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I. Introduction 

In models with dynamical symmetry the Goldstone and 
the gauge fields are on the distinct status. The inva-
riance under some group of dynamical symmetry is 
achieved via appropriate interactions with these preferred 
fields. 

It may happen that some Goldstone and gauge fields 
are, in fact, unimportant, superfluous for the content of 
theory in the sense that one may express them in terms of 
other preferred fields or remove them by a redefinition 
oil the latter. For instance, in the case of spontaneously 
broken gauge symmetry it is possible to rule out all the 
Goldstone fields from an invariant Lagrangian by the 
gauge transformation (the Higgs phenomenon' 1 - 3/ ). 

We would like to call attention to the fact that in non­
linear realizations of symmetries /* - 8 / there exists 
a possibility to eliminate .superfluous Goldstone and gauge 
fields by imposing invariant conditions on the Gartan dif­
ferential forms. 

The crucial point is that any covariant Cartan form 
with the homogeneous group transformation law can be 
put equal to zero with preserving all the invariance pro­
perties of theory. If the resulting covariant equation is 
solvable relative to some preferred field one may express 
the latter in terms of remaining variables. Those of initial 
fields which cannot be eliminated with such a procedure 
have the meaning of the "true" Goldstone and "true'' 
gauge ones. 

The exclusion of unimportant variables by putting the 
Cartan forms zero we call the inverse Higgs phenomenon 
because, when applying to the gauge fields it is opposed 
with the usual Higgs phenomenon in three aspects. 
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First, they are opposed in essence. 
The Higgs phenomenon is usually meant to be sponta­

neous generation of mass for the gauge field ЗД asso­
ciated with the transformations under which the vacuum is 
not invariant ' 1 _ 3 ' . O n e may also treat it as the possibility 
to choose the "unitary" gauge in which the Goldstone 
field ?' (x) disappears from an invariant Lagrangian (the 
gauge £!(x)=0 ) and the field 2^ satisfies the condition: 

Kk*mT v / = T ^ i ( x ) + 2 ^ A ° + 0 ( f ) ' ( L 1 ) 

where v/*^' * s * e covariant derivative of f 'W , f is 
a constant, Thus, in the case of the direct Higgs pheno­
menon, the Goldstone field £'(x) is eliminated, being 
absorbed by 2^ . On the contrary, in the case of the 
inverse Higgs phenomenon it is just the field ЗД that 
is eliminated. One expresses 2^ by means of the 
covariant equation 

у > Г = 0 (1.2) 

in terms of both f'(x) and the true gauge field 0 ° ( J ) 
which is associated with the algebraic subgroup (leaving 
the vacuum invariant). 

Second, both the phenomena differ in range of applica­
bility. 

The direct one occurs only for invariant Lagrangians, 
when the gauge symmetry is broken only spontaneously. 
If the external symmetry breaking ternr-2 ' 21 + 0{J 0/?+... 
is added to an invariant Lagrangian, the Goldstone fields 
become physical ones and cannot be ruled out. 

At the same time, the inverse Higgs phenomenon turns 
out to be constructive just in the case of external gauge 
symmetry breaking. In this case the exclusion of field 
Зд results in nontrivial models where all the restric­

tions of underlying broken gauge symmetry hold and which 
deal with fields f'(x) and 15" only unlike the conven­
tional approach where the canonical, gauge field 3/t is 
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present also *. If the gauge symmetry is broken in 
purely spontaneous way, condition (1.2), means no more 
than the requirement that the field 2>/i | f = o be zero 
that, of course, contradicts nothing but has no physical 
consequences. 

At last, both the phenomena are opposed in the sense 
that the kinetic term of the Goldstone field -V f i V f i 
in the case of direct phenomenon turns into the mass term 
of Й' | f= о while on using the inverse one the mass 
term" of field 2 ' gives the kinetic term of the Goldstone 
particles. 

Besides applying the inverse Higgs phenomenon to 
gauge fields it can be used for eliminating superfluous 
Goldstone fields, for instance, in nonlinear realizations 
of space-time symmetries / l ° / . Its applicability in this 
case depends on the structure of given group. 

Remind that nonlinear models with spontaneously broken 
symmetry are nonrenormalizable and pretend only to 
describing low energy phenomena. 

The paper is planned as follows. In Section II, the 
general treatment of the inverse Higgs phenomenon for 
gauge fields is given and two examples are considered. 
At first, we briefly discuss the model of SU(2)xSti(2) -field 
algebra without canonical axial field ' l i ' (that is the chiral 
invariant theory of massive Yang-Mills field рц inter­
acting with conserved isospin current). Unfortunately, its 
predictions are less satisfactory than those of conventio­
nal approach with A\ -meson. The second example 
concerns the nonlinear realizations of supersymmetry in 
the approach by D.V.Volkov et al. /12,13/. The inverse 
Higgs phenomenon helps in eliminating the gauge fields 
connected with spinor translations / 1 3 / . 

* To come back to conventional approach one needs to 
replace (1.2) by other covariant condition 

-y„f i(x) = г£д , 
where field Д(| is defined to transform likeV u£' 
(Such a condition has been used, in fact,by Kawarabayashi 
and Kitakado for the case of chiral SU(2)XSU(2) -sym­
metry / 9 / ). It is the same to formulate the standard 
scheme in terms of 5 ' or in terms of <?' 
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In Section HI,the inverse Higgs phenomenon for Gold-
stone fields in uonlinearly realized space-time symmetries 
is studied. We formulate general conditions under which 
some space-time symmetry group permits certain Gold-
stone fields to be eliminated. Two instructive examples 
are considered. These are the spontaneously broken con-
formal symmetry /s -7 , ю / a n d the nonlinear realizations 
of projective group, isomorphic to the group SL (5,R). 
In the first case the inverse Higgs phenomenon is respon­
sible for the known fact / 1 4 / that conformal in variance 
can be ensured through interactions with the only dilaton 
а (к) which is just the true Goldstone field in this case. 

In the second example the only true Goldstone field is 
shown to be the tensor one h ( („(x) associated with the 
proper affine transformations. Thus, the nonlinear realiza­
tions of projective group reduce effectively to those of 
affine subgroup p4<gQL (4,R) treated in detail in papers А.ю/ 

П. The Inverse Higgs Phenomenon for Gauge Fields 

Let G be a dynamical symmetry group with the fol­
lowing algebra of generators: 

[ Z , . Z b ] - i C l k £ Z t + i C , k e V e 

(II.l) 
a i k 

tV a ,Z | ] =iC Z k 

[ V ^ V ^ i C ^ V p , 

where С are the structure constants. The generators 
Va form the algebra of the stability subgroup H . Note 

that the translation generator P^ should be included into 
a set of Zj in the case of space-time symmetries hi . 
If G determines a supersymihetry some generators 
Zj are meant to obey anticommutation relations / , 2 Л 

The group G is realized in the space of left cosets G/H 
(that is the quotient space over subgroup н ) parametrized 
by the Goldstone fields f ' ( x ) / 4 - e / 

6 



Shift (II.2) induces the nonlinear transformation of field 
£'<x>: 

S e i ( x ) » J i k ( f ) i 3 k + f r a C n , ' " a P , (И.З) 

where /3 k , a p are the group transformation parameters and 
the matrix ? i k ( £ ) is a nonsingular one. 

An arbitrary field Ф(х) and also covariant differentials 
of fields £' (x) and ^(x) , co'Cd) and D0 , respectively, 
transform under the group G according to their represen­
tations of the subgroup H but with parameters - func­
tions Ua (£ .g). 

We are interested in the case of gauge symmetry, 
where parameters j3 k and aP are space-time dependent. 
The covariant differentials ш' (d) and 0(Д are introdu­
ced by standard formulae /*-e / . 

С"1 (f) id + i f (2 k Z k + 0 a V a ) !G(e )= ia> k (d )Z k + i e a (d )V a , 
(II.4) 

Dv> = d./r + i0 a(d)'V„ ф , 
(II. 5) 

where V a are generators of the subgroup H in the 
Ф-representation. The quantities %ь and C5a arerela-

ted to gauge fields S k and 0™ as: 

E k . 2 k dx« 
(II.6) 

0 = 0 a dxM 

and possess the following transformation properties: 

s E i = a p ^ k c p k i

+ 0 a / 3 k c a k i

+ 2 p a p c p P i - l d f g i (П.7) 

5 0 p = ^ a / 3 c ^ P + S k ^ C k ^ - l d « P , ( I L 8> 
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where f is a constant. The quantities w k (d) and 0a(d) 
in decomposition (II .4) are the Car tan differential forms. 
The covariant derivatives v f , and у ф are related 
to m * (d) and D^ by formulae: 

uj !(d) = уц f i ш£ (d) 
D./. = V ^ U J £ (d). 

Here ши (d) is the Cartan form associated with the gene­
rator 01 4-translations P^ *. It is crucial for our analysis 
that the Cartan form ш' (d) (and, respectively, the 
covariant derivative V „ £, ) transforms homogeneously 
under the group G. 

We shall show that there exists the nonlinear func­
tion of fields £'(х) and 0°(x) which transforms under 
the gauge group like the field Z^ (law (II.7)). So only 
the fields f; ( x ) and 0 a (x) are of need to construct in­
variant Lagrangians. '' 

Let us put the following condition 

oi1 (f .df , 2 , 0 ) - 0 (II.9) 

or 

V (i €l = 0 (<^p (d)AO). (Ц.9') 

Since the Cartan form &> 'd) transforms homogeneously, 
eqs. (II.9), (II.9') are covariant under an action of group. 
Equation (II.9) is solved in the Appendix: 

i* (f ,0b-!(r 1 (f)) i , n (d£ m + fy3 a c ( i a m ) . (n.io) 
Using transformation laws (II.3) and (II. 8> and also the 
Jacobi identities following from group properties of trans -

* Hereafter the generator P» is assumed to trans­
form under subgroup H independently of remaining gene­
rators z , for the form B P be covariant. Note that in the 
case of internal symmetries 

aiP » dx^ 
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formation (II.3) one may check that the function £'(£,£) 
transforms according to law (П.7). One can easily 
be convinced also of that expression (11.10) is covariant 
vith respect to an arbitrary canonical replacement of the 
field f B . ... 

It should be stressed that if some function 2 l (£,C) 
possesses transformation law (П.7) and one substitutes 
it into the Cartan form ы (£df ,2,0) for the field 2 t , 
condition (II.9) is satisfied identically. That follows from 
the evident properties: 

i m ( £ , d f , 0 ) i f _ 0 =o 

« 4 ^ d f , E , D ) | ^ e = f £ m | f = o = 0 

and from existing of the gauge transformation go such 
that 

o>» ( f , d f , £ , 0 ) - S U ei ( 0 , 0 Д 0 о ) . 
Thus we have proved the following Theorem. 

Theorem 1. In nonlinear realizations of fjcuge symmetries 
it is always possible to construct the function £>'(£> ft) 
with transformation properties of the gauge field %i by 
putting the covariant ',artan form w (f,d£,2,0) be zero. 
Inversely, if such a function exists, its substitution into 
the Cartan form V (d) for the field %\ converts 
this form into zero identically. 

It is important that the gauge field 0£ cannot be 
omitted because there are no Cartan forms with the 
homogeneous transformation law which equating to zero 
would result in equations solvable relative to OJS 
The field 0£ is the true gauge one and has to be 
introduced as a canonical field. It is worth noting that 
now the transformation law of field 0/f is nonlinear 
in the Goldstone field. The unessential field %ji may 
not be referred to at all. 

Note that components of covariant derivative VM f i 
which are irreducible with respect to the subgroup н 
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transform under the group G independently. Therefore 
it is possible to put conditions of the type of (II.9', se­
parately for each irreducible H -representation con­
tained in V„£i . In other words,one may eliminate not 
all fields 2 ' but only those which belong to a given 
representation of the subgroup H. In this case, generally 
speaking, it may happen that solutions to equations of type 
of .(II.9), (II.9') will be dependent on the remaining fields 
Zjj . Such a situation, for instance, occurs in nonlinear 
realizations of space-time symmetries where it makes no 
sense to put the Cartan form w J (d) zero because this 
form determines the invariant space-time volume element. 
Therefore the gauge field associated with the translation 
subgroup is the true gauge one and should not be elimi­
nated. 

When eliminating not all the fields Z^ one obtains 
in general more complicated expressions than (П.10). There 
is a simple case where formula (11.10) is still valid. 

Let Zj' generate an invariant subgroup of G: 
[ z , z r ] ~ z k , , [v .z,.] ~z k , . 

Denote the Goldstone and gauge fields associated with 
other generators of nonlinear transformations by fk" 
and 2 b " Then the following Theorem holds: 
Theorem II. It is possible to express the gauge field 2 M 

in terms of fk " and С р as follows 

2J"= -j(5~x (f " ) ) k " £ " Щг+^а-ЛУ>С.в"рЦ'ЛЦ.П) 

where 5 0П is the matrix of a nonlinear transformation 
of the field <fk ": 

Taking into account that <£V' transforms under G in­
dependently of f k' formula (11.11) can be derived in the 
way similar to the derivation of (11.10). 

The exclusion of gauge fields by imposing the invariant 
conditions like (II.9) is opposed with the well-known Higgs 
phenomenon / 1 - з / and therefore can be called the inverse 
Higgs one. Indeed, in the present case one eliminates the 
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field 3 ^ expressing it through £ ( x ) and 0«(x) while 
the Higgs phenomenon leads to the elimination of the 
Goldstone field £'(x) which is absorbed by 2 ^ (the 
choice of the gauge f,(x) =0 in an invariant Lagrangian). 

The inverse Higgs phenomenon, contrary to the direct 
one, leads to nontrivial results when the gauge symmetry 
breaking term is added to an invariant Lagrangian. In this 
case the inverse Higgs phenomenon makes it possible both 
to maintain all the restrictions in.yosed on the field coup­
lings by broken gauge invariance under algebraic subgroup 
H and to achieve the invariance under constant parameter 

transformations of the whcle group G > without including 
--/(•The latter invariance is achieved now via an appropriate 
nonminimal interactions of fields £, (x) and 0£(x). 

Note that the kinetic term of Goldstone fields now can 
appear only from the bilinear in Z^ (£,15) part of gauge 
symmetry breaking: 

2 ; ( f , o ) 2 j ( f , D ) . - ^ ^ e , d M f, +... 
The invariant kinetic term of the true gauge field 0£ 
can be constructed in a standard way using the covariant 
curl R £,, defined as / i s / 

= d 1 0 a ( d 2 ) - d 2 0 a ( d 1 ) - C « 0 y 0 0 ( d 1 ) 0 > ' ( d 2 ) ) 

where the Cartan form da(d) is defined by decomposition 
(П.4). 

Consider now two examples of the inverse Higgs phe­
nomenon in gauge theories. 

1. The model of SU(2) XSU(2) - f ie ld a l g e b r a 
wi thout Ai -meson 

The model of̂  SIJ(2)xSU(2)-;ield algebra with an appro­
priate function X„(?r,p ) instead of the Ai-meson field 
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has been discussed first by Gasiorowitcz and Geffen in 
review 

In parametrization of nonlinear о -model general for­
mula (11.10) gives 

7~* 1 
t(ntP)--±l—— (a.,^-8p?,.xi? ), (П.12) 

P v 77 

where g p and Zp are, respectively, the universal coup­
ling constant and a renormalization constant of p -meson, 
f„= 94 MeV is the pion decay constant. 

The invariant Lagrangian is of the form: 

f 2 
L . = --L - 5 2 |p- j» _ 1 (JJ U)(jS 3) | , (П.13) 

inv 4 2 ., 2 V' M" f2 /** P* 

where 

p =d p -d p -g p xp, -g Z X „(т,р) xA Gr,p).(II.14) гци nrv frn p Ц v °p p ц r v 

The p -meson mass term is determined uniquely by 
chiral invariauce and by requiring the p -field be con­
nected with conserved current: 

L B r = - 2 - f f l p ( Z p A V ^ ) A A U , P ) +РрР м ) . (ПЛ5) 

Note that conserved vector and axial currents calculated 
by making use of Gell-Mann-Levy method obey the stan­
dard commutation relations of SU(2)xSU(2) -field algeb­
ra 1 s/ despite the absence of the A1 -field in the axial 
current. 

Thus, the p -universality and the chiral invariance can 
be combined consistently without including the conserved 
source axial field. The only way to choose between the 
model in question and the conventional approach with 
A j -meson is to compare their predictions with experi­
mental data. 
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For the correct normalization of the kinetic term of 
pions in (11.15) it is necessary that the sum rule 

be valid / ' ' / .Th i s sum rule is inconsistent with empirical 
KSRF-relation Лб/ 

" p = 2 e p

2 f 2 . (И.П) 

Mainly due to this discrepancy, the given model leads 
to p -meson widths too small as compared with those of 
conventional approach / " / . 

It seems to us that a more serious defect of the model 
in question is the impossibility, due to vanishing of the 
pion covariant derivative, of constructing a gauge - in­
variant 7TN -interaction involving the pseudovector coup­
ling -N y 5y "rNd ^ which is needed for description of the 
p -wave part of JTN -scattering / , 7 Л 

Let us make one comment concerning KSRF-relation 
(11.17). It is known that one cannot obtain it within the 
framework of p -universality and current algebra only /W. 
On the other hand, both the assumptions that the pion 
covariant derivative is zero and that the symmetry 
breaking is of form (11.15) together lead necessarily to 
sum rule (11.16) which is incompatible with (11.17). There­
fore for the KSRF-relation be valid it is necessary that 
the covariant derivative of pion be not zero, i.e., that the 
part of axial current with the quantum numbers 1 + be 
dominated by Ai-meson (this condition, of course, is not 
sufficient). 

It is interesting that the model with A (n,p) (11.12.) can 
be achieved by taking the limit mA -• ~ in conventional 
model with A i -meson. 

2. E l i m i n a t i o n of g a u g e f i e l d s in t h e 
s u p e r s y m m e t r y c a s e 

In papers/ ' 3 / D.V.Volkov and V.A.Soroka have shown 
how to introduce the gauge fields into nonlinear realiza-
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tions of supersymmetry / 1 2 Л It has been argued there that 
gauge fields which correspond to spinor translations are, 
in fact, unessential ones and can be replaced by functions 
of other fields. f 

Let us show that the result of papers ' , 3 / i s reproduced 
simply by applying Theorem II to the present case. 

In this case, the quotient space is parametrized by the 
Goldstone spinor fields ф а , ф * related to generators of 
spinor translations (subscript a denotes an index of 
some internal linear symmetry) and by the space-time 
coordinate x„ serving as the "Goldstone field" corres­
ponding to the usual translation subgroup/?/. The gauge 
fields associated with the spinor translation generators are 
^ ( x ) , < ^ ( X ) + / 1 3 / . 

The space-time translations are an invariant sub­
group of the supersymmetry group, therefore Theorem II 
can be used. Applying general formula (П.11) to the fields 
<b^h one finds: 

^ Ь f С Ь 2 РУРУЬ a b c ^ e 

where Q ** and V £ are the true gauge fields associated 
with the homogeneous Lorentz subgroup and the internal 
symmetry subgroup, respectively. The matrices Vpy , 
Iя are generators of these algebraic subgroups in the 
representation by which the field Фа transforms (i.e., they 
are the structure constants in the commutator of the spinor 
translation generators with those of the Lorentz and 
internal symmetry subgroups) 

III. The Inverse Higgs Phenomenon for the 
Goldstone Fields 

Equation (II.9') is solvable relative to 2^ because 
this field enters into the covariant derivative у ^ £ { li­
nearly and additively. 

If some covariant derivative contains a term linear 
and additive with respect to some Goldstone field one 
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also may exclude this field with the use of equation simi­
lar to eqs. (П.9) or (П.9'). Such a possibility existsjfor 
instance, in nonlinear realizations of a number of space -
time symmetries. It is natural to call the exclusion of 
superfluous Goldstone fields, by-analogy with that of gauge 
ones, the inverse Higgs phenomenon. 

This Section deals with space-time symmetries. 
Let relations (II. 1) determine some space-time sym­

metry. Then subgroup H contains the homogeneous Lo-
rentz group. We denote generators but Рц and Va by 
Z [ and corresponding Goldstone fields by £ ( . Thus, 

the quotient space G / H is parametrized by coordinates 
x» . £ i ( * ) / 7 ' 8 / . 

We confine ourselves to symmetries which satisfy the 
following conditions. 

i. The product of any representation of the subgroup 
H is fully reducible with respect to H. 

ii. The generators P and Z.' transform under the 
subgroup н independently. 

The condition ii has been meant throughout Section II. 
It ensures that x„ and £, transform under subgroup 
H by different representations. Let the field £ { form 

basis of some representation D(h) (hGH) which can be 
expanded into a sum of irreducible representations RNC1). 
Then £ i breaks up into a set of components £ i N which 
are irreducible with respect to H • The derivative д £ 
transforms under H by the representation T p(h) as well 
as the generator P^ itself does. 

The quantity G(f ) defined by (II.2) can be written 
in the present case as 

G (x,f) = е' ж м Р р e i f i Z i ' . (Ш.1) 

The Cartan forms w'(d), <u„p(d) are introduced through 
the decomposition: 

G - ' d G - e - ' W i P M d x M e i f ' Z i + e " l f i Z « ' de l^ZL 
(III.2) 

= iw'(d)Z' +i<up(d)P +ifl a (d)V . 
i fi ц a 
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Let us now formulate a Theorem which enables one to 
determine whether a given space-time symmetry permits 
some H -multiplet ?IN of Goldstone fields to be elimi­
nated by using the inver ,e Higgs phenomenon. It turns 
out that it is crucial to know the structure of commutator 
of Z j N and Рц : 

[ Z ; , P U ] = i c ' N f " Z ' t + . . . (Ш.З) 
N ^ 

the possible terms - Va and ~P^ in the right-hand side 
of (III.3) being unessential. 

Theorem III. It is possible to express some field f , N in 
terms of remaining Goldstone fields if and only if: 

a) The product Tp(h)®D(h) contains the irreducible 
representation R^(h). 

b) There is an index t for which the structure cc 
stants С 'N^tlN are not zero (the symbol I/*t j N denotes 
a combination of indices ц and t which corresponds to 
the irreducible representation R^(h)) . 

It follows from definition (III.2) that under these con­
ditions the covariant derivative V /x f t includes a term 
bilinear and additive in £: N.Then, taking into account that 
C ' N P N = | 8 8 W 1 I N by the Shur lemma and )8^0 because 
of condition b), one may express £ i N , solving the covariant 
equation 

in terms of true Goldstone fields: 

P 

The necessity of conditions a), b) is proved in Appendix. 
Note, if several different combinations I /A 11 N , l/^t!'N , 

!(it|^'.. correspond io *he same representation R N ^ ) the 
most general covarian; equation is the following one 

whence 
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f i N , _ ^ t ^ l , N ._JL_( . j | e , ^»h + . -e , ' * f4 . . . ) l 
where a N , a^ ,a^ . . . are some numbers. If there are seve­
ral different irreducible components £IN > £ifc » ^ifj" ' 
which transform by the same representation RN^) , the 

structure constants С N ^ N , С N N , . . . being 
not zero, the excluded field £ J N contains f j ' ,£i^' ... 
additively: 

t 1 Jf» > t l N 1 . i N l / " l N 

On imposing condition (III .4) not all the invariant 
kinetic terms of fields f. , £ i M . . . are independent. To 
make up shortage of these terms one may use covariant 
differential forms of the second order in field derivati­
ves. Summing these forms over different pairs of indices 
one gets terms ~d ft д f t and - f t nf 

Let us give two simple examples of the inverse Higgs 
phenomenon in space-time symmetries. 

1. S p o n t a n e o u s l y b r o k e n c o n f o r m a l 
s y m m e t r y 

Nonlinear realizations of the conformal symmetry with 
linearization on the Lorentz subgroup have been discussed 
in papers / 5 - 7 . ю / . The general theory in this case pre­
scribes the Goldstone fields Ф ц(*) and о (x) to be 
introduced. These correspond to the generators of the 
special conformal and scale transformations, Кл and 
D, respectively. 

The commutator of P^ and K\ contains the dilatation 
generator D in the right-hand side 

[P M ,K„ ] - 2 i ( 8 M „ D - L M „ ), 
where L / n , are the Lorentz group generators. Therefore, 
by Theorem HI, the field 0^(x) can be expressed 
through the true Goldstone field a (x). It has been empha­
sized in papers ' 7 ' and / , 0 / that the field ф„ (х) is 
unessential. 
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The covariant derivative of "dilaton" <r(x) takes the 
f o r m / 5 - 7 . 1 0 / : 

V / i a ( x ) . e - C T W i ^ a ( x ) - 2<^ (x) 1 . 

Putting it zero one finds /10 / 

ФрЫ = } V ( , ) " ( I I L 5 ) 

Note that with condition (Ш.5) taken into account the 
invariant action part depending only on the field ?(x) can 
be constructed coinciding with such a part of the action 
for the case of nonlinear realization of scale invariance 
alone. 

The interaction of dilaton with an arbitrary field 
ib (x) is determined by the form of the covariant derivative 

V ^ ( x ) / , 0 / 

V ^ ( x ) = e " < 7 ( x ) ^ ^ ( x ) + i e ^ W a v a ( x ) L , J ; v V . (Ш.6) 

where h are the Lorentz group generators in the rep­
resentation to which the field ф belongs. In expression 
(III.6), the first term, minimal with respect to nonlinear 
realizations of scale symmetry,and the second, nonminimal 
one are related (in the case of scale invariance alone they 
are covariant separately). This connection is the sole 
trace of the dynamical conformal symmetry that remains 
after eliminating the field Фfi (x). 

2. N o n l i n e a r r e a l i z a t i o n s of 
p r o j e c t i v e group 

The projective group is isomorphic to the group 
SL(5,R). The action of the latter on space-time coordinates 
Xp is determined by means of the following identifica­
tion: 

у 
хц = -jr~ ( V- =1,2,3.4), x 4 = i x 0 , y 4 = iy о » 

where fy >ys are coordinates of 5-dimensional space on 
which the group SL(5,R ) acts linearly: 
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8Yi = a ik 54 О- = 1 . 2 . 3 , 4 , 5 ) , au = 0. 
Then 

S x = a x - a . x x - a . . x + a , . , a „„ •» -a . . 
ц iiv v 5v ц v 55 ц p5 ' до 55 

where parameters a ̂ „ , a^5 , a 5 „ correspond to the 
linear subgroup OL (4, R) ,vo the translation subgroup P4 
and to the projective transformations, respectively. 

The algebra of the projective group includes 24 gene­
rators which obey the relations 

l l R ^ . R p y ] = 8 M p L y „ +5^у LpV + <м-" ) (a) 

f [ V ' P P ] - e M p P v + ( " - ' > ( Ь ) 

j [ W - v* - ("^ ) ( c ) 

[ F , , . ^ ] = 0 (d) 

f [*> . P A I = " f ( * р А « ^ + 1»рА:-Цл). (e) 

(III.7) 
where one has omitted trivial commutators with the 
Lorentz generators L« v in the left-hand side. The gene­
rators Rp.i/, L M y , PA form the algebra of the affine 
sibgroup P 4 <xGL (4,R) ( 2 0 generators). The projective 
transformations are generated by FA • 

Let us consider nonlinear realizations of the projective 
group when the algebraic subgroup is the homogeneous 
Lorentz one. 

The quantity G (П.2) in this case can be represented 
as follows: 

G (x ,£) • e ' V ' V e ' T ^ e i q P F P , (Ш.8) 

where hM„(x), qA (x) are the Goldstone fields. 
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P R 
One may check that the Cartan forms 5 , ш ,u , 

ZF , ZL are related to the Cartan forms of nonlinear 
realizati&Ts of the affine group o>? , со " , U ) ^ / 1 0 4 S 

- p p 
CO = CO 

- L L / P P \ 

The covariant derivative of the field h^„(x) takes the 
form: 

V A h p W - V Xh^ v(x) - q / M - q ^ v A - 2 q A a ^ , ( I I I . 1 0 ) 

where у л hM„(x) is the covariant derivative in nonlinearly 
realized affine symmetry itself ' 1 0 / / . 

Since commutator (III.7e) contains the generator R ^ 
in the right-hand side, it follows from Theorem III that 
the field q\ (x) is unessential and can be expressed in 
terms of the true Goldstone field h^x). Solving the most 
general covariant equation 

V A h

w + b V M h M A =0 (III.U) 

relative to <\\ (x) we find the one-parameter set of solu­
tions: 

^ ( X ) = T U 7 ? T ( ^ h ^ + b V p h M ) ^ - T - <IIU2> 
Note that using condition (111.12), one may represent 

the covariant derivative of an arbitrary field i/-(x) as 
follows 

(b) 

(c) 

(d) 
(Ш.9) 

20 



v x*»x-d* + r ( a ^ + V ) L t ^ • ( I I L 1 3 ) 

where 

V M „ - [ a l < V,zh„A - V„h ^А) + а 2 ^ ^ Ь r„ "^AV r hP M ) ] n

p 

(111.14) 
and a i ,a2 are arbitrary parameters. At the same time in 
nonlinear realizations of the affine symmetry alone the 
general expression for the covariant derivative V Л 'A 
includes three arbitrary parameters 

V. фш? = 6ф + U*>b +V ) I > ф ( I I I 15) 

V„„ - [ c, (V h . - V h ,) +cAS V h -S V.h ) + M" 1 ^ i/A i/ цА 2 p.k v pp v\ A pp 

+ c Q ( S , V h _ S V h ) ] < u x

P (Ш.16) 
3 fiA p pv vK p up A v ' 

Taking into account formulae (III.9,d), (III.10), (III.12) and 
comparing (III.13) with (Ш.15) one may show that for 
V д ф be covariant with respect to the projective group 
it is necessary and sufficient that the following relation 

1 + ci - 7 с 2 + Ю с з = О (Ш.17) 

hold *. 
Thus, on using the inverse Higgs phenomenon, the 

dynaraical restrictions of the projective symmetry reduce 
to relation (III.17) between constants of minimal and non-

*It has been shown in paper / 1 0 / that for с2=с£=0,ср=-1, 
\рф is covariant under the conformal symmetry and, 

at the same time, under the general covariance group. This 
choice of parameters с i, с 2, с sis consistent with condi­
tion (III. 17) that is natural since the projective group is 
a subgroup of the general covariance group. 
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minimal couplings of the true Goldstone field hM„(x) 
with a field Ф (x) in nonlinear realizations of the affine 
subgroup. 

IV. Conclusion 

Throughout the above consideration we concentrated on 
those aspects of the inverse Higgs phenomenon in which 
it differed from the direct one. It should be pointed out, 
however, that there exists one analogy between these 
phenomena. Both of them lead to a reduction of initial 
symmetry to lower one. As seen from examples conside­
red, on using the inverse Higgs phenomenon the massive 
Yang-Mills theory of gauge fields 2^ , 0 £ reduces to 
that of field в" alone, the conformal symmetry reduces 
to the scale invariance, the projective group symmetry 
reduces to the affine one. In all the cases, the only trace 
of higher symmetry is relations between minimal and 
nonminimal coupling constants of true gauge and true 
Goldstone fields of a type of sum rules (11.16), (III.17). 
Analogously, after eliminating the Goldstone fields from 
some Lagrangian by the usual Higgs phenomenon the only 
manifest invariance which remains is the invariance under 
a subgroup of stability of the vacuum. In the "unitary 
gauge" the whole symmetry one begins with manifests 
itself through relations between parameters of Lagran-
gians (i.e., masses, coupling constants). 

We would like to note that the main purpose of pre­
sent paper was to treat general aspects of the inverse 
Higgs phenomenon. The examples should be regarded 
mainly as methodical ones. The applications of the pheno­
menon in question to more realistic models will be 
presented elsewhere. 

The authors are grateful to D.V.Volkov and B.M.Zup-
nik for useful discussions and to R.Lednicky for valuable 
remark. 
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Appendix 

Let us solve eq. (IL9). 
We define first the nonsingular matrix A n t ( £ ) 

e - ^ l Z i _ J _ e « f i Z i _ i z B A l l t ( f ) + . . . (A.l) 

In (A.l) and subsequent formulae we are interested only 
in coefficients for generators z i • 

Using the basic law of nonlinear realizations (II.2) it 
is easy to find 

e - ' ^ f c Z . e ' t e k . z ^ . t t ) ^ <*> + . . . (A.2) 

e - ' ^ e ' ^ l = Z m A m n ( f ) C ? a , , f p + . . . (A.3) 

Taking into account relations (A.1-3) one may represent 
the Cartan form ы' (d) (II.4) as 

a , i ( d ) « A i B ( 0 ( d f 8 + f 5 e p ( ^ ) a p +

f r ' P a ^ p ( ° a ) - <A ' 4> 
As matrices A i s , 5 t p are nonsingular, eq. (II.9) is 
solvable relative to %i • As a result, solution (11.10) is 
arrived at. 

Let us prove that conditions a) and b) of Theorem III 
are necessary ones. 

Suppose that the analytical function f i N (x,^ t >d^ t)(b/i N) 
with transformation properties of field <f i N 

5 f ' N = ^ N + 0 tfi.^.^ft) (A.5) 

exists, where £ , N is the parameter of the group trans­
formation with generator Z i N . It follows from law (A.5) 
that expansion of f i N in power series of £%. ,х^ ,др ft 

starts from terms of the first order in the fields. It is 
not possible for additive term | 8 i N in (A.5) to appear from 
terms of the first order in x^ or in f, because infinite­
simal group transformations of x„ and £ t contain 
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parameter p IN in higher orders in x^ and the Goldstone 
fields. Hence, the addition £ ; N may appear only from 
terms of the first order in the derivative <^ <f t • The 
function f i N transforms under the subgroup H by the 
representation RN(h) therefore the linear in d„£ t term 
in this function has to transform by RN(H) too, that is 
possible only if the product Tp(h)0D(h) contains the rep­
resentation RN (h). The necessity of condition a) is proved. 

Thus we may write: 
f , =A d^€ l l N + . . . 

'N 
Using the basic law of nonlinear realization (П.2) and 
commutation relations (II.1) one easily finds the infini­
tesimal form of transformation of the field £i N in the 
lowest order in parameter /3iN and in the first non-
vanishing order in the Goldstone fields £ t and coordinate 

s f t = - / 3 i N * p C N P l - у р 1 м й С в д к 1

+ 0 ( £ . х , ] 8 ) ( tAi N ) 

that results in the following transformation law for the 
function f. , 

S f i N = - ^ i N

c ' ^ , l N + o ( f . x , a „ o . (A.6) 
It follows from the Shur lemma that 

Comparing (A.5) with (A.6) еле finds then that/3^0 
and A = - i that proves the necessity of condition b). 
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