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Introdugtion

In quantum electrodynamica the usual condition of causality
ip satisfied: the operators /y.and y/ are locally commutative. sut
neither 4#' nor yl are obpervables. We know some ol the locotl
observables guch be field intensities E(x) , H(x) and current
denaity ./)" (x) « Their mutual commutationsas well ap couwnutations
withﬂl..,‘;llare local. Ye show in pect.1., that there exist other den-
sities which have physical sense fumber operator density for elec=-
trona for example) and do not commute locally with ZQ?I. Then
the question arises: Is quantum electrodynamics & causal theory
in the sense that gignals velocities do not exceed that of lignt?
The correpponding quantum mechanical mﬁfning ol caueality is pro-
poesd in gect.2. It turne out that E(-M(-)andﬁ;(.)behave strictly
caupgally in this eunse. ¥e show in pe¢t.3, that the electron den-
sity (or the module of the coordinate wave tunction o1 the electron)
propagates with superluminar velocity. So does the phase oi the
electron coordinate wave function. In sect.4 we consider the rela-
tion of the phase and the electron mcmentum. Discussion and conc-

lusione ara given in the final section.

1. Operator dengities having nonlocal commutations.

The number operator is the fundamental physical quantity
in the second-quantized [ield theory. It turne out that in the

Lorentz gauge we cannot take the simple expresesian(mee (8.80) in
/3/)

fdJX y,-(-lf(;, y)('l(i) =f.l’x’j}1’x"' I'U f(.il) /‘l"’(JE: i") I[/(E”) (0

88 the number operator ror slectrons because (1) is no; gauge



invariant: when 1}[-’ 'I,l/e",”"ef‘ it is transformed 1into
j'dl,(,/'d’x"y;'(;'} e o) YT )exp ie [pixd-xixy) .

In eq. (1)51""(5)denoteu that part ofl//(:ﬂ which destroys the elec-
tron; N 1q the projection operator on this part: y«’H_— ﬂ("l}‘_

Similar diirTiculties arise when constructing the electron
nowentwn opevator. The quantity fd"x #/’(-l‘\%‘)ff (see § 18 in /1/)
ig not gaupe invariant and therefors cannot be an obporvable, Gauge
Invariant operutore

Fo=/d* gl -y —ed) (3) ] (%)
(see,i.e.,app. VII in /2/) cannot be considered as canonical mo-
agale since [P,, pj_] #0.

There are not such troubles in the Coulomb (radiation) gauge.

In thia pauge /q/u is replaced by the tranaverse part of the vector

potential, It ip gauge invariant quantity bacaupe it can be
expressed in temms of ita rotor H : /Tl_(i'.)'v‘lal‘/d]l /-_l‘(g)/(;—g_] .
I'neve.ore tne electron field operator ,o in the Coulomb gauge aleo
is upe-invariant. Lot only gauge-ilnvariant operators ol the elec-
troun  runber and momentum can be constructed uaing lf , but also
the correspouding densites.

L2t us see what interpretation can be given to the density
/V("(,{-)-_-({‘("'(;)F(—’{f). For this purpome we calculate the expectation
value oi’ /' in the one-electron state d_,,'ls—[ . The operator «, is
Jdesined by the expansion of the Schrodinger operator P(f‘) in the
complete set o. proper x‘unctionsll,,, Zﬁ of the Hawiltonian &) or the
Jirac equation i¢=$50 with arhitrary external potential :
FEl =5, wGEre, + S, BEIFT = 9 ) v priy .
/eve ch. 14 in /j4//. S, and ‘SP are sums and/or integrals over elect-

ron (n} and positron (p).indices. de have



@, PR Q)= 3 U (K ton (E ). (3)
In the right-hand side of (3) we have the denmity of the coordi-
nate probability distrivution in the considered stmte (spinor
index ig explicitly writtin out in (3)» The expectation value
ol A/{“x)in the state n(,,d Ia," turns out to be equel to the sum
of densitien [Up|it |Um ! . The expectation value of N 10
equal to zerc if tmken in mtates deseribing poeitrons and/cr pho-
tons only, In the general case one gets not & sum of aquares oi the
wave lunctions modules, but the diaygonal element (i{P/}) oi’
a density matrix.

In the seme line one can ghow that the momentum density ope-

rator
P(x) 1 [YJ {-tv)f(x)+(—«v;a)"a]

(4)
provides an addional inrormation about the phage of the coordinate
wave lunction. Por instance,

(‘-'(:Q, P(ﬂd.'ﬂ):: lu,,(-‘l,cl),léﬁ,, (r,x) | U, -—]u,,]e'p"

“ (s)

The locelity propertieg of the commutation or thelf with

a complete synmtem ol local operators determine these propertien
lI'or /VH and [-5(::) « By delinition any observable ol the theory can
be expressed in terms of the operators of this complete eyetem. One
can take locally commutative operators E(Jt), /'7(&), 1/—/(1)' V{:r} as
such o pystem. All their commutations with ? are local but

[WI ¥, E. 14, t)] e?” ¢) L L 16)
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In the Coulomb gauge (6) tollows Lrom
Eigt) = -9, (£ 4)/5t - grad [dx' P*(F,¥)p(E1¢))| £-5]
/eee  $49 in /5//. In the Lorentz gauge (&) is obiteined rrom

-celt(ze)

plEd) = PlELE UE )= %fdg dc.,ﬁ(g‘,r)/(i-g, .

(ase §80 in /6/; we denote vy e the electron charge). Note that
one can get Nz ana ’3(1) as functions of gt/.’r} using (7).
Yecause ol (5), the commutations [/VH, -E.] and[p.(t), E] are
nonlocal too. They can be namad macrononlocal contrary to commu-
tators {(;U'(f,t), W, t)}' or A/(-P{E,i),ﬂr’(i,f)_] whioh are exponen-
tially small when ]i-g{»)m , A being the Compton wavelength
o1 the electrcn., According o (6), one cannot meke a simultaneous
precise meapurement of [__-:(J,t) and /V(_'(.:E:t}when ¥ and j ara
macroncopically separated. The reasoning like that given at the
end of §48 in /5/ entailg the question; does this fact mean that

eleactrodynamios signals can travel faster than light?

#e shall consider the following scheme of the signal transmiasion.
There is an external current, localized in some volume \é «» It ie
switched on at =0, being zero before. This is a source S of the
signal. There is a detector in some volume V,, + It measures some
local physical quantity. For inetance, its reeponse may be propor-
tional to the integral of the eleciric field intensity E(zlover V.p
(ae in the case of probe charge). The dimensions of the Y, and ¥
are gupposed to be much less taan the digtam:eR between them,

Now we ought to stress an important diff'erence between the
classical and quantum degcriptiona of the signal transuission. One
cannot suppoue that the field E(x)inside l} is equal to garo if

gource current wae not switched on. The otate with a precimse (i.e.



zero) £(x) value s not a gtationary one because Eﬁ‘}doea not
commute with the Hamiltonian of the electromagnetic fields. DIy
the pame reason E(r} cannot have precise valuss in stationary sta=
tes (i.e. proper vector of the total Hemiltonian ¥ ) but must be
described by a probability distribution,

We apsume the following convention: the moment ot the
signal arrival ig the moment of time t,when distribution over the
deteotad local obeervable changes inside l_’, y When comparing with
that digtribution which it would have at t, if the mource was not
switched on. If the signal arrival moment is leas than R/c, we
shall gay: the local obgervable has 8 noncausgal behavior.

Conaider the following difference:"the distribution of £(x/
at the moment t when the source wae swiiched on minus the distri-
bution of E(x]at t when source wasm not switched on". To calculate
it we find the momenta of thias distribution difference, i.e. mean
value, mean square and so on. For this purpose onc must calculate
the quantities of the kind

(ko g, 6 UsIf)~(€" g, 6 Gy

where (J(%)cen denote E™(E) , m=1,2,3... , ¥€ 1l °OF @MYz
and 80 on, fia an initial state vector of the system; Zl(t,v) ie
the operator of the syster evolution; ig,¥ = J#/U . The total
Hamiltonian?f doea not depend upon time, if the source current is
not gwitched on. In such a case X equale Hb) all the times and
the evolution operator is exp[-¢f H()) . de have

(Ulo)§, 6 Ut F) = (g utbu gy,
where U'FU  ie the Heisenberg operat‘or O &) , which at t=0

coneide with the Schrodinger operator U. So one can rewrite (8)

as follows



. , RO )
(6, (00-06G1E) | Onn-e  owe ™.

Low the problem is to find the Heisenberg operators and their
expectation values. All electrodynamical Heisenberg operators can
be obtained 1i: operators /4,. (%, ¢} and ;1/(-1', ¢) are known. e show

in Appendix that operator clirferenceg ‘41,"(5'”"4/' (Jﬁf} and

Yy (% 1) —”l//(f‘,él equal exactly zero LfXElp and £< X/¢ . Because
of E:.-E:- R (Ar-A) -ylﬂf(mm -A) the operator dilferance
."E.}.{:i;,,t)—[?(-l*‘x.,f) and ivs expectation value in any gtate ¢ also
vanignes at £<Rlc . Because of £}~ E%x(E,-£)&+ E(6-E)the pecond
wmoment of the Eli,‘ distribution dirference also vanishes and su do
all higher momenta. Thervelfore the distribution diiference itsell

is zero at t<R/. This means that the electric iield trom the sour-
ce current propagates with valocity not exceedingC . The magnetic

field, the Pointing vector dengity and the current deneity
Jf/.. (z‘,t)—j/., (%, t) ¥ b (Y{r-ll/) + (t/j.-{/f‘ )),’-.}1’
alpo reveal causal behavior. The expectation velue of /,(f) muet
4
)=
be interpreted ae “'ie charge distribution density (similar to N x)

and unlike to the meaning of the expectation value of E('f/).

3. The acaueal behavior of the electron density and phase.

Now let us calculate the change in the number operator density

for electrons
NG - NUEDEE - 7] s [ ]
(10)

One could calculate the Heimenberg operator f”{_,(i",l‘} starting Trom
the equation for P{f,!) /it is nonlocal, see eqe. (69) and(70) in

/1//. ¥e ehall adhere to a gimpler way: we use the relation (7)



-etween ,0 and l}’ and thea refer to the Appendix

3, Ny y 7, 3 i
plE)=[Ty NGy po=[ay NG 5e pa. o - (1)

Here we use the projection oparator”“{iiﬁs. Un(x)ed!, {4) , tor U, see

-rell(i,e

eq.(2). Using the expansion (//:Zne.l[/("’(aee App), wo et
fE0 -0 = [a% 076G fe [0 G0 - 950 ] -
-ie[ UG- UG ] pld el )

(the equality (//}“’:f’“s‘/’g ig taken into account) The Green
xunctionS=S'-=Swand egqas (A.11) end (2350) from /1/ allow one te

|,uj_(”(‘,”_ y(l}('y’:
=J:,ynd2. fl(ii (-1)15'(5,!) [Af';‘, (E,_AI‘:D'(Z)])}' %(Z) ° (13)

Here § denotee £4,4] « Taking into account the equation

G12)

write

-i S"’(v.i)/a =S un(j)urrg” ), fyi), p e,

(14)
and orthonommalizatiun relutions[d’x ll,f(ﬂll.,,ﬁ:l:é,,m we et
), = -1 ),
]d"y n (%4) S g2 = S”(r,gn,ai .
(15)

Similar calculation gives nis® -0 Using (13), (15) nud (A.10)

one can reduce (12) to

G - 5N = e f da (42 (i) S, 2) Jnttl a9, (2-2) Tote)-

- te]d%y NG g weg,e) Xz U ¢] (1)
je= 21§ 2 : . .
W= 52 8, Bon [55 [0 e e2) Ltz) | - ()

lnserting eaq. (16) in eq. (10) we get in the first order in e:
) ) ST ) al
N'-w=efipt H(r,t}l,da.fd’i(-l)j“(,l'e)/'; %z;)fgm@ + hel-
-ief @G aYy NG G Wi 0- he ] (18)



iote that trom aq. (7) the cquality = ¢ tollows.

The tirst brace in eq. {18) contains the product of sunctions
57kt ana Jd*s' Dy (2-2) (2}, 0$8 <t o The second ons is
not zero only inside the cone § in fig.1. Let the point/E ), TR,
v outeide S . The runctlen S (x,2) is not zero inside S ana
thererore the sirst brace does not vanish when #< R/ « But
S$*' ig oxponentially small inoide 3 . IndeedS “can be oxprosaed
in torms of A and A%~ exp(~MAa) /\":(f-i)l—(iﬁ’wz.)")a'
Ao = W/me , bee §15 in /8/. So. the disounped
product is not negligible at £< Re  only when 2>(R-Aw)e .

But the electron wave tuncticn (the module of which im sulrosed %o

be measured vy o detector in % } cannot be localized in a region

witn dimensions less than ]‘,,,. 50, it is meaningleps to speak

about the superluminar veloecity having in mind the tirst brece.
rhe pecond brace in oq. (18) contains the 1unction ”H(i,g):

=-iSClE,0;J.e)ywhich 1s not ewall only whenli‘-glé Am+ The expansion

W(y,f}= M/(i::f) + E‘ (yk ~ X )[aW(g’tj/ggl ]§=£ * e (19)

will be suitable because W(’T, t) does not change appreciably when ¥
changes by Am . The riret term in {19) contributes nothing to the
second Lrace because ol the equalityfd’x n"’(ﬁg)%@,{) = @&z, ¢,

It turns out thet in ocontrast to the Tirst brace which decreases

atfR/. as an inverse power ot R . This assertion follows Iror &
simple estimation ofdW/oy, for £=R . Let us chooee the axia 2[R
and assume that the external current density T(F, 2,) is directed a=-
long the axis X , is localized in the mource volume V; and is not

wero only in a time interval 0¢ 2,$¢ , Thun



- cty . cEy 2k
DW(f,tllgu. = snl * L/C * L‘/R‘ /R /Q ! TER (20)

1f T<x t<R/c . In eq (21)], denotes the sourcevourrent avera;ed
over the internal (0,T) ; Li /s the dimension of ¥ along the
axis X .

We shall write an estimate for the change of the number ol
electrone in the detector volume lj, at £<R/c . e ocalculate ex-
pectation value of (18) in the state &) which describes the
eloctron plane wave W, (&)~ &xpip % , directed nloug the axisx;
Pr=mvi/y Vife is aupposed to be <« { » To calculate the

" expectation value an estimation was made ror the integral

Jd*y 1E3) wnt§) (v on

in the ocase when there 1s no ex“srnal potential 1'or electrons and

N@g) =t [((73) - 3e-mpe 27 0x-90] .,

The final result is

J, 4 (R MEEO- N5 |4t 2 /9, ) =

=2 bk R =0 YUy L A, t T
=2 f BN IWRAon =25 E N e o f 68

Here the constante f: and £ are wrltten explicitly {usually
they are taken to be equal to unity), N ip the initial number oi
electrons in Vj ; €he=ilr Am= himi ;o Amle =1'3-/0—“ see,
|e[=1,6~10“" coulomb, To estimate the obtained aceusal eifect we
let vi/c=41 I = 10% emper, li/r= CT/r=80! . Then the nuu-
ber of electrons in |y (or their density) at the moment Z=¢f &
differs rrom the initial number by 00f per cent. Unly the ratios ol
R, Ly, T are needed ror the estimate, but not their speciiic values,

A greater value oi the ourrent is advantaguous even if greater value



ol V_; and [, will be required: note that the ratio /.,/g can be re-
tained (oy teking a larger R) and eo can the ratios 7T/R and /R .

The emtimate demonstrates tiat the efrect is macroscopic and
cnnnet be uacribed to uncertainty relations. But it is pmall. e
can show that itg ratio to the denpity charge at #>R, is determined
mainly by the small parameter Aw/R , which cannot exceed 10713tor
reusonable values of R .

Now let us see how the denaity p(fl , see (4) , changep. I
one introducen yl into (4), using (7), then one gets

P=t [yt (-cO)yts) + he] -e Ay,

-1 - (23)
(Ake=Lyhy =7 %‘- 2 9%:' Id:}’ 4 (ﬂ/li-fl .

(24)
« The first texrm in (23) is
"caueal", Je calculate the expectation value of (23) in the mtate
0‘:9 (notice that V'P=y"? ) When T%K and ¢<R/c one gets in the

1iret ,srder in e:

(AR BGY-BED]R) = - £ TW(E O U, (&

Here A, is the longitudinal part of 4

(25)
ias the change
ol' the phase yradient of the electron wava function in l{, {(ap compa-

Couparing with eq. (5) we conclude that - %he TW

red with that value of the gradient which it would have if the so-
urce was not switehed on). Thia quantity varies slightly over the
region VD + Lot um estimate (25) under the same conditiona which
were used tor the estimation of eq.(22). Using eq.(20) we obtain
that at the moment ¥={{R/the change of the gradient (in the direc=
tion or the axis x ) is equal to ~0"! radian per A, . The initial



phase yradient of the plane wave exp(p X, is determined vy the
momentun and equals to fr=mii/4 . Ihis amountn to8l/2 at Y=81c
and 10'3/A,,. at VY= 103c . 80 ths zcrusal change o: the
phase is appreciable tor slow electrons. Mearwhile tho relative
change of such electron dengity 1s small beceuse ul the multip=-
lier ¥ /¢ entering eq. (22):
(relative change of density):rl'__i"',\,,,-(changa of the phage ,rnrd,) (20)
Je can argue that (25) is alpo & small erlect, simllar to

(22). The phage change can be measursd by observiny an interre-
rence picture., But this means meapuring the change of the elect=~
rons density (its maxime and minima). This change is especially
small just when the phase change is appreciable, see(20).

Does the result (25) imply, that the electron momentum has
acausal behavior too? To discuss this question we express the result
(25) in terms of the usual momentum of the gingle nonrelativistic

electron.

4. Causal behaviour of the electron velocity contrary to its

canonical momentum.

Let us congider the pystem} external current in V, —quantized
electromagnetic l'ield -~ a single electron, which is bound by
some potential 'V(g’ ingide the region \4, (located near the ori-
&in). There ig a detector in Vb s which measures the distribution
over the electron momentum P or coordinate ? .

The system Hamiltonian is taken at first in the Coulomb gauge
]f(l)'-‘j{',,[ﬁ‘eﬁi(éj]zﬁ Viz}+ g—',,]d’x [Ef(’l + If_/"{z}]f

of d (TEOAE) sef, d% LGONE-3] (21)
The electron is nonrelativietie and apinlese /see §13 in /2/ and

§ 17 in /9//. To obtain ths equation f'or the Heipenberg operator



%/“ we Lind at tiret
gL L [T -e Ay (g0 ]
2,0 =-iL 40, ¥ I= 4 [pU-eAulg 0] 28)

Jere Jf"= u'(f,v)Jﬂﬂ Z(({,D) and is the same function of Heipenberg

operatorn, as #(¢/  ie of the Schridinger ones, see (27). Fur-

ther we calculate [ 9 9r **] and get (compare {23 in /5/ ) l

mzdzy‘l(t)/,{fz = y"" U{%(u} +e E;(Z(ﬁl t)+ i
*zgfl:?,ép“,(ﬂ,m,t)] "[HI'Q‘?J'” (29)

E,(Z,4)=- 9h,, (G,e)for ~grad [d'y K (G0N 1% . (30)

The Lorentz lorce operator stands in the right-hand side o1 (29).

Starting: rrom (29) and the electromagnetic field equations one can
show that N

(t)-qt)=0 wnen <R/l .
% ! - : (31)

Y The proof or (31) is more complicated as compared with the
Appendix (even il it im done only in the rirst order in e),

The reason is that £ and & n the r.h.s. o (29) depend upon the
nperator 1;((” rather than upon X . Eq. (31) is exact if the po-
tential Ulg’ia infinite outside l(b y the proper lunctions oi‘p'/zm'
4-']7[9,) being zero outside % « In this cape one can prove (31)
in all orders of perturbation theory. Eq. (31) is only approxima-
tely true ror realistic potentials (then g,(t}—g(t) is expo~
nentially small at *< Rfc ). let us mdd, that despite of eq.(33),
the diiference EZ'(%¢) -E®@(x,t) or the operators {30) ie a sunction

of retarded integrals or J andJand vanishes when?<R,(a direct
proof is given in /10/).

i4

e ik



‘'hig repult was obtaiuved in (11) for the oscillator poteniial
'I}'(:‘)-uf and in dipole approximation (ﬁl (g) in (27) is replaced
by AJ”” « In return it was obtained without using perturoationthe-
ory. Bq.(31) meang that the vlectiron coordinate disiribution does
not change till the moment R/C A1/, There is no contradiction with
(22) since r.h.s. of (22) vanighes whenC-—+=2 /eee also (20)/.
leaides (22) ig obtained i1'or the case when no external potentials
are prasent, while (31) ip obtained ror the bound electron (uee
rootnote 1)

One obtaine trom (28) that
E(t')-fi(t} —e[ﬁu (g,(rl,t)—ﬁilﬂd, ] =m 3 [q,,(t/- g)] o)
32

The r.h.s. of (32) vanishes i1 {<Rj, but /’u—/!l does not, Indeed
at Pelp , <R, we have
AL (74) =AY (G0 = 3, (Sem = Lam ) dYy Due (x4) T 19) # 0

e (33)

because ol the nonlocal character of the longitudinal projection
operator Ly, see (24). So, at {<R/,
Prclt)= pult) = - Ly { Dect Jou =~ 3% WIR ) £0

(34)
The canonical momentum "J has acausel behavicr, in ceatrast to
the operator m9,¢5/nlf » This means acausal behavior oi' the pha-
se ol the electron wave runction in the coordinate reprepentati-
on f11/.
Basw (28), (29) and {34) are true also in classic theory 2). Howe -

ver all clessic obpervables (velocity, angular momentum and so on)

2) I  am grateful to A. Shabad for drawing my attention to this
point.




can ve expressed in terms ol the lunction 7(1/. In quantum mechenics
the canonical momenium P plays an independent role, beinyg relavea
ta the phnge of the wave runction. This role cannot be played by
the operator m¥, since the X 4,2 - ccmponents of the velocity (28)
do not commutes SO mV cannot be represeatod by the operator/if/and
tne plane wave cannot be written as expimik /12/ 3), However it
geemn that juet the quantity mv is detected when measuring the
truck curvatures. *

The pame results can be obiained using the Lorentz gauge ior-
mulation os the theory. One pets the Lorentz jauge limmiltonian if
one drope out in (27) the pubindex 1 , replace the last two terms
by [d’% Ju A and substitute eq (17. 7) from /9/ for the
electromarnetic energy operator. One obtains Just the smme equation
ror .zL-)hut now £ in r.hess denotes - 94/gp —grad 4, . the
equntionmi;y: p-c‘/l now containg A inetead oi A.L and, consequ-
ently p haa cousalbehsviour. But now b ig not sauge~invariant
and cannot be a physical operator. The velocity operutor l?c:!/;pﬂ)/,,
ig _aupe-invariant, uut[‘q“l_{.’j is not zero again and therefore
mv;  hae no relation to the plase. One can take, oi course, the
Coulomb . muse momentum A and sxpress it in terms of Lorentz ja-
A= byt

(the derivation is not prepented).If one has not other deilinitions

wre operators. The reault will be £=0 NQ/J;

of' the pauge-invariant canonical momentum (beeideaﬂ -e/’L )

3)’I.'herefore the etlect (34) must be considered as a quantum one
(as also the elTects (22) and (25)) though it does not vanish when
h-+0 (mee /13/ ror other quantum erfects which do not vanish

when h —p ).



in the Lorentz gauge then one get the same result as in the Co=
ulomb gauge. ’

».Discugsion and_conclusion,
It was shown that the theory possesees observables such that
a device meapuring them can deteot a superluminar signal velocity.
Taking the effect (22) ms an example let us diecuss its theoreti-
cal preconditions.

The quantum ocausality oriterium, ae delined ln mect.2, seems
reagonable and unquestionable. One gets causal behavior in the
pense ol the criterium for such local obpervables &s E{x} » /'7(’-':)
e (X . #e concentrate upon uging or ”{-’(I)=¢(—”(IIP(-'(*‘)
f'or the electron density operator. It is constructed with the
help or the jgauge-invariant electron-positron rield operator sﬂ N
inherent to the Coulomb gauge 4). Remind that the "caueal" electron

denaityw“’?x)!}l"’(x)‘see (1), le rorbidden ap gauge-nonvariant 5).

4)11: ig of 1lnterost to mention that two-dimensional quantum elect-
rodynamics is "ocausal": the TunctiondW/3x(and, consequently, the

r.h.s. ot (22), (25)) vanish at ¢< R/¢c (coupare /16/):
oW/ = 3fax LU~ U] = AP A9 = [ Dyt T
The function U from eq. (7) is the potential l‘orﬁL and in the

two-dimensional case A coincideg with A, .

5)One can gtate, that it is forbidden as an unphysical operator by
the Lorentz condition (mee Note 1 in App). This calls up a parallel.
Theoriep which describe higher(>{)spin particles moving in exter-
nal electromagnetic fields also have subsidiary conditions (which
eliminate supertluous wave function components) and also pulter

from the superluminar velocity of propagation /15/.

7



We do not know any gauge-invariant electron densit.y operator ha-
ving causal behavior. Mandelstam has conetructed another gauge-
inveriant rermion tield operator, not coinciding with l“,ﬂ » BOe
/14/ . Howaver it also commubes nonlocally with £ , gee (3.1lb)
ir /14/. Note Lturther, that/V‘-('r)is detined with the help of the
cocrdinate, which naturally arises in field theory. We lmow other
electron-position operatcrs, i.e. eee ch.4f in /3/. It eseema how-
ever that the tollowing ageertion is true for any popition opera=-
torg: a ptate which is localized in7 i pemeared in terms of X
but over a regicn having dimensiong not exceeding the electron Comp-
ton wavelenght. If go, this difference between g and X is not re-
levant, because in (22) one deals with a change of the partioles
number in macroscopic volume \j, Despite the above the orthodox
conclusion from the result (22) is that/V‘(_x'jmust be rejected as the
derinition of the electron density operator, though another defini-
tion is unknown. In the case of such an observable as the electron
momentum one can point out an operstcr having causal behavior: it is
sutiicient to claim that real devicee measure notp but Inu':p—eﬂ,
see sect, 4. The same reeolution of our causal difficulty may be
propoged tor such cbeervablee like electron angular momentup or
energy. For instance, one may relate with the nonrelativistic elect-
Ton energy not the operator p/am + V(g but the operator
(p-€AV/am+ Vig] though it is unueual.

Thig rejection of some theoretical obgervables may be consi-
dered ag a posslble formulation of our results:

"The local commutativity of /)'.. an’ }ll does not prevent the
superluminar signal velocity. A new principle must be introduced
in the theory; signal velooity must not exceed c¢. Then just this



principle (and not the other postulates of the quantum electro-
dynamica) forbids cperators having acausal behavior".

In conclusion I stress that the emallnems or the considered
acausal erfect means that they do not contradict any known expe-
riment on light veloucity 6). There is the contradiction with the
theoretical principle - relativistic causality, i.e. the synthe-~
sis ol the usual causality aw! the special relativity.

I wish to express my thanks to D. Kirzhnits, A, Shabad and B. Va-

luev for discussions.

e

Fipgai.

6) The congidered effects may only give an idea of possible new
experiments, We did not discuss real detectors but simply suppo-

sed the existense of desired devices.




Appendix

fie notation o1 /1/ is assumed. ¥hen 8 congtant external potentiaml
l{./f} and nonatationary external current ;.(f, t/ sre present cne hag

the Jollowing equutions ior electromegnetic potentials and spinor

rield
(e e m) Yy o) =i [Ag 0+ VR ] o 00 (A1)
O ()= =00+ J 0] (A.2)

Here x denotes I, %} . The operators 4, and # without subindex J
{the external current is absent) eatisty the eame equation, but_g‘"
being equal to zero., It is implied thatj}, in (A.2) denotes anti-
symmetrized operator iE‘l//;.fl/ R
Sulving (As1) and (A.2) means that one knowe how Heimenberg

operators are expreesed in terms of initial,i.e. Schrodinger, ope~
ratora. The operators §, A, and yl,/‘? muet coincide at ¥=0 with
the same Schri—idinger operators (according to their definition,
see sect. 2):

Y (&0l = (0.0l YlE) U{0,0) = U x) = Y(F, o)
Agp (5,00 = A (F) = Ay (5,0

(A.3)

To solve (A.,1l), (A.2) let us expand ll{,, ﬁ, in & power series in the
coupling constant e (G. K&llen, eee §23 in /1/ and ch. 8.7 in
/47

n,n ~ n @
frix)=3.e S A =5, e" A (h.8)
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¥e upe analogous expanasiona lor ¢ and A . ‘The initial conditions
(A.3) will be satipiied of

Ui o) = Uz, of =piE) | A G ey A )2 g 02)

G A e 1o S T O (5 8] = A (A.5)
and opemtors%",(f,ﬂ) and A};’ (F,0) with 712 { are equal tu zera.
¥e shall no% consider the external current as small and write the
following zerc approximation ior eqs (A.1) and (A.2):
> o) _ . o] _

(fr‘af'*’")‘)ur =0, OAL=-] .

M (A.6)

The molutions of (A.6) are well known., The fird equation ie iree.
At all timeg ylf"’(;):’u("/(x) and both are equal to free operator
OB

Pol)=~ifdn Slx-x) fo g (x) | x=0

(A7)
(see (B.67) in /3/)e. ‘The mecond equation has the soluticn
/4,(-;, (X) =/’,;,u (;‘) + fﬂu( (X‘X') ,;:(x')d',\—'
(Ar.8)
Ao (X1 = [ &y [aﬂ(x-y%yn Auly)- Dix-9)38utyag, ] ; 4, -0 (4.9

Indeed, (A.8) matigiies the equation Uﬂrp:’f,\ and the uaual
equaltime commutation relations (because they are gatistied by/l,,/.,)
dhen X,=f the npemtorA!//:' (x} coincides with the Schrdodinger

operator ﬂf, (%) ( the second term in (A.9) at X,=¢ is equal to
zero) Jde got

© . < s =)/ =

AJ/..IK)—A/“ ) =f.‘Dm("“7-L("/d'X'=/dJX'J;.("'. L E-BN/) -2« (A.10)
Thia difference is equal to zerc i ¥€WVp and X < Rlc

(remember thatff, (x] is localized in V and is zevo when X/ <4 ).

Now we write the equations ror operatora y}("' ,4,“" sy/”‘ AW and

a



conptruct the iollowing dirferences of these wsquationo:

X" ,,,,)[IFM ,m):‘[ = }),.(50“” {ul)fmjt;) w)Jf'VM] (Aa11)
DA -A) = [FERT- )+ (- P)p9®] . wa

Here l/’,("’ -l/'("’s and A,f:‘, - A}:’ equal zero when X, <R .
There:ore the right-hand side: ol (A.11) and (A.12) vanish when
X%«R . Becaupe of zero initial values of y/,"‘-y-’[" and ﬂ,("-/'m
the molutionsfor thepe dilferences vanish when X,<R . For a rorin~
al proo! one must express the solution of (A.11) and (A.12) in
terms of their (zero) r.h.s. and (zero) init*al conditions with the
help of eqe at the end of §23 in /1/ and eqa. (A.7) and (A.9).

For the operatore of the next (second) approximation one can
obtain the eguations of the kind (A.11) and (A.12). Their r.h.s. are
expreaged in terme o1 zero and firast approximation operators. These
rJhes. vanish when X, <K becauee they can be expreseed i terme ot
the diifereunces of these operstors by analogy with (A.11) and (A.12)
and theee dirierences had been shown to be zeros at X,< K.

One gets by inductior that the operator differences V{r(iz:"-l'
-l/’/I;,l.)nndAI’(f,,lJ—-I?,.(r‘,.l.)vanish in all order in e (and have not
divergencles contrary to their constlituenta).

Ye conclude this Appendix with two Notes,

Hote 1. The lorentz condition must be added to eqe {A.1l), (A.2)
It hes the form g A/. {,%)QP=( (Fermi form, see /6/) or

[3,.3 (r,x.)] =0 (Gupta form), Becruge of [ IuAa =0 the condi-
tion is patisiied for any x, i it ig watisried for x,=¢ /2,6/
S0, 1t is surficient to take the initial vector ¢in (B8) from the
space of allowable (by the Lorentz condition) vectors, The descrip-

tion of this epace ie given in /6/ for the Fermi foxm and in (17)



for the Gupta tform. We Jjust use puch a vector in (22},

“he Lorentz condition requires in addition that physical ob-
servables muat commute with the operstors du Aw, J¢ I Au (or with
[ 9m Au (&, o}](") gee $BO in /6/, Dut an operator do commute
with these operatora if it ie gaugr-invariant. Indeed, lat us
conaider the unitary w » whioh realizes the gauge tronsrormation
,4," SW A W=Auv Gux g's W"er: Peap ek (he13)
The generator of W 1is expresged in temme of Ju Am and Jy(Ix 4,.):
:d&vl—::—(j,OL) , see (9.60) in /3/ (let ue note that one oan
prove {A.13) in the case ot interacting rields ,4,, cmd(,ll uping Lhe
equal-time commutation relations).

Note 2 Ye have ghown, that at {<R the oparator di:trerences
Uy, ﬂ’-/; vanish, the external potential |//.. being arbvitrary.
This means that the cousal behavior or £(x) H(x), f(x) e
provad for any {allc'table) initial state¢ and any l{., « It follows
that this behavior takes place in much more complicated situations
than those described in the beginning of eect 2, The state ¢ can
describe electrons (free or bounded by I{.. ), which are disposed
betwoen the eource and ths detector or are their constituents. One
can ggsume that 'T,“ was a nonzero conatant current till the moment

t=0 and att=0it begins to alter momehow.
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