a+a)cosﬁ

where u,ﬁ,J}g are real parameters (the first three of them are no-
thing but doubled Euler angles). It yields the following expreseions
for the coeffients (16b-e) @ .

A =§ » (30&)
i(@-4) )
xi e 8in
B3Il e " einf
o3 ? ) (30p)
1(d-«)
__d e sinf
C - J’E a ’ . (BOC)
D‘J“lnz‘%% , (304)
where

f:siﬁ(a+5¢%)cosﬁ —sin(j‘+%) ,

11




[&
1

s'in(fx+cﬂcosﬁ -8in§

¢

n

cos(ea+d) cosf +cos §

notice that 2 is non-zero for the class I matric?s. Ai weiha:e ri-D

marked, the relationg (30) show that the "diagonal coeffic en’i at;d
are real-valued, while the '"non-diagonal" ones arercomplez c:nawi o
up to a veal multiplicative constant. Using these express ons,

2
(- ikd) [(1 +—-1n Kd+5 C’]+ —f sin“f

(31
fut T (\Y+ik2})[(1+b‘.—lnk)2)+26}+ 728111/3
so after a short calculation we arrive at the relation
2 ' (28b)
1= Jayl" =
U

/ﬁ@ k sin ﬁ ‘
2 rr—
" 22 (- —mclnk-—tk) +(3 fé'+ J’Z‘lnk*.@ k+ ﬁqm/s)

>0,

2Ba
Whicthzzzzst;at lhe squared modulus of (27v) ie not the transit;gt)
coefficient, aince it is not groperly normalized. The reTit?on
ghows that it is —»(JN/k) which fulfils layl +iby .l J
The fact that the singularity is penetrable for a non-disgona
can be seen alsc when one considers scattering of the electzonimzzing
in the plane at the point P . The corresponding generalized elg

U U
function is fy = 429 ¥,) with

. (32a)
o —iks
P = FETT
. (32b)
1(e) = ag0e) +agEg ey
where
~ _ 2i B (338)
ey = 7

i k 21
e [ 148 (p-D+1mF] +F

(33b)

dy = - 7,28

BC )
A+ ik .
i symptotice for
if we require fy to belong locally to D(hU) . The asymp
large r can be found easily,
2 )1/2 ei5e(k)

z - ) (34)
fyg(r) =’(5E; sin(kr4-44»ab(k)) + O(r )

¥2

O

. ,o——

——

|
T

where éb(k) is given by

.o k i BC
216y(k) y-D+ 1n¥ 421, B0
Sp0) = e O = 2 21 ALk (358)
=D+ ln ? - X +ik

Here dn(k) represents the s-wave scattering phase shift and S,(k)
0

1s the on-shell s-wave scattering matrix. For the higher partial wa-
ves, we get

d(k)y=0 , m=%x1,2%2,,
m

N (35b)
In general, the scattering matrix is not unitary. This is not surpri-
sing, because the electron can continue its motioninRafter the scatte-
ring, vanishing thus from the plane. In order to demonstrate it expli-
citly, one has to express So(k) using the parametrization (29).
A short calculation then gives
2 2
1- ISo(k)] = 1-lay! ’ (36)
where the rhs is given by (28b). Hence S

is non-unitary iff U is
non-diagonal.

Let us turn now to matrices U of the class II . In this case,
too, the electron is able to pass through the singular point. The ana-
lysis is essentially the same as above. We restrict ourselves with

presenting the results. For the generalized eigenvectar (26), we find
now

L2 F+ 1kG X
a = - “f E__"lnp) (37a)
U 2 TTIE o
N 21x6G
by = . (370)
U 2 F- 160 . K
1+ (-~ +in3z)

On the other hend, for the scattering in the plane corresponding to
(32), one can find the coefficients gU’dU ,. which give

2idy(k) - 2AkG ’EikG + % + 1nl-2‘ C
So(k) = e =

F-ixG  zi ...k ° (38)
t-"%  -% +in3

5. A Possible Application

The problem treated in the preceding sectione mey seem somewhat bizar-

re. Nevertheless, it can have a quite ressonable physical application
as a model of the guantum point-contact spectrescopy.

.
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FPor a metsllic contact, one usually expects a linear relation
between the applied voltage and the current according to Chm’s law.
This is true if the size of the contact-is large enough. On the other
hénd, if its linear dimension becomes comparable with mean free path
of the electrons in metal, then interesting non-linear effects in
the current-voltage characteristics can be observed - cf.Ref.13 for
a8 review. In this case, the electrons are scattered at the orifice
giving rise to a backward flow, which adds a negative and voltage-de-
pendent contribution to the current.

The results of the present analysis can be usedfor modelling
such a contact whose linesr dimension tends to zero. In order to cal-
culate the current through the contact , one has to know the elec-
tron-gas deneity and the transmission coefficient through the Bingﬁ—
lar point. In the simplest case, when the electrons are supposed to
be free, the latter is given by (28b) (or an andlogous expression for
U of the class II)., If we add a potential to HU which should des-
cribe the metallic structure of the system (a wire connected to a
thin plate), then the transmission coefficient must be calcufated
gnew. It remains possible, lhowever, to charscterize the admissible
Hemiltonians by the boundary conditions listed in the theéorem of Sec-
tion 3, as far as the potential is bounded. . B

We are going to discuss the model, which we have sketched brieflv
here, 'in a Bubsequent paper.
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KBaHTOBOe IBHXEHHe  Ha TMONYNMPAMOH NpHcoeguHeHHOoM
K TIOCKOCTH

E2-86-15

B HacTosmeii pa6oTe paccMaTpHBaeTcs cBoboaHOe OABHXCHHE
YaCTHLUE Ha MHOTOOGpAa3HH, COCTOMMEM H3 OfHOMEpHOR H ABYMepHOH
yacrTeit. [Ipy noMomM TEOPHH CaMOCOMPAXEHHHX PACFMHMpeHHN HaHneH
K1acc AOMYCTHMHX raMHiabTOHHAHOB. BHuUMaHHe yhneneHo, B YaCTHO—
CTH, TE€M M3 HHX, KOTOpHE [ONMYCKawT NPOXoA 4YaCTHLh CKBOSh TO~
YAYHYI0 CHHI'YNAPHOCTH; BHUKcIeH KOo3ddHIHEHT OTpaxeHHA H ApYrHe
BeNMYWHE, XapakKTepHaywime pacceaHue. 06cyxgaeTcsi BO3MOXHOe
duanveckoe npHMeHeHHE.

PaGora BumomnHeHa B [la6opaTopuu TeopeTHUecKo! du3HuKH OUAHN |

CooGiuerine OB6beaMHCHHOIO HHCTHTYT3 ANCPHBX HccnemoBanuit. Jly6sa 1986

Exner P., Seba P. E2-86-15
Quantum Motion on a Halfline Connected to a Plane

In this paper, we treat free motion of a particle on
a manifold which consists of a one-dimensional and a two-di-
mensional parts connected in one point. The class of admissi-
ble Hamiltonians is found using the theory of self-adjoint
extensions. A particular attention is paid to those of them
which allow the particle to pass through the point singulari-
ty; we calculate the reflection coefficient and other quanti-
ties characterizing scattering on the connection point. A pos-|
sible application is discussed.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.
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