OБbЕАИНЕННЫЙ ИНСТИТУт
 ЯАЕРНЫX ИССАЕАОВАНИЙ

\triangle УБHA

M.I.Shirokov

CAUSALITY IN QUANTUM ELECTRODYNAMICS

E2 - 8587

M.I.Shirokov

CAUSALITY IN QUANTUM ELECTRODYNAMICS

Submitted to $月 \Phi$

Introdugtion

In quantum eleotrodynamios the usual condition of causality in satiafied: the operatore A_{μ} and ψ are locally commutative, sut neithar A_{μ}, nor ψ are obgervables. We know some of the local obearvables auch as field intenaities $E(x), H(x)$ and current denaity $j_{/_{1}}(x)$. Thair mutual comrutationas well as commutatione
 afties which have phyaical aenes fumber operator density for electrone for example) and do not commute locally with $\vec{E}(x)$. Then tine quastion arises: Is quantum electrodynamice a causal theory in the sense that eignals velocitice do not exceed that of ligit? The corresponding quantum mechanical meaning oi caubality is propoesd in sect.2. It turne out that $\vec{E}(x) \vec{H}(y)$ and $\dot{f}_{\mu}(x)$ vehave atrictly causally in this ganee. Ne show in gect. 3 , that the electron density (or the module of the coordinate wave function or the electron) propagates with auperluminar velocity. So does the phase oi the electron coordinate wave function. In sect. 4 we consider the relation of the phage and the electron menentum. Discussion and conclusions arg eiven in the final gection.

1. Operator densitien having nonlocal commutations.

The number operator is the fundamental phyaical quantity
 Lorentz efage we cannot take the simple expreselan (see (8.80) in /3/)
$\int d^{3} x \psi^{(-) t}(\vec{x}) \psi^{(-1)}(\vec{x})=\int d^{3} x^{\prime} \int d^{3} x^{\prime \prime} \psi^{\dagger}\left(\overrightarrow{x^{\prime}}\right) \Pi^{(-1)}\left(\overrightarrow{x^{\prime}}, \overrightarrow{x^{\prime \prime}}\right) \psi\left(\overrightarrow{x^{\prime \prime}}\right)$
as the number operator for electrons because (1) de no; gatige
invariant: when $\psi \rightarrow \psi$ expic χ it is transformerl into $\int d^{3} x^{\prime} \int d^{3} x^{\prime \prime} \psi^{+}\left(\vec{x}^{\prime}\right) ~ 7^{(-)}\left(\vec{x}^{\prime}, \vec{x}^{\prime \prime}\right) \psi\left(\bar{x}^{n}\right) \exp$ ie $\left\lceil\bar{x}\left(\vec{x}^{\prime \prime}\right) \times\left(\vec{x}^{\prime \prime}\right)\right\rfloor$. In eq. (1) $\psi^{(-1)}(\dot{x})$ denotes that part of $\psi(\vec{x})$ which destroye the electron: $\Pi^{(-)}$1e the projection operator on this part: $\psi^{(+)}=\Pi^{(-)} \psi$. Similar difilcultiea arise whon conatructing the electron tolientum opevator'. The quantity $\int d^{3} x \psi^{\prime}(-i \vec{\nabla}) \not \psi$ (see $\$ 18$ in /1/) is not gauce invarjant and therefore cannot bo an obeorvable, Gauge divariant operators

$$
P_{j}=\int d^{3} x \psi^{\dagger}(\dot{x})[-i \nabla-e . q(\dot{x})] \psi(\ddot{x})
$$

(see,i.e., ijp. JII in /2/) cannot be coneidered as canonical mo..

THere are not auch troubles in the Coulomb (radiation) gauge. In this auge A_{μ} is replaced by the transveree part of the vector potential. It ib fauge invariant quantity bacauge it can be expressed in terme of ita rotor $\vec{H}: \vec{A}_{1}(\vec{x}) \sim$ yot $\int d^{3} y \vec{H}(\vec{y}) /|\vec{x}-\vec{y}|$. Theve are ne olectron field operator φ in the Coulomb gauge also If , adide-invarlant. lot only gauge-invariant oparatore oi the electhou aumber and momentum ean be conatructed uaing φ, but also the correspouding densites.
1.at us gee what interpretation can be given to the denaity $N^{(-1)}(\vec{x})=\varphi^{(-1+}(\vec{x}) \varphi^{(-1)}(\vec{x})$. For this purpose we calculate the expectation value oi $N^{\prime \prime}$ in the oremelectron atate $\alpha_{n}^{\prime} \bar{s} \bar{\gamma}$. The operator α_{n} 1e de 'ined by the expansion of the Schrödinger operator: $\varphi(\vec{x})$ in the complete eet 0_{i} proper functions U_{n}, v_{p} of this Laiallonian \mathscr{D} or the Sirac equation $i \dot{\varphi}=\$ \varphi$ with arhitrary external potential :

$$
\begin{equation*}
\psi(\vec{x})=\int_{n} u_{n}(\vec{x}) \alpha_{n}+\int_{p} v_{p}(\vec{x}) \beta_{p}^{+}=\varphi^{(-)}(\vec{x})+\varphi^{(t)}(\vec{x}) \tag{2}
\end{equation*}
$$

/soe ch. 14 in /4//. S_{n} and S_{p} are sume and/or integrals over electron (n) and positron (p).indices. We have
$\left\langle\alpha_{n}^{+} \Omega, \varphi^{(-1)}(\dot{x}) \varphi^{(-)}(\vec{x}) \alpha_{n}^{+} \Omega\right\rangle=\sum_{\alpha=1}^{4} u_{n}^{\prime}(\vec{x}, \alpha) u_{n}(\vec{x}, \alpha)$.
In the right-hand aide of (3) we have the denaity of the coordinate probability dietriuution in the considered state (spinor index is explicitly writtin out in (3). The expectation value oi $N^{f}(\bar{x})$ in the state $\alpha_{n}^{+} \alpha_{n}^{+} \beta_{p}^{+} \Omega$ turns out to be equal to the eum of dengities $\left|u_{n}\right|^{2}+\left|u_{m}\right|^{2}$. The expectation value of $N^{(-1)(\dot{x}) \text { io }}$ equal to zero if taken in atates deacribinf poaitrone and/or photons only. In the general case one feta not a sum of equares of the wave :unctiona modules, but the diasonal element $(\vec{x} / \rho \mid \vec{x})$ oi a density matrix.

In the seme line one can show that the momentum density operator

$$
\begin{equation*}
\vec{P}(\vec{x})=\frac{1}{2}:\left[\varphi^{+}(\vec{x})(-i \vec{\nabla}) \varphi(\vec{x})+(-i \vec{\nabla} \varphi)^{+} \varphi\right]: \tag{4}
\end{equation*}
$$

provides an addional iniomation about the phase of the coordinate wave lunction, For instance,
$\left\langle\alpha_{n}^{+} \Omega, \vec{p}(\vec{r}) \alpha_{n}^{\prime} \Omega\right\rangle=\sum_{\alpha}\left|u_{n}(x, \alpha)\right|^{2} \vec{\nabla} \beta_{n}(x, \alpha), \quad u_{n}=\left|u_{n}\right| e^{\prime \beta_{n}}$.

The locality properties of the commutation or the φ with a complate ayatem oi local operators determine these propertien Ior $N^{(-1}$ and $\vec{P}(x)$. By dei'inition any obeervaile of the theory can be expresed in terme of the operators of this complete eyetem, One can take locally comutative operatora $\vec{E}(x), \vec{H}(x), \bar{\psi}(x), \psi(a)$ as auch a ayatem. Ald their commatationa with φ are local uut
$\left[\varphi(\vec{x}, t), E_{m}(\vec{y}, t)\right]=e \varphi(\vec{x}, t) \frac{1}{4 \pi} \frac{\partial}{\partial x_{m}} \frac{1}{|\vec{x}-\vec{y}|}$.

In the Coulomb Eauge (6) I'ollows from
$\vec{E}(\vec{x}, t)=-\partial \vec{A}_{1}(\vec{x}, t) / \partial t-g z \sigma d^{\prime} \int d^{3} x^{\prime} \varphi^{+}\left(\vec{x}^{\prime}, t\right) \varphi(\vec{x} ; t) /\left|\vec{x}-\vec{x}^{\prime}\right|$
/see $\$ 49$ in /5//. In the Lorentz geuge (6) is obteined irom
$\varphi(\dot{x}, t)=\psi(\vec{x}, t) e^{-i c \mu(\vec{x}, t)} ; \quad U(\dot{x}, t)=\frac{-1}{4 \pi} \int d^{3} y d i v \vec{A}(\vec{y}, t) /|\dot{x}-\vec{y}|$
(aee $\$ 80$ in $/ 6 /$; we denote oy e the electron charge). Note that one can cet $N^{(-1}(x)$ and $\vec{P}(x)$ as runctions of $\psi^{\prime}(x)$ using (7). Hecause oi (i), the commutations $\left[N^{(-)}, \vec{E}\right]$ and $[\vec{P}(x), \vec{E}]$ are nonlocal too. They can be namad macrononlocal contrary to commutatore $\left\{\vec{\psi}(\vec{x}, t), \psi^{(-)}(\vec{y}, t)\right\}, \quad$ or $\left[N^{(-)}(\vec{x}, t), N^{(-)}(\vec{y}, t)\right]$ whioh are exponentially mall when $|\vec{x}-\vec{y}| \gg \lambda_{m}, \quad \lambda_{m}$ belng the Conpton wavelength Of the electron. According to (6), one oannot make a eimultaneous precise measurement of $\vec{E}(y, t)$ and $N^{(t)}(\vec{x}, t)$ when $\vec{x} \quad$ and \vec{y} are macroocopically separated. The reagoning like that given at tho end of $\$ 48$ in $/ 5 /$ entails the questions does this fact mean that elactrodynamios aignala can travel faster than light?

ㄹ._Signal_trangmigeion in_quantum mechanica.
We shall consider the following schame of the aigral trangmiasion. There is an external current, localized in some volume V_{s}. It is awitched on at $t=0$, being zero before. This is a source S of the gifnal. There is a detector in some volume V_{0}. It measurea some local physical quantity. For inetance, ita responge may be proportional to the integral of the electric ifeld intensity $\vec{E}\left(x / o v e r V_{0}\right.$ (ae in the case of probe charge). rihe dimengions of the V_{g} and \mathbb{V} are supposed to be much leas tian the digtance R between tham.

Now we ought to strese an important difierence between the claseical and quantum deacriptions of the signal tranamieaion. One cannot suppoce that the field $\vec{E}(x)$ ingide V_{b} is aqual to zero if gource current was not gwitched on. The otete with a preciag (i.e.
zero) $\vec{E}(x)$ value is not a itationary one becaube $\vec{E}(x)$ does not commute with the Hamiltonian of the electromagnetic fields. By the same raason $\vec{E}(x)$ oannot have precise values in stationary states (1.e. proper vectov of the total Hamilionian \mathcal{H}) but must be deacribed by a probability diatribution.

We assume the following convention: the moment of the aignal arrival is the moment of time t, when dietribution over the deteotad local observable changea inside V_{D}, when comparing with that distribution which it would have at t, if the source wes not switched on. If the gignal arrival moment is leas than R / C, we ahall eay: the locel observable has a noncaugal behavior.

Consider the following difference:"the distribution of $E(x)$ at the moment t when the source was ewitched on minus the distribution of $E(x)$ at t when gouroe was not ewitched on". To celcuiate it we find tize momente of thia diatribution difference, l.e. mean value, mean square and so on. For this purpose one must calculate the quantities of the kind
$\langle U(t, 0) \phi, \hat{O}(\vec{x}) U(t, 0) \phi\rangle=\left\langle e^{-i t X(0)} \phi, \hat{O}(\vec{x}) e^{-i t X(\nu)} \phi\right\rangle$,
Where $\hat{\mathcal{O}}(\vec{x})$ can denote $E^{m}(\vec{x}), m=1,2,3 \ldots, \vec{x} \in \underline{K}_{9}$ or $\hat{O}(\vec{x})=N^{(-1}(\vec{x})$ and so on, ϕ is an initial state vector of the ayatem; $\mathcal{U}(t, 0)$ is the operator of the syster evolution; $i \partial_{t} \mathcal{U}=\mathcal{J}(t) \mathcal{U}$. The total Hamiltonian \mathcal{H} doee not depend upon time, if the source current is not switchad on, In such a case \mathscr{H} equals $\mathcal{H}(0)$ all the times and the evolution operator is exp $[-i t \mathcal{H}(\nu)]$. Te have

$$
\langle u(t, 0) \phi, \hat{\theta} u(t, 0) \phi\rangle=\left\langle\phi, u^{+} \dot{\mathcal{O}} u \phi\right\rangle
$$

whore $\mathcal{U}^{+} \dot{O} U \quad$ ie the Heisanberg operator $\mathcal{O}_{5}(t)$, which at $t=0$ conalde with the Sohrödinger operator $\hat{\theta}$. So one can rewrite (8) es follow

low the problam is to find the Heiaenberg operators and their expectation valuea. All electiodynamioal Heiaenberg operatora can be obtained ii operatore $A_{\mu}(\vec{x}, t)$ and $\psi(\vec{x}, t)$ are known. we show In Appendix that operator dijferencen $A_{y, m}(\vec{x}, t)-A_{1}(\vec{x}, t)$ and $\psi_{J}^{\prime}(\vec{x}, t)-\psi(\vec{x}, t) \quad$ equal exactiy zero $1 f \vec{x} \in V_{D}$ and $t<K / c$. Becaube $0_{i} \vec{E}_{r}-\vec{E}=-\partial_{i}\left(\vec{A}_{f}-\vec{A}\right)-g z \alpha d\left(A_{r o}-A_{0}\right) \quad$ the operator dilifezance $\vec{E}_{f}\left(\vec{x}_{i}, t\right)-\vec{E}\left(\vec{x}_{2}, t\right)$ and its expectation value in any state ϕ also vanisnes at $t<R_{/ c}$. Because of $E_{J}^{2}-E^{2}=\left(E_{T}-E\right) \bar{E}_{J}+E_{T}\left(E_{J}-E\right)$ the second moment of the $\vec{E}(\vec{x})$ distribution difference also vanishea and $b u$ do all higher momenta. Therefore the digtributjon difference itgeli is zero at $t<R / C$, 'Chis means that the electric i'ield from the source current propagate日 with velocity not exceeding C. The magnetic f'ield, the Fointing vector denaity and the current denaity

$$
f_{J \mu}(\vec{x}, t)-f_{\mu}(\vec{x}, t) \sim \bar{\psi}_{J} \gamma_{\mu}\left(\psi_{J}-\psi\right)+\left(\bar{\psi}_{J}-\bar{\psi}\right)_{\mu} \psi
$$

also reveal caugal behavior. The expectation value of $f_{0}(\vec{x})$ must be interpreted as ${ }^{\prime \prime}$ ie charge dietribution dengity (aimilar to $\boldsymbol{N}^{(\boldsymbol{\prime}}(\vec{x})$ and unlike to the meaning of the expectation value of $\vec{E}(\vec{x})$).
3. The aceueal behavior of the electron density and phase.

Now let us calculate the change in tho number operator density for electrone
$N_{J}^{(-)}(\vec{x}, t)-N^{(-)}(\vec{x}, t)=\varphi_{J}^{(-) t}\left[\varphi_{J}^{(-)}-\varphi^{(-)}\right]+\left[\varphi_{J}^{(-)}-\varphi^{(-)}\right]^{\dagger} \varphi^{(-)}$.
One could calculate the Heiaenberg operator $\int^{\left(0^{(-)}(\vec{x}, t) \text { atarting from }\right.}$ the equation for $\varphi(\vec{x}, t) \quad / i t$ is nonlocal, eee eqs. (69) and (70) in /7/(. We shall adhere to a aimpler way: we use the relation (7)
etweon ψ and ψ and then reter to the Appendix
$\varphi(\bar{x}, t)=\int d^{2} y n^{(-1}(\vec{x}, \vec{y}) \varphi(\bar{y}, t)=\int d d^{2}, n^{-1}(\bar{x}, \vec{y}) e^{-i e \|(\vec{y}, t)} \psi(\bar{y}, t)$.
 eq. (2). Uaing the expaneion $\psi=\Sigma_{n} e^{*} \psi^{(n)}$ (вes App.), wo fiot
 $\left.-i e\left[\mathcal{U}_{0}^{(t)}\left(\tilde{y}_{,}, t\right)-\mathcal{U}^{(0)}(\bar{y}, t)\right] \psi_{0}(\bar{y}, t)\right\}$
(the equality $\psi_{s}^{(\nu)}=\psi^{(\omega)} \equiv \psi_{0} \quad$ is taken Into account) The croon iunction $S=S^{(-)}+S^{(t)}$ and eqs. $(\Lambda, 11)$ and (2350) from $/ 1 /$ allow one to write

$$
\begin{equation*}
\psi_{S}^{(t)}(y)-\psi^{(\prime)}(y)= \tag{13}
\end{equation*}
$$

$\left.=\int_{0}^{y_{0}} d z_{0} \int d^{3} z_{i-i}\right) S\left(y_{,}, z\right)\left[A_{J \mu}^{(0)}(z)-A_{\mu}^{(0)}(z)\right] y_{\mu} \psi_{0}(z)$.
Hare y denotee $\left\{\vec{y}, y_{i}\right\}$. Taking into account the equation
$-i S^{(-)}\left(y_{1} z\right) \gamma_{0}=S_{n} u_{n}(\ddot{y}) u_{n}^{+}(\vec{z}) e^{-i E_{n}\left(y_{0}-z_{0}\right)}=\left\{\psi_{0}^{(-)}(y), \psi_{0}^{t}(\vec{z})\right\}_{+}$
and orthonornalization rolations $\int_{d^{j}} x_{n}^{f}(\dot{x}) u_{n}(\vec{x})=\delta_{m n} \quad$ we iet
$\int d^{x} y \Pi^{(-)}(\vec{x}, \vec{y}) S^{(-)}(y ; z)=S^{(-)}\left(\bar{x}, y_{0}, z\right)$.
 one can reduce (12) to

$$
-i e \int d^{3} y \Pi^{-1}(\bar{x}, \bar{y}) \psi(\bar{y}, t) w(\vec{y}, t), \quad x \equiv\{\vec{x}, t\}
$$

$W(\bar{y}, t)=\frac{-1}{4 \pi} \sum_{k=1}^{2} \partial x_{k} \int \frac{d^{2} z}{|\bar{y}-z|} \int d^{r} z^{\prime} y_{z e c}\left(z-z^{\prime}\right) J_{k}\left(z^{\prime}\right) \quad, \quad \quad \quad=t$
Ineertint eq. (lis) in eq. (10) we cet in the lirat order in es
$N_{r}^{(-1}-N^{(-)}=e\left\{\varphi_{0}^{(-) t}(\vec{x}, t) \int_{\nu}^{t} d z_{0} \int d^{3} z(-i) S^{(-1}(x, i) \gamma_{\mu} \varphi_{0}(i) \int g_{2 e t} J_{\mu}+h . c.\right\}-$
$-i e\left\{\varphi_{0}^{i-i t}(\vec{x}, t) \int d \cdot y \Pi^{i-1}(\vec{x}, \vec{y}) \varphi_{0}(\vec{y}, t) W(\vec{y}, t)-h c\right\}$.
in te that 1 rom aq. (7) the oquality $\psi^{(0)}=\varphi^{(r)} \underset{E}{ } \varphi_{0}$ iollowa.
We first brace in eq. (18) containg the product of iunctions $J^{\prime \prime}(x, z)$ and $\int d^{4} z^{\prime} \mathcal{D}_{\text {tet }}\left(z-z^{\prime}\right) J_{\mu}\left(z^{\prime}\right), \quad O \leqslant Z_{a} \leq t$. The aecond one is not zero only ingide the cone ρ in fis. 1 . Let the point $/ \vec{x}, t), \vec{x} \tilde{\nabla}$, b outeite ρ. The function $S^{\prime}(x, z)$ is not zaro ingide ρ and thereriore the ifet brnce does not vanieh when $t<R / c$. But $S^{\text {t- }}$ ia exponontially emall inoide \mathcal{S}. Indeod $S^{(-1)}$ can bo oxprooned in toring of $\Delta^{(-1)}$ and $\Delta^{(-1)} \exp \left(-\lambda / \lambda_{m}\right), \lambda^{2}=(\vec{x}-\tilde{z})^{2}-\left(x_{0}-z_{n}\right)^{2}=0$, $\lambda_{m}=h / m c \quad$, see $\$ 15 \mathrm{in} / 8 /$. So, the discuased product is not nagligible at $t<R / c$ only when $t>\left(R-\lambda_{m}\right) / c$. But the electron wave runction (the module of which is sur rosed to be measured by a detector in V_{D}) cannot be localized in a region with dimengions lese than i_{m}. So, it is meaninglese to speak about the supezlumar velocity having in mind the i'frat brece.

The second brace in oq. (10) containe the runction $\Pi^{(-1)}(\bar{x}, \vec{y})=$ $\left.=-i S^{(-1)} \vec{x}, 0 ; \vec{y}, e\right) y$ which is nut ewall only when $|\vec{x}-\vec{y}| \leqslant \lambda_{m}$. The expanstion

$$
\begin{equation*}
W(\ddot{y}, t)=W(\ddot{x}, t)+\sum_{k}\left(y_{k}-x_{k}\right)\left[\partial W(\vec{y}, t) i \partial y_{k}\right]_{\vec{y}=\vec{x}}+\ldots \tag{19}
\end{equation*}
$$

will be suitable because $W(\bar{j}, t)$ does not change appreciably when y changes by λ_{m}. The lirst term in (1y) contributes nothing to the becond breace because of the equality $\int d^{3} x \eta^{(-1)}(\vec{x}, \vec{y}) \varphi_{0}(\vec{y}, t)=\varphi_{0}^{(-1)}(\vec{x}, t)$. It turns out that in oontrast to the iirst brace which decraages
 att: R / C as an inverge power of R. Thin assertion follows irom a simple estimation of $\alpha W / \partial x_{4}$ for $\vec{x} \cong \vec{R}$. Let us choose the axis $\bar{z} \| \vec{R}$ and assume that the external current density $\bar{J}\left(\overrightarrow{3}, z_{0}\right)$ in direoted alone the exis X, is localized in the gource volume V_{S} and is not aero only in a time interval $O \leqslant z_{p} \leqslant \tau$. Thun

$$
\begin{equation*}
\partial W(\vec{x}, t) / \partial x_{k} \cong S_{k t} \cdot I_{1} / c \cdot L_{1} / R \cdot c t / R \cdot c \varepsilon / R, \vec{x} \cong \vec{R} \tag{20}
\end{equation*}
$$

If $\tau \ll t<R / c$. In eq, (21) I_{1} denotes the source ourrent averaliged over the internel $(0, \tau) ; \quad L_{1}$ is the dimenaion of V_{S} along the axis \times.

We ehall write an estimate for the ohange of the number oi' electrone in the detector volime V_{D} at $t<R / C$, ive oalculate expectation value or (28) in the atate $\alpha_{n}{ }^{+} \Omega$ which deacribes the olectron plane wave $u_{n}(\vec{x}) \sim$ expip x_{1}, directed along the axiex; $p_{1}=m v_{1} / h ; \quad v_{i} / c$ is aupposed to be $\ll 1$. To caloulate the expectation value an estimation was made for the intecral

$$
\begin{equation*}
\int d^{3} y \eta^{(-)}(\vec{x}, \vec{y}) u_{n}(\vec{y})\left(y_{n}-x_{k}\right) \tag{21}
\end{equation*}
$$

In the oase when there is no exarnel potential for electrons and

$$
\Pi^{(-)}(\bar{x}, \bar{y})=-i\left[\left((\bar{\gamma} \bar{\partial})-i \gamma_{4} \partial_{t}-m\right) \gamma_{i} \mathcal{S}_{m}^{(-1)}(x-y)\right]_{x_{e}=y} .
$$

The final result is

$$
\int_{V_{D}} d^{3} \times\left\langle\alpha_{n}^{+} \Omega\right| N_{r}^{+1}(\vec{x}, x)-N^{(-1}(\vec{x}, t)\left|\alpha_{n}^{+} \Omega\right\rangle /\langle\Omega, \Omega\rangle=
$$

$$
\begin{equation*}
=-2 \frac{e}{h c} \frac{v_{1}}{c} N \frac{h}{m c} \partial W(\vec{R}, t) / \partial \lambda_{1}=2 \frac{e^{2}}{h c} \frac{v_{1}}{c} N \cdot \frac{I_{1}}{|e|} \cdot \frac{\lambda_{m}}{c} \cdot \frac{L_{1}}{R} \cdot \frac{c t}{R} \cdot \frac{c \tau}{R} . \tag{22}
\end{equation*}
$$

Here the constante h and C are written explicitily \{usually they are taken to be equal to unity), $N_{\text {ie }}$ the initial number oi' electrons in $V_{c} ; e^{2} / h_{c}=1 / 13 \% ; \lambda_{m}=h / 1 i n c ; \quad \lambda_{m} / c=1,3 \cdot 10^{-21}$ see, $|e|=1,6 \cdot 10^{-19}$ coulomb. To estimate the obtained acrugel enfect we let $v_{i} / c=0,1, \quad I_{1}=10^{6}$ amper, $L_{1} / R=c \tau / R=0,01$. Then the number of electrone in l_{D}^{\prime} (or their density) at the moment $t=0,1 R_{C}$ differe l'rom the initial number by 0,01 per cent. Only the ration or R, L_{1}, τ are needed ior the estimate, but not their specilic values, A greater value oi the ourrent is advantaguous even it greater value
or V_{S} nud L_{d} will be required: note that the ratio L_{1} / k can be retained (oy taking a larger A) and bo oan the ratiog T / R and t / R.

The estimate demonstrates tinat the efrect 18 macroscopic and cannet be uacrived to uncortainty relariona. But it is amall. "to can show that ita ratio to the denaity oharge at $f>\mathrm{N} / \mathrm{c}$ is determined muinly by the emall parameter $\lambda_{\text {in }} / R$, whinh carnot exceed 10^{-13} ior reabonable values of \boldsymbol{R}.

Now let ue gee how the denalty $\vec{P}(\vec{x})$, eee (4), changeo. If one introduces $\psi \quad$ into (4), weing (7), then one gete $\vec{P}(x)=\frac{1}{2}\left[\psi^{+}(x)(-i \vec{\nabla}) \psi(x)+h . c.\right]-e \vec{A}_{4} \psi^{+} \psi$,
$\left(A_{L}\right)_{i}=L_{i j} A_{j}=\frac{-1}{4 \pi} \frac{\partial}{\partial x_{i}} \sum_{j} \frac{\partial}{\partial x_{j}} \int d^{3} y A_{j}(\vec{y}) /|\vec{x}-\bar{y}|$.

Here A_{t} is the longitudinal part of A. The firet term in (23) is "cauanl", de calculate the expectation value of (23) in the otate $\alpha_{n}^{+} \Omega$ (notice that $\psi^{+} \psi=\varphi^{+} \varphi$) ihen $\vec{x} \approx \vec{R}$ and $t<R / c$ one gete in the 11rat Jrder in e:
$\left\langle\alpha_{n}^{+} \Omega\right| \vec{P}_{T}(\vec{x}, t)-\vec{P}(\vec{x}, t)\left|\alpha_{n}^{*} \Omega\right\rangle=-\frac{e}{h c} \vec{\nabla} W(\vec{x}, t) \sum_{\sum}\left|u_{n}\left(\vec{x}_{c}, d\right)\right|^{2}$
Comparing with eq. (5) we conclude that $-e / h e \vec{\nabla} W$ ie the change or the phage gradient of the electron wava function in V_{D} (ag compared with that value or the gradient which it would have if the source was not ewitehed on). This quantity varies alightly over the resion V_{g}. Lat us estimate (25) under the same conditione which were used tor the estimation of eq.(22). Uaing eq.(20) we obtain that at the moment $t=0,1 \mathrm{R} / \mathrm{t}$ the change of the gradient (in the direction or the exie x) is equal to $\sim 10^{-3}$ radian per λ_{m}. The initial
 momentul and equals to $p_{1}=m v_{i} / \hbar$. This amounta to Q_{1} / λ_{m} at $v_{i}=0, I_{C}$ and $10^{-3} / \lambda_{m}$ at $v_{i}=10^{-3} \mathrm{C}$. So tha acsuasal chantie or the phage is appreciable tor slow electrong. Nieanwhile the relative change of such electron denaity is amall because oi the multiplier V_{i} / c entering eq. (22):
(relative change of dencity) $=\frac{V_{i}}{c} \cdot \lambda_{m}$ (change of the phage rrad.) (2o)
Ne can argue that (25) is also a emall eilect, aimilar to (22). The phase change can be measured by observing an interierence picture. But this means meaburing the change of the electrons denalty (its maxima and minima). This change ia eapecially amall just when the phase change is appreciable, see(26).

Does the result (25) imply, that the electron momentur has acausal behavior too? To digcuss this question we exprese the result (25) in terms of the usual momentum of the single nonrelativistic electron.
4. Causal behaviour or the electron velocity contrary to its
canonical momentum.
Let us conaider the aystem; external current in V_{s}-quantized electromgnetic rield - a single electron, which is bound by aome potential $V(q)$ inside the region V_{y} (located near the ori((in). There is a detector in V_{D}, which measures the distribution over the eleatron momentum p or coordinate q -

The syatem Hamiltonian is taken at firat in the Coulomb gauge $\mathcal{H}(f)=\frac{1}{2 m}\left[\vec{p}-e \vec{A}_{\perp}(\vec{q})\right]^{2}+V(q)+\frac{1}{8 \pi} \int d^{3} x\left[\vec{E}_{2}^{2}(x)+\vec{H}^{2}(x)\right]+$

$$
\begin{equation*}
+\int_{V_{s}} d^{J} x\left(\vec{J}(\vec{x}, t) \vec{A}_{1}(\vec{x})\right)+e \int_{V_{1}} d^{3} x J_{0}(\vec{x}, t)| | \vec{x}-\vec{q} \mid \tag{27}
\end{equation*}
$$

The electron is nonrelativiatie and apinlese /see ई 13 in /2/ and $\S 17$ in /9//. To obtain the equation for the Heisenberg operator
$q_{p}(1) \quad$ we lind at liret
$\partial_{1} \vec{q}_{r}(t)=-i\left[\ddot{q}_{r}(t), \mathcal{H}^{H}\right]=\frac{1}{m}\left[\vec{p}_{r}(t)-e \vec{A}_{J L}\left(q_{r}(t), t\right)\right]$.
lere $\mathcal{H}^{H}=\mathcal{U}^{\dagger}(t, 0) \mathcal{H}(1) \mathcal{U}(t, 0)$ and is the same function of Heisenberg operatorn, as $\mathcal{H}(t)$ is oi' the Schrödinger one日, e日e (27). Further we oialculata $\left[\partial_{t} q_{5}, \not \mathscr{K}^{\prime \prime}\right]$ and eat (compare $\S 23$ in /5/) $m^{2} d^{2} \vec{q}_{r}(t) / d t^{2}=g 2 a d V\left(q_{t}(t)+e \vec{E}_{f}\left(\vec{q}_{f}(t), t\right)+\right.$

$$
\begin{equation*}
+\frac{e}{2}\left\{\left[\partial_{t} \vec{q}_{I} \times \vec{H}_{f}\left(q_{1}(t), t\right)\right]-\left[\vec{H}_{I} \times \partial_{t} \vec{q}_{r}\right]\right\} \tag{29}
\end{equation*}
$$

$$
\vec{E}_{f}\left(\vec{x}_{1}, t\right)=-\partial \vec{A}_{1 s}(\vec{x}, t) / \partial t-\operatorname{grad} \int d^{3} y J_{0}(\vec{y}, t) /|\vec{x}-\vec{y}| .
$$

The Lorentz iorce operator atands in the right-hand eide or (29). startine fron (29) and the electromegnetic field equations one can show that ${ }^{1)}$

$$
\begin{equation*}
q_{r}(t)-q(t)=0 \text { when } t<R / c . \tag{31}
\end{equation*}
$$

1) The prooi oi (31) is more complicated as compared with the Appendix (even il it if done only in the ifirgt order in ej, The reason is that E and H in the r.h.s. of (29) depend upon the operator $q()$, rather than upon X. Eq. (31) ia exact if the pctential $V(q) i_{a}$ infinite outaide V_{g}, the proper runctions oi $p^{2} / m_{m}{ }^{+}$ $+V(q)$ being zero outaide $V_{\mathcal{D}}$. In this cage one can prove (31) in all orders of perturbation theory. Eq. (31) is only approximately true lor realiatic potentials (then $q_{7}(t)-q(t)$ is exponentially amall at $t<R / c$). Let ua add, that despite of eq.(33), the difference $\bar{E}_{\boldsymbol{f}}^{(0)}(\vec{x}, t)-\vec{E}^{(0)}(x, t)$ oi' the operators (30) is a dunction of retarded integrals or' \vec{J} and J_{0} and vanishes whent \mathbb{R}_{c} (a direct

This result was obtalned in (l]) for the oacillator potential $V(q) \sim q^{2}$ and in dipole approximation $\left(\vec{A}_{\perp}(q)\right.$ in (27) is replaced by $\left.A_{l}(0)\right)$. In return it was obtained without usinki perturoation theory. Eq. (31) means that the vlectron coordinate diatiduution does not change till the moment R/C /11/* There is no contradiction with (22) since r.h.s. of (22) vanishes when $C \rightarrow \infty /$ eee also (2í)/. Beaides (22) ia obtained for the case when no external potentiala are prosent, while (31) is odtained ior the bound electron (see footnote 1)

One obtaing irom (28) that
$\vec{p}_{J}(t)-\vec{p}(t)-e\left[\vec{A}_{J L}\left(q_{J}(t), t\right)-\vec{A}_{\perp}(q(t), t)\right]=m \partial_{t}\left[q_{J}(t)-q(t)\right]$.
The r.h.s. of (32) vanishes i1 $t<R / c$, but $A_{J_{1}}-A_{1}$ does not. Indeed at $\vec{x} \in V_{D}, t \in R / c$ we have
$A_{J \perp \kappa}^{(0)}(\vec{x}, t)-A_{\perp \kappa}^{(\omega)}(\vec{r}, t)=\Sigma_{m}\left(\delta_{\kappa m}-L_{\kappa m}\right) \int d^{y} y D_{\mu t}(x-y) J_{m}(y) \neq 0$
because of the nonjocal character of the longitudinal projection operator $L_{k m}$, see (24). So, at $t<R / c$
$p_{j k}(t)-p_{k}(t)=-e L_{k m} \int \mathscr{D}_{k e t} J_{m} \cong-e \partial_{k} W(\vec{R}, t) \neq 0$.
The canonical nomentum P has acaueal behavior, in contrast to the operator $m \partial_{t} q=m V^{r}$. Thie means acauasl behavior oi the phaae of the electron wave iunction in the coordinate repregentation $11 /$.
Eqs. (28), (24) and (34) are true also in olasaic theory 2). Howe= ver all clessic obgervablea (velocity, angular momentua and so on)
2) I am graterul to A. Shabad for drawing my attention to this point.
can we expreesed in termes oi the runction $q(t)$ ．In quantum meshanics the cunomical nomentum p plays an independent role，beine relaved tn the piage of the wave runction．This role cannot be played by the operator $m \vec{v}$ ，aince the x, y, z－ecmponente of the velocity（28） do not commute．So mi cannot be represented by the operator（－i户丷）and the plane wave cannot be writton as expimひ̈户口／12／3）．However it geens that just the quantity $m \vec{v}$ is detected when measuring the truck curvature．

The ande resulta can be olfained ubing the Lorentz gauge for－ mulation 0_{i} the theory．One gets the Lorentz gauge dianiltonian if one drope out in（2\％）the eubindex \perp ，replace the lagt two terng by $\int d^{3} \times J_{\mu} A_{\mu} \quad$ and substitute eq．（17．7）from $/ 9 /$ for the electromarnetic energy operator．One obtaing jugt the same equation for \vec{y}^{p} blout now \dot{E} in rehes．denotes $-2 A / \partial t$－grad A_{0} ．Lhe equationm $\alpha_{y}=p-\varepsilon A$ now containe A inetead of A_{α} and，consequ－ ently，p haf causal behavicur．But now p ia not gauge－invariant and camot be a physical operator．The velocity operutor $\overrightarrow{U_{c}}=(\vec{\mu}-e \vec{A}) / m$
 $m v_{\perp}$ has no relation to the plase．One can take，oi courae，the
 u：s onexutors．The reault will be $\beta_{i}=p_{i}-e A_{i}, A_{i i}=L_{i j} A_{i}$ （the derivation is not presented）．If one has not other deifinitions of the sauce－invariant canonical monentum（beaidea $p_{\perp}-e A_{L}$ ）

3）Therefore the eflect（34）mast be congidered ag a quantum one （as also the eli＇ects（22）and（25））thouch it does not vanish wher． $h \rightarrow 0$（gee／13／ior other quantum eifecte which do not vesigh when $h \rightarrow 0 \quad$ ）．

In the Lorent? gauge then one ret the ame reault as in the coulomb geuge.
_5._Digcuegion_and_conclugiong
It was shown that the theory poseeges observables suoh that a device measuring tham can deteot a super luminar sicral velocity. Taking the ellect (22) as an example let us diecuss its theoretieal preconditions.

The quantum oauaality oriterium, as derined in aeot. 2 , seame reagonable and unquestionable. One gets caugal behavior in the sense of the criterium ior such local observables es $\vec{E}(x), \vec{H}(x)$ $j_{\mu}(x) \quad$. He conceatrate upon ueing oi $N^{(-)}(x)=\varphi^{(-1)}(x) \varphi^{(-1}(x)$ for the electron density operator. It is constructed with the help or the gauge-invariant electron-positron rield operator φ, inherent to the Coulomb Gauge 4). Remind that the "causal" eleotron density $\psi^{(-) t}(x) \psi^{(-1 / x) ; e e ~(1) . ~ L e ~ i ' o r b i d d e n ~ a s ~ g a u g e-n o n v a r i a n t ~ 5) . ~}$

[^0]de to not know any gauge-invariant electron denalty operator having causal vehavior. Mandelstam has constructed another grageinveriant remion ileld operator, not colnciding with $; \theta$, see /14/. However it also comutee nonlocally with E, Eise (3.11b) in /14/. Note further, thet $N^{(-1)}(x) i_{s}$ defined with the help of the cocrilinate, which naturally arisee in field theory. We lenow other electron-pogition operatcre, i.e. see oh.4f in /3/. It eesme however that the following ageartion 1 a true for any poaition operator q : a state which is looslized in q i gmeared in terme of x but over a region having dimensions not exceeding the electron Compton wavelenght. If aо, thia difference between q and \boldsymbol{X} is not r levant, because in (22) one deals with a change of the partioles number in macroscopic volume V_{g}. Despite the above the orthodox conclusion irom the result (22) is that $\mathcal{N}^{(1)}$ (must be rejected as the derinition of the electron denalty operator, though another definition is unknown. In the cese or such an observable as the electron momentum one can point out an operatcr having causal behavior: it is suilicient to clain that real devicee meabure not p but $m u=p-e A$, see sect. 4. The game reeolution of our causal difficulty may be proposed for such observablee like electron angular momentup or energy. For instance, one may relate with the nonrelatigistic electron energy not the operator $p^{2} / 2 m+V(q)$ but the operator $(p-\varepsilon A)^{2} / 2 m+V(q)$ though it is unueual.

This rejection of some theoretical observables may be coneldered as a pogeitble formulation or our regulta:
"The local conmutativity or A_{μ} an " ψ does not prevent the superluminar aignal velocity. A new principle must be introduced in the theory; aignal veloaity must not exceed c. Then just this
principle (and not the other poetulates oi the quantum electrodynamica) forbids operators having acausal behavior".

In concluaion I etress that the amallness of the consjeced acausal eifect means that they do not contradict any known experiment on light velucity ${ }^{6)}$. There is the contradiction with the theoretical principle - relativistic causality, i.e. the syntheais oi the usual causality ant the special relativity. I wish to exprese my thanke to D. Kirahnite, A. Shabad and B. Valuev for digcussions.

$$
\text { Fis. } 1 .
$$

6) The conaidered effecte may only give an idea of poesible new experiments. We did not diecuss real detectors but simply supposed the existense of degired devices.
the notation oi /l/ is assumed. then a constant external potential $V_{\mu}(\check{x})$ and nonatationary external current $J_{\mu}(\vec{x}, r)$ are present ${ }^{+}$one han the following equation e for electromagnetic potentials and spinor le ..d
$\left(\gamma_{\mu} \partial_{\mu}+m\right) \psi_{J}(x)=i c\left[A_{J_{\mu}}(x)+V_{\mu}(\vec{x})\right] \gamma_{\mu} \psi_{J}(x)$
$\square A_{J \mu^{4}}(x)=-\left[j_{J^{4}}(x)+J_{\mu}(x)\right]$
Here x denotes $\left\{\ddot{x}, x_{0}\right\}$. The operators A_{f} and ψ^{\prime} without subindex J (the external current is absent) satisfy the came equation, but J_{μ} being equal to zero. It is implied that f_{m} in ($A .2$) denotes antisymmetrized operator $i \in \overline{\psi^{\prime}} / \mu \psi^{\prime}$.

Solving (A.1) and (A.2) means that one knows how Heisenberg operators are expressed in terms of initial,i.e. Schrödinger, operators. The operators ψ, A_{J} and ψ, A must coincide at $t=0$ with the \quad bare Schrödinger operators (according to their definition, see sect. 2):
$\psi_{J}(\vec{x}, 0)=\mathcal{X}^{-1}(0,0) \psi(\vec{x}) \|(0,0)=\psi(\vec{x})=\psi(\vec{x}, 0)$
$A_{J^{1}}(\ddot{x}, c)=A_{\mu}(\vec{x})=A_{\mu}(\vec{x}, 0)$.
To solve (A.1). (A.2) let us expand ψ_{s}, A_{J} in a power series in the coupling constant e (G, Källen, see $\$ 23$ in $/ 1 /$ and ch. 8.7 in /4/).
$\psi_{r}^{\prime}(x)=\sum_{n} e^{n} \psi_{j}^{(n)}(x) ; \quad A_{J \mu}(x)=\sum_{n} e^{n} A_{J_{\mu}}^{(n)}(x)$

Ne ues analogous expanaions for ψ and A. The initial conditions (A.3) will be gatialied 1 f
$\psi_{T}^{(0)}(\vec{r}, c)=\psi^{(0)}(\vec{x}, v)=\psi(\vec{x}), \quad A_{j \mu}^{(0)}(\vec{x}, c)=A_{\mu t}^{(0)}(\vec{x}, c)=A_{\mu}(\vec{x})$
and operators $\psi_{>}^{(n)}(\vec{x}, 0)$ and $A_{\rho \mu}^{(n)}(\vec{x}, d) \quad$ with $n \geqslant 1$ are equal to zero. Ne shall no: coneider the external current ab emall and write the rollowinc zero approximation ior eqs (A.1) and (A, C):
$\left(\gamma_{\mu}^{*} \partial_{\mu}+m\right) \psi_{S}^{(0)}=0 \quad ; \quad \square A_{\Gamma \mu}^{[0]}=-J_{\mu} \quad$.
The solutiong oi ($A, 6$) are well known. The first quation is iree. At all time $\psi_{j}^{(0)}(x)=\psi^{(o)}(x)$ and both are equal to free operator $\psi_{v}(x) \quad:$

$$
\begin{equation*}
\psi_{0}(x)=-i \int d^{3} x^{\prime} S\left(x-x^{\prime}\right) \gamma_{c} \psi\left(x^{\prime}\right), \quad x_{0}^{\prime}=0 \tag{A.7}
\end{equation*}
$$

(see (8.67) in $/ 3 /$). The second equation has the solution

$$
\begin{equation*}
A_{J \mu}^{(0)}(x)=A_{0 \mu}(x)+\int D_{\cot }\left(x-x^{\prime}\right) J_{\mu}\left(x^{\prime}\right) d^{t} x^{\prime} \tag{A.8}
\end{equation*}
$$

$A_{o \rho_{1}}(x)=\int d^{3} y\left[\partial D(x-y) / \partial y_{0} A_{\mu}(y)-\mathscr{D}(x-y) \partial A_{\mu}(y) / \partial y_{0}\right] ; \quad y_{0}=0 \quad$ (A.9)
Indeed, (A.8) natiailes the equation $\square A_{J \mu}=-J_{\mu}$ and the uaual equaltime commutation relatione (because they are astialiaed by $A_{\nu \mu}$). When $x_{0}=0$ the operator $A_{J \mu}^{(0)}(x)$ coincides with the Schrödinger operator $\left.A_{\mu} \mid \vec{x}\right)\left(\right.$ the second temm in (A.g) at $x_{0}=0$ is equal to zero) ,Ve get
$A_{j \mu}^{(0)}\left[(x)-A_{\mu}^{(L)}(x)=\int \mathscr{D}_{\text {ket }}\left(x-x^{\prime}\right) J_{\mu}\left(x^{\prime}\right) d^{4} x^{\prime}=\int d^{3} x^{\prime} J_{\mu}\left(\vec{x}^{\prime}, x_{0}-\left|\vec{x}-\vec{x}^{\prime}\right|\right) /\left|\vec{x}-\vec{x}^{\prime}\right|\right.$.
Thie dirforence is equal to zero if $\vec{x} \in V_{p}$ and $X_{0}<R / c$
(remember that $J_{\mu}\left(x^{\prime}\right)$ is localized in V_{s} and is zero when $x_{o}^{\prime} \leqslant 0$). Now we Write the equations for operatore $\psi_{J}^{(1)}, A_{f}^{(1)}, \psi^{(1)}, A^{(3)}$ and
construct the iollowing dirferences of these seuations:
$\left.\left(\gamma_{\mu} \partial_{\mu}+m\right)\left(\psi_{J}^{(1)}-\psi^{(1)}\right)=c\left[i A_{j \mu}^{(v)}+V_{\mu}\right) \gamma_{\mu}\left(\psi_{I}^{(0)}-\psi^{(v)}\right)+\left(A_{j \mu}^{(0)}-A_{\mu}^{(0)}\right) j_{\mu}^{\prime} \psi^{(0)}\right],(A .11)$

$$
\begin{equation*}
\square\left(A_{J \mu}^{(1)}-A_{\mu}^{(1)}\right)=-i\left[\bar{\psi}_{J}^{(0)} \gamma_{\mu}\left(\psi_{j}^{(0)}-\psi^{(\nu)}\right)+\left(\bar{\psi}_{J}^{v}-\bar{\psi}^{0}\right)_{\gamma_{\mu}} \psi^{(0)}\right] \tag{A.12}
\end{equation*}
$$

Here $\psi^{(\nu)}-\psi^{(v)}=0$ and $A_{j \mu}^{(0)}-A_{\mu}^{(a)}$ equal zero when $x_{0}<R \quad$.
Thereiore the right-hand side: or (A .11) and (A .12) vaniah when $x_{0} \leqslant N$. Because of zero initial values of $\psi_{r}^{(1)}-\psi^{(\prime)}$ and $A_{J}^{(\prime \prime}-A^{(\prime)}$ the solutionsior these did'ferences vaniah when $X_{0}<R$. For a iorin.al prool one muat express the golution of (A.11) and (A.12) in terme of their (zera) r.h.g. and (zero) init'al conditione with the help of eqg at the end of $\$ 23$ in $h /$ and eqe. ($A, 7$) and (A.9).

For the operatore of the next (aecond) approximation one can obtain the equations of the kind (1.11) and ($A, 12$). Their r.h.b. are expreased in terne oi zero and firat approximation operatore. These
 the dillerences of these operators by analoby with (A.11) and (A.12) and these difierences had been bhown to be zeros at $X_{0}<\mathcal{R}$.

One gets by induction that the operator differences $\psi_{f}\left(\vec{x}_{f}, x_{n}\right)$ -$-\psi\left(\vec{x}_{j}, x_{0}\right)$ and $A_{j \mu}\left(\vec{x}_{p}, x_{f}\right)-A_{\mu}\left(\vec{r}_{1}, x_{0}\right)$ vanish in all order in θ (and have not divergencies contrary to their congtituenta).

Ve conclude this Appendix with two Notes,
Note 1. The Lorentz condition must be added to eqe ($A, 1$), ($A, 2$) It has the form $\partial_{\mu} A_{\mu}\left(\vec{x}, x_{1}\right) \varnothing=0$ (Fermi rorm, bee /5/) or $\left[\partial_{\mu} A_{\mu}\left(\vec{r}, x_{0}\right)\right]^{(-1)} \boldsymbol{M}_{\boldsymbol{\mu}}=0$ (Inpta form). Becbuee oi $\square \partial_{\mu} A_{\mu}=0 \quad$ the condition is batigifed for sny x_{0} i it it uatibiled ror $x_{n}=0 / 2,6 /$ So, it is gulficient to take the initial vector ϕ in (8) from the space of allowable (by the Lorenta condition) vectorg, The deacription of this epace is given in /6/ for the Fermiform and in (17)
for the Gupta torm. We just use auch a voctor in (22).
n:he Lorentz condition requires in addition that phyeical obesrvables mat commute with the operators $\partial_{\mu} A_{\mu}, \partial_{\mu} \partial_{\mu} A_{\mu}$ (or with $\left[\partial_{\mu} A_{\mu}(\ddot{x}, 0)\right]^{(-1}$ gee $\{80$ in $/ 6 / . \quad$ But an operator do commute with these operatora if it is gaugn-invariant. Indeed, let $u a$ conaider the unitary W, which realizes the gauge traneiormation $A_{\mu}^{\prime}=W^{-1} A_{\mu} W=A_{\mu}+\partial_{\mu} x ; \quad \psi^{\prime}=W^{-1} \psi V=\psi^{\prime} \operatorname{cxj} \operatorname{cicx} . \quad$ (A.13) The generator of W is expresaed in temme of $\partial_{\mu} A_{\mu}$ and $\partial_{i}\left(\partial_{\mu} A_{\mu}\right)=$ $=\operatorname{div} \stackrel{\rightharpoonup}{E}-\left(j_{j}+J_{a}\right)$, see (9.60) in /3/ (let us note that one oan prove (A.13) in the case oi interacting l'ields A_{μ} and ψ uaing the equal-time commutation relations).

Notom We have ghown, that at $t<R$ the gperator dizierences $\psi_{J}-\psi_{;} A_{r}-A$ vaniah, the external potential V_{μ} being arbitrary. This means that tha cauaral behavior of $E(x), H(x), f(x)$ Io proved for any (allcreable) initial state ϕ and any V_{μ}. It followa that this behavior takes plase in much more complicated situations than thoes deacribed in the begiming of eect 2. The state ϕ can describe electrons (firee or bounded by $V_{/}$), which are disposed betwoen the eource and tha detector or are their constituents. One can eseume that J_{μ} was a nonzero constant current till the moment $t=0$ and at $t=0$ it beging to alter gorehow.

Rei'erences

1. А.И. Ахиезер, В. Б.Берест ециия. Квантодая электропинамика, ияд. 2, ГИشМI, Москвя, I959.
2. W.Heitler. The Quantum Theory of Radiation, 3rd ed, Clarendon Press, Oxford, 1954.
3. Z....idehober. A. Introdiction to Relativiatic quantum Field Weory. Harper and how, New york, lyut.
4. J.h. Juch, F, Rohrlich. Theory of photons and olectrong, .th:i aon-Nealoy, Cambridige, 1955.
'. l. l.schis'. Quantun hechanice, 2nd od. heGraw-Hill, Now Iork, 19ン5.
 Glumendon Progo, Oxford, 1958

5. W.i. Boguliubov, D.V.Shirikov. Introduction to the Theory or Cuantired Field. Intergei. Publ. Nei York, 195y
y. Г. Ненгцель. Нведение в мвантовуп тоорию долновых полеи. IVTMS, idocma, IT97.
6. U.brill, B. (ioudinan. Amor, Jour.1. Fhya., 35, 032 (1967).

7. K.l'. Fuymanil 4.0 . The Feyman Loctureo on Phyoice. vol 3, cin. 21.3 Addizon-ilabley Roading 1960.

1b. G. Velo, D. Lwanziper. Phya.kev., 18Gi, 133i (1yojy; Croublee in the extermal ijeld problem, ed. A.s. dientmen Mracte in Nath, and Nat, Sci. v 4. Jordon and Breach, New York, 1971
lu. H. Ferretti, ece p. 108 in Old and Now Probleme in Elementary Finticlea, Now York, 1968.

[^0]: 4) It is of interost to mention that two-dimensional quantum electrodynamice is "oaubal": the iunction $\partial W / \partial \pi$ (and, consequently, the r.h.B. of (22), (25)) vanish at $t<R / c$ (compare /16/): $\partial W / \partial x=\partial / \partial x\left[U_{f}^{(0)}-U^{(0)}\right]=A_{f}^{(0)}-A^{(0)}=\int \mathcal{D}_{20 t} J$.
 The function U from eq. (7) is the potential for A_{L} and in the two-dimengional case \vec{A} coincidea with A_{L}.
 5) One aan atate, that it is forbidden as an unphysical operator by the Lorentz condition (aea Note 1 in App). This oalle up a parallel. Theories which describe higher/>/) gpin particles moving in external electromegnetic fielda also have subsidiary conditions (which eliminate auperfluous wave function componenta) and also sul'fer from the superluminar velocity of propagation / $15 /$.
