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Of late, there has been an obvious progress in under
standing the relativistic quark model. It has been proved 
that even for ncninteracting quarks the so-called current 
and constituent quarks are different objects / l / . For 
noninteracting quarks the exact transformation connecting 
constituent and current quarks (hereafter referred to as 
"constituent and current representations") has been 
constructed / 2 / . The current representation is used, for 
example, for phenomenological description of the deep-
inelastic scattering of electrons on the polarized tar
get / 3 / . But it must be pointed out that the approach 
very close to the current quarks was used in 1967 in the 
framework of the model of the quasi-independent 
quarks / 4 - 5 / and in Ref. / 6 / , where the mixture of 
different SU(6) representations was studied. 

In this paper we study the question of the dynamics of 
current and constituent representations. We shall const
ruct the equations for the wave functions in constituent 
and current representations. Solving these equations 
(for example, for "oscillator potentials") one gets the 
transformation between current and constituent represen
tations for interacting quarks. 

The wave functions in the constituent representation 
are determined from the following equation: 
(i^i» 1^ «"V-Wf-'V" g ( 2 ) g ( 3 ) ) = o да 

and the Bargman-Wigner equations: 
p y ( l ) ( p e o i i . = p y ( 2 ) фооп. = p y ( 3 ) ^ ,oon . = M 4 , con^ ^j) 
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where M stands for the baryon mass, £ and P are 
the i -th quark and baryon momenta, y<J) is the t -th 
quark у -matrix, U is the potential binding quarks into 
the baryon. The Bargman-Wigner equations determine 
the spinor parts of the wave function and Eq. (1) deter
mines the relative motion of quarks. 

For many applications it is convenient to use' ' the 
harmonic oscillator potential: 

U- a 2 (x ( i ) -x (i> ) 2 +m 2 , (3) 
'<J 

Q and m are the parameters of the potential. They are 
connected with the parameters a 0 and «' of the Regge 
trajectory. 

We shall remove the relative times from the bound 
states. Covariantly this can be done by using the solutions 
of Eq. (1) on the hyperplanes'8,9'': 

P(£ ( i ) -P/3)=0. (4) 

The conditions (4) are called the Markov-Yukawa ones. The 
wave functions are now normalized by: 

/ i P ( £ U ) . f ( 2 ) . £ l 3 ) ) * ( £ ( 1 ) J ( 2 ) , £ ( 3 ) ШР(£ ( 2 ) -Р/3) ]х 

(5) 
x«[ P(£ ( 3 ) -P/3)]S(£ ( U

 + £ l 2 )

 + f И ) - Р ) а с ( 1 ) * в ) * в ) . с « . . 

The Markov-Yukawa conditions have been used for a num
ber of physical problems / 9 , 1 о Л 

From now on we stell eliminate the relative times 
from the equations (not only from the solutions). From 
Eq. (1) in the cm. rest system one gets the following 
equation 

[ m2 + i M i + f«>;?tt^ +?w) t.Q X (|(i) j w f t T u (6) 

if one omits the relative times (j? ( , ) -$ <1> )ft in (3), and 
for the time component» of the quark momenta one uses 
M/3 following from the Markov-Yukawa conditions. The 
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four-component vector a stands for the vector a in 
the cm. rest system. To get the wave function in the 
arbitrary frame one must apply the Lorentz transforma
tion и,л 0 to Ч'Й'Д. This approach is very similar to 
the approach in R i f . / U / . 

Using this approach we inevitably come across the 
well-known difficulties with quark statistics. We think 
that this question can be solved using the three quark 
triplets/ 1 2'. 

Since the Bargman-Wigner equations (2) contain only 
the cm. momentum P , the spinor parts of the wave 
function in this approach depend only on P. That is, if 
the wave function of the relative quark motion is the 
eigenfunction of the squared orbital momentum operator 
L2 , the wave function is also the eigenfunction of t 2 

with the same eigenvalue £ (£ + 1). The baryon spin operator 
is J=L+ J-2a(i).Using the Clebsch-Gordan coefficients one 
can simply construct the wave function with definite 
quantum numbers I, j , j 3 . The reason why we have 
called the solutions of Eqs. (1) (or (6)) and (2) the con
stituent representation is that in this case in the cm. 
rest frame the wave function has a definite value of orbital 
momentum. 

But one can write the new equations which do not 
admit the solutions with definite angular momentum, 
i.e., the wave function is the mixture of the wave functions 
with different £. These are the equations for the wave 
functions in the current representation. Later on, we shall 
use the equations of the quasi-independent quark model'4/: 

( £ ( i )

 y

( 0 - v ( i ) -M/3)4<cur =0, ( 7 ) 

as equations for the wave functions in the current repre
sentation. Equation (7) means that the bound state of three 
quarks can be described (maybe approximately) by three 
equations for separate quarks in some averaged potential 
V <D . We postulate that V(» depends only on the relative 
coordinate of the i-th quark X - x ( i ) , where X is the 
cm. coordinate . Eq. (7) will be solved for following 
potentials: 
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a) for weak potential V ( i ) ; in this case one uses the 
perturbation theory; 

b) for "spinor oscillator" potential; in this case 
equations can be solved exactly. 

Let us consider me first case. As a weak parameter 
one can use |e(1)|/M. One also postulates that the potential 
v ( 1 ) - ? < ' > % . 

Now 

« Г = п ( | - м - 1 ( , ) ? ( ! ) ^ ( ° е П ) 1 ( 2 ) / ( 3 ) ) + о ( ? ( , ) / м 2 ) ( в ) 
where ф contains only large components of spinors. It 
satisfies the equations: 

( 0 1 ! ^ 2

+ L v ( i ) M ) ^ ( e a ) . r ( 2 ) i ( 3 ) ) = o . (9) 
According to (8), the spinor parts contain relative mo
menta, i.e., VJ?" has no definite orbital momentum 
even if ф hasTBut 

1*o u r = п' ( i м - I <»> ум)Ы{1) i ( 2 ) J ( 3 ) ) +od(i)2/M2).(io) 
That is, if «A is the eigenlunction of_J and )з , 
ЧъЧл w i l 1 a l s o b e m e eigenfunction of j 2 and ) 3 

wife the same eigenvalues. 
To get be wave function in the arbitrary frame one 

must act on Ф-£"г

0 by the Lorentz transformation. This 
will provide the~Lorentz covariance of the wave functions 
and will thus provide the angular conditions (if we con
struct the Lorentz-covariant current matrix elements). 
Relativistic current matrix elements will be constructed 
at the end of this paper. 

It is very useful in many respects to study the wave 
functions in the Pz -»°° frame. That is why we shall study 
now the wave functions in the system, where the hadron 
momentum P is infinite and has only the third compo
n e n t / 1 3 / . The Lorentz transformation from the rest sys
tem to this one is: 

6 



H.^VMAna-HM»). ( 1 1 ) P •*» a J = l 3 5 
z 

Using the у -matrix properties one gets from (8) and (11) 

* ш =П < Х ( , ) - } ( , ) £ ( , ) ) UD ф 
P^oo i=l 4 1 P z — 

_.. ( i _ ) 3 n X ( i ) expltg-^-^b'VH») ]l* p , 
2M 1=1 r e 4 - 1 V 0 0 

(12) 

where Ф =(-2^)3U tfandaV-te.aJ.xW-l-M-?*0. 
P,",°° 3 P„-»« J. I 2 3 •« 

The operator standing in front of 4» in (12) is the well-
P 7 -»» 

known Mejpsh transformation ' - It is unitary in the first 
order of e 3

( i' . 
But what is the equation for 4*P_00?This wave function 

satisfies the Bargman-Wigner equations by definition. If 
in Eq. (5) one chooses instead of the oscillator potential 
the new QpeU=l[V(,+V(2)+V % ) + ( A y M ? . o n e w i U Bet Eqs. (9). 
That is, ФР +х is the wave function in the constituent 
representation and Eq. (12) gives us the transformation 
between current and constituent representations in the 

Pz-*°o system. The wave functions (12) have been used by 
one of us for constructing current algebra 9 / , 

The next example is the spinor oscillator potential. The 
equations of quasi-independent quarks (7) have in this case 
the form: 0 

(f < V » - f <»>;(0 - М ) * Г = u» ( 1 ) Y ( '^ ( i ) * « ' , (13) 
P = 0 p * = 0 

where «<» = fl_0(-K(1)) -0+ 0(K(1)) ,П+>0, K<»> =T(j +kf> 
is the sum qf.the orbital momentum and the spin of the 
i -th quark, fe"= i-M» , Y<»>=x<«)-X is the relative 
coordinate of the ъ i -th quark. This equation has been 
dealt with in detail in Ref.A*/. 

One can diagonalize Eq. (13), if 
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С - М п а ( 1 ) - ^ 0 ) у ( 0 ; а )

+ м ) х ( ! ; . (i4) 
Р = 0 1 = ' р = 0 

where N is such a normalization constant that 
r 3 ( 1 ) (0 
=nx- x.. 
1=1 P =0 P = 0 

^cur4,cur=n-(D ^(0 . T n i s means that the transforma

tion from xp*=o t o * i s ип^гу- х У . has only 
large components of the spinor. Nonzero components of 
X W are: 

xi l> =NR. p ne. for P = ( - l ) i + 2 , (15) 
p=o k>* *m i 

Xw =NR, l f l n £ for P=( - l ) i _ 2 . 
p =o к + , , г , m 

In Eq. (15) 0 j m stands for spherical spinors and 
R k>£ is the radial part of the wave function of the 
3-d'imensional harmonical oscillator. The mass spectrum 
is: 

M 2/9=M 2+4Q± (j + k+1), P=(-1)1 ± 2T (16) 

(In Eqs. (15) and (16) we have omitted the quark indices 
i ). Using the Clebsch-Gordan coefficients one can con

struct from x i „ the wave function x + (Ц >j,»« ) 
r = u p=o л 

with total orbital momentum p , spin j , its third com
ponent ) 3 and other quantum numbers a. The orbital 
part of this wave function R = fiR ( i ) ( i ) satisfies Eq. (5), 

because the potential (3)(we shall put fl+=fil )is: 
3 ( i ) 2 

U = 3 Q H W

+ C . (17) 

P̂=ô  e»l.iз »e> satisfies the Bargman-Wigner equation, 
because it contains only largo components of quark spinors. 
That is (for the major trajectory k ( i ) = 0 )Хр^.Ыа.«) 
is the wave function in the constituent representation. 
Performing the transformation 
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one gets the wave function with definite values of j and 
j 3 but an indefinite value of the orbital momentum 
operator. The wave functions VS" (t,t3) are normalized 
according to Eq. (4). 

In the Pz -»о» system the wave functions (18) are: 

f!" - N П VX(

+° -(a^{i))\xPUB-lU№ <»>*УХ«>]|Хр , P z-«o i=i J» r 4- + i * 

(19) 
where xP was proved to be the wave function in the 

z 
constituent representation, and Eq. (19) gives the trans
formation from the constituent representation to the 
current one. Because of our normalization of the wave 
functions this transformation is unitary. In Eq. (19) we 
have used the following notations: 

- ± U ) 'J(t) . n 0 ( i ) 

a =t t lfl± I i 

« (I) „/a ± (0 
X + = М/З+/1-О3 

One sees -that the difference between (12) and (19) is only 
that 

? < l ) . S ± ( i ) . 
We have considered specific (three-dimensional) rela

tivists equations for three-quark bound states. As men
tioned above, we must construct also the relativistically 
covariant current matrix elements ' l 6 / to satisfy the 
angular conditions. Now we shall construct such matrix 
elements. The nonrelativistic matrix element has the 
form-. 

<P' I J„ (0)| P ) - 3 / П d ? ( , ) d r ( 0 8 ( 1 1 ( , ) - Р ) а ( 1 ' £ Х , > -P') 
** 1=1 1=1 1=1 
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-»(2) -> (2) -» (3) -» (3) - -» (1) -* (2) -» (3) 
x 8 ( £ - £ Л ' ) S ( £ -V ) ¥ ( £ ' , £ ' , £ ' ) 

(1) 

M 2 
х Г а » * ! . , <?<•>;!«>?»> ,, (20) 

where / 1 7 / Г ^ =у̂  or y^Vj^-To generalize this matrix 
element for the relativisac case one must replace: 

i) d£ ( , ) .d 4 f ( i >; 
3 -» ( i ) -• л 3 ( i / 

ii) 8{ 2 I * -P) -S 4 ( It J -P); 
iii) remove the time components of quark momenta, 

i.e., write the Markov-Yukawa conditions n 8[(£(k-P/3)P] 
under the integral; k=2 

iv) find the appropriate generalization for nonrela-
tivistic three-dimensional S -function 8(£ (J'-£ ('' )•. For 
this one can use such a trick '9'' • 

J d«S4(A-aL) =J-8 (K--2.L). ,2l) 

As L one can use J_.(p+P') . Now in the nonrela-
tivistic case | t | « l ,L 0

a l ™nd (21) is 8 (A*). 
From i). - iv). we simply find the required relativis

tic generalization: 

<P' |T (0)|P> = i - / e 4 ( | £ ( i ) - P ) 8 4 ( I £'<j) -Р')Пх 
M Ц H i=l i=2 

x 8 [( £ ( ° -P/3)P]8[( £' (°-P'/3)P']S U ( i ) - £ ' ( i ) -

xndV k , dV k ? 
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At the end we would like to emphasize our main re
sults. Firstly, we have shown the three-dimensional re-
lativistic equations for the bound states of three quarks 
in the constituent and current representations. This dyna
mical approach makes it possible to obtain the transfor
mation between constituent and current representations 
for interacting quarks. Secondly, we have constructed the 
relativistically-covariant current matrix elements. This 
automatically guarantees angular conditions. 

In conclusion we would like to thank Dr. B.V.Stru-
minsky for very helpful discussions. 

Note: When this work was finished we get the pre
print (E.Celeghini, TH-74/A1, Firenze, 1974) where the 
kinematics of Melosh transformation for mesons was 
studied. 
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