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In quantum eleotrodynaniios the usual condit ion of causa l i ty 

i s s a t i s f i e d : the operators / L and W are l o c a l l y commutative. i>ut 

ne i ther AM, . nor W are observables . rte know some of the loco l 

observables such as f i e l d i n t e n s i t i e s £ ( * ) and current 

dens i ty /ft ('I • Their mutual commutations as w e l l ao commutations 

wlth/L Ware l o c a l . ,Ve show in e e c t . 1 . that there e x i s t other den­

s i t i e s which have phys ica l eenae dumber operator dens i ty for e l e c ­

trons for example) and do not commute l o c a l l y with £fxj. Then 

the question a r i s e s : I B quantum electrodynamics a causal theory 

in the вепве that s i g n a l s v e l o c i t i e s do not exceed that of l ight? 

The corresponding quantum mechanical meaning of c a u s a l i t y 1в pro­

posed in Beet. 2 . I t turnB out that £('}/""/and/,h)behave s t r i c t l y 

causa l ly in t h i s s'jnse. tfe show in nec t .3 . that the e lectron den­

s i t y (or the module of the coordinate wave funct ion of the e lectron) 

propagates with superluminar v e l o c i t y . So does the phase of the 

e l ec tron coordinate wave funct ion. In s e c t . 4 we consider the r e l a ­

t i o n of the phasa and the e lectron momentum. Discussion and conc­

lus ions am given in the f i n a l s ec t ion . 

1. Operator d e n s i t i e s having nonlocal commutations. 

The number operator i s the fundamental phys i ca l quantity 

i n the second-quantized f i e l d theory. It turns out that in the 

Lorentz gauge we cannot take the simple express ion(see (8 .80) in 

/ 3 / ) 

/ Л f%) fii) =pv/</v у *(*> пн(*' *'> V<u"> (,) 
as the number operator for electrons because (1) is no; gauge 
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invariant: when W-> TliexpUJC it is transformed Into 
jcl>*[cl1*y,&/nl~'(x,

lr»)f(x"Je*p ie [flU-fti')} . 
In eq. (1) «''"'«/denote!) that part of fix) which destroys the elec­
tron; П{~' ia the projection operator on this part: j^" - fl^'lf, 

Similar diii'icultlea arise when constructing the electron 
uouentum operator. The quantity 

/ Л IjlU-'vlf (see } IB in /1 / ) 
io not gaiif.e invariant and therel'ore cannot bo an observable, Qaû o 
invariant operators 

Pj =jdH fU±)[-iVj -e.% (£;] f(£) 
{see, i.e. ,«рр. 711 in /2/) cannot be considered as canonical по­
лета BincefP X j Pj]?0. 

There are not euch troubles in the Coulomb (radiation) gauge. 
In thia cauge ftp» is replaced by the tranaverae part of the vector 

potential. It ie ̂ au^e invariant quantity because it can be 
expressed in terms of its rotor И • Ах(£)™ lotJd*u H(y)/\x-ij\ • 

Tuei'e.ore !,ne electron field operator W in the Coulomb gau^e а1во 
In ..auce-invariant. i.ot only gauge-invariant operators of the elec­
tron number and momentum can be constructed using if , but also 
the corresponding densites. 

1.31 ua see what interpretation can be given to the density 
/Vl~'ii)- yl~'f(x)p'~tx)' For thia purpose we calculate the expectation 
value of IV1'' in the one-electron state oi^ J? . The operator e( ia 
defined by the expansion of the Schrodinger operator IP(i) in the 
complete set of proper functioned,, VL of the liaailtonian J) of the 
D.irac equation i\D^f)w with arbitrary external potential : 
f # = S, uji) <*, «• Sf vfwpf

f н f->(Z) + fftft ( 2 ) 

/soe ch. 14 in /4//. S„ and Sf, are вита and/or inteerala over elect­
ron (n) and positron (p). indices. He have 

4 



<«tffl, ftyfdHW** u„(i,4u„(£,<). ( 3 ) 

In the riant-hand aide of (3) we have the density of the coordi­
nate probability distribution in the considered state (epinor 
index is explicitly written out in (3))- ft» expectation value 
of /l/"(rjin the state к'*о/„'A> fl turns out to be equal to the eum 
ol' densities |u„|*(-|««|* . The expectation value of /VH(x) is 
equal to zero if taken in states describing positrons and/or pho-
tonB only. In the general case one nets not a sum of squares of the 
wave functions modules, but the diagonal element (х/р/г) of 
a density matrix» 

In the 6ЕЛШ line one can show that the momentum density ope­
rator 

P(x) =:{:[ f(*)(-<$ )?(*>+ (~<Vf)ff] ; 
U) 

provides an addional information about the phase of the coordinate 
wave function. Рог instance, 

(5) 
The locality properties of the commutation of the IP with 

a complete system of local operators determine these properties 
for Л/'"' and P(x) . By definition any observable of the theory can 
be expreBBed in terms of the operators of this complete system. One 
can take locally commutative operators E(x)( H(x)l lp(x) 1j/('*r.) as 
such a system. All their commutations with tP are local but 

[^V^'H-ef^ii^X :ь) 
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In the Coulomb gauge (6) follows from 

/вее §49 in /5//. In the Lorentz gauge (6) is obtained from 

pi,*) = fix,t)e"eUlx,t

 ; ты*jtfj) л«Щ'>/ц-э1 m 

(oee 580 in /ь/f we denote oy e the electron charge). Note that 
one can Get tfi'Ux) and Pfsc/ as functions of W{x) using (7 ) . 

.Because or (u), the commutations [/VH, B] andfWrj, §J are 
nonlocal too. They can be namad macrononlocal contrary to commu­
tators [w(x,t)l Тр*"'($,*)), OT[A/H(X,II,Af (?,{)] whioh are exponen­
t i a l l y small when | 5 - 5 ( > > ^ m ^m being the Oompton wavelength 
of the electron. According to (6) , one oannot make a simultaneous 
precise measurement of E(H,t) and Ar(x,t)when X and Ц are 
macroocopically separated* The reasoning like that given at the 
end of 548 in / 5 / entails the questions doee this fact mean that 
electrodynamics signals can t rave l faeter than light? 

2i_Signal_tranBmission_in_2U8^tum_mechanics. 

«Ve shal l consider the following scheme of the signal transmission. 
There ie an external current, localized in some volume \^ . I t i s 
switched on at t=Q , being zero before. This i s a source S of the 
signal. There i s a detector in some volume l̂ p • I t measures some 
local physical quantity. For instance, i t s response may be propor­
t ional to the integral of the e lec t r ic field intensi ty EteJavav VB 

(as in the case of probe charge). The dimensions of the VB and Ц 
are supposed to be much less than the distanced between them. 

Now we ought to s tress an important difference between the 
c lass ica l and quantum descriptions of the signal transmission. One 
cannot suppose that the f ie ld Ifxjinsido Vt i s equal to eero if 
source current wae not switched on. The state with a precise ( i . e . 
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zero} f W value 1в not a stationary one because £(*}йовв not 
commute with the Hamiltonian of the electromagnetic fields. By 
the same reason £(x) cannot have precise values in stationary sta­
tes (i.e. proper veotor of the total Hamiltonian 3£ ) but must be 
described by a probability distribution. 

We assume the following conventioni the moment of the 
signal arrival is the moment of time £,when distribution over the 
detected local observable changes ineide Vt , when comparing with 
that distribution which it would have at t, if the source was not 
switched on. If the signal arrival moment is less than R/c• w e 

ehall say: the local observable has a noncausal behavior. 
Consider the following difference:"the distribution of B{x/ 

at the moment t when the source was switched on minus the distri­
bution of £(*} at t when source was not switched on". To calculate 
it we find the momenta of this distribution difference, i.e. mean 
value, mean square ind so on. For this purpose one must calculate 
the quantities of the kind 

(iAo)dl№m,,)fi)-((r't% бме'^Ъ , 
r ' >' (8) 

where 6(i) can denote E"/£) , « = * , i , 3 . . . , * 6 Ц, or fffoftffy 

and so on. о i s an i n i t i a l s ta te vector of the system; ТАф,0) i s 

the operator of the systeir evolution; iSt U - 3iW U . The to ta l 

Hamiltonian л does not depend upon time, if the source current i s 

not switched on. In such a case Л equals Ttfc) a l l the times and 

the evolution operator i s i*p[-it PtLo)] , ,7e have 

where U*0U i s the Heisenberg operator &7(f) , which at t*D 

conside with the Sohrodinger operator 0. So one can rewrite (6) 

as follows 
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(<tlt0r(£.t)-0fa>]fi) , 0№.*t=e №>e . ( 9 ) 

Wov the problem is to find the Heisenberg operators and their 
expectation values. All electroiiynaaioal Heisenberg operators can 
be obtained if operators A/, (x, *) at&lf(i,tj are known. We show 
in Appendix that operator differences Атн(*1*1~ Af, (*'el a n d 

U' (X,t) -1I/(x,() equal exaotly zero if Xf L£> and t< К/с , Весаиве 
of Er-E =-dt (AI-A)-pail(AT0-AB) the operator difference 
£r(£t,,t)-E(x*,*) and its expectation value in any state ф also 
vanisnes at t < *U . Because of Ep-£i=(Er-e)Er+ E(Sr-£)the second 
moment of the E(x) distribution difference also vanishes and во do 
all higher momenta. Therefore the distribution difference itself 
is aero at t<B/c- 'this raeans that the electric field from the sour­
ce current propagates with velocity not exceeding С , The magnetic 
field, the Pointing vector density and the current density 

also reveal causal behavior. The expectation value of 10(*-) must 
be interpreted as J'ie charge distribution density (similar t o " (*) 
and unlike to the meaning of the expectation value of Bi'X.}]. 

3. The acausal behavior of the electron density and phase. 
Now let ив calculate the change in the number operator density 

for electrons 

(10) 
One could calculate the Heisenberg operator № (i,t) starting from 
the equation for <P(x,t) /it is nonlocal, see eqs. (69) and(70) in 

I'III. He shall adhere to a simpler way: we uae the relation (7) 
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. etweon Ф and у and then roi'er to the Appendix 

Here we uee the projection oparatorfl (*,Ч)*\Ц*(х)ип1$) , lor U„ see 
oq.(2). Using the expansiontf=Z„6 If (see App.), we i;et 

(the equality d^'s^'"';W„ i B taken into account) The Croon 
iunctioni?=5,"{5("and eqa. (A.11) &nd (2J5QJ from /1/ allow one to 
write h , , , 

Неге Ч denotes ljj,y.) • Taking into account the equation 

-i5'V/.^«.(»j«. ,<^fi"^'* l" b '--^«%jft 1 ' /wi < ( 1 4 ) 

and o r thonorwal lza t ion relatione fd'x itU*)M*l*J = &,„„ " e .;et 

" ( IS) 

S i m i l a r c a l c u l a t i o n i ; ivee/7 «S = 0 . Ueinj; (13 ) , (ID) and (A.1С) 

one can reduce (12) t o 

-CeIdiln"t4)4Uj.*>WliO , *ai£,t) ' ( 1 u ) 

m*h$%%bi^№b*ii-*)w , ,..< (г-) 
Inserting eq. (lb) in eq. (10) we get in the iirat order in e: 
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Ilote that irom щ. (7) the equality 41'°'= f'sfo follows. 
The f i r s t brace in eq. (18) contains the product of functions 

J ~\*,г) and JrfV !Dt,f (i-i')T/* I?) , 0i2„< t . The second one i s 
not zero only inside the cone S in f i a . 1 . Let the point/X,t>, X= H, 
In outside J . The function .5 (х,г) 1в not aero inside J and 
therefore the f i r s t brnca does not vanish whan t< R/c 1 But 

S:~' i s exponentially small inside S • Indeed^ ' can bo oxproanod 
in torras of Д ("' and Zk("'~ екр (-Ь/Ьт ) , У*(х-в)1 -(*.-2ы)*>С, 
\ = Voir , see J15 in /в/. So- the dioouooed 

product i s not ne^liiiible at / < *%• only when t>(R-^*)/c . 
But the electron wave function (the module of which ie suiposed to 
be measured oy n detector in VB ) cannot be localized in a region 
with dimensions less than / < # r . So, i t i s meaninglees to speak 
about the superluiuinar velocity having in mind the f i r s t brace. 

Km second brace in oq. (10) contains the function П (x,jj)~ 
r-(\?'"l'f,i,;5,(,)Kwhich is njt email only when | 5 - 4 \ 4 \ n • The expansion 

Wt^l=W(£,()^tC^-x.)[3W(^)/3^]ti*-. ( 1 9 ) 

will be suitable because Wty, t) does not change appreciably when £ 
changes by A n . The firet term in (ly) contributes nothing to the 
eecond brace because of the equality/,/1* nc'l(s,j}Vi(g,ti = ff'C*,*)• 
It turns out that in contrast to the first brace which decreases 
atf"<--/f exponentially '.vhcn.̂  incraaccs the acccr.d brace behaves 
attf.-;R/c as an inverse power of /? . This assertion follows froir a 
simple estimation ofW h x % for X=R. , Let us choose the axis 2llH 
and assume that the external current density T(2, Z,J is directed a-
lony the axia X , is localized in the source volume \JS and ie not 
ызго only in a time interval OS 2,4 Z , Thun 
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if T « t<R/c . In eq, (21)/j denotes the source ourrent averaged 
over the internal (D,z) • /,. is the dimension of v$ along the 
axis X . 

We shall write an estimate for the change of the number of 
electrons in the detector volume Va at t<4/c . rfe calculate ex­
pectation value of (18) in the state Ы„ Я which describes the 
electron plane wave Un(x)^>tfpipiti , directed along the axis X ; 

p, = mVi/n -, 4/c is supposed to be « i . To calculate the 
expectation value an estimation was made for the integral 

/^йч};«. |»Л}1 1 -1г. | (21) 
in the case when there ie no ev"'Tnal potential for electrons and 

nHf*.») =-<f((f3) -</*Ь-•")/• £?<-з>],,..у. . 
The f i n a l resu l t 1в 

"* Ac С " м ' *Ac С | e / ~ ' T К « • (22) 

Here the constants П and С are written e x p l i c i t l y (usual ly 

they are taken to be equal to u n i t y ) , / V i e the i n i t i a l number of 

e l e c t r o n s in V, ; е 'Д , = </l3)r , )„'hf^'l , W « * 1,3-10~21 s ee , 

| e | = i WO coulomb. To est imate the obtained acnusal e i f e c t we 

l e t Vi/c-0,1 , It = №6 amper, i j / « = c r / f i = 4 W . Then the num­

ber of e lec trons in ],'B (or t h e i r deneity) at the moment t=0,i K/C 

d i f f e r s from the i n i t i a l number by0,01 per cent . Only the r a t i o s of 

R,L,tT are needed for the e s t i m a t e , but not t h e i r s p e c i f i c value в, 

A grea ter value of the ourrent i s advantageous even i f greater value 
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of Vs nndZjWill be requlredi note that the ratio i.,/g can be re­
tained (by taking a larger R) and во can the ratloe T/R and *(R . 

The eetimate demonstrates that the effect ia macroscopic and 
cannot be UBcribed to uncertainty relatione. But it is small, iVe 
can show that its ratio to the density oharjje at f"*fyc is determined 
mainly bi the small parameter Лт /ц , which cannot exceed 10" 3Гог 
reasonable values of R * 

Now let ua see how the density P(x) , see (4) , changes. If 
one introduces Ф into (4), using (7)) then one gete 

Ш< = W/ -4 к \ h и*э 4Wn-fi • C 2 3 ) 

(24) 

Here AL i s the longi tudinal part of Д . The f i r e t term in (23) i e 

"causal", ile ca lculate the expectat ion value of (23) in the s tate 

o(„*52 (notice that ^f-U)*^ ) /then £ = ? and {*Rfc one ge ts in the 

l i r s t jrder in e: 

<°f„+fi I pt (i,t)- P(i, t)№n) = -£v W(i, t)L\K О, -И * 
(25) 

Comparing with eq. (5) we conclude that -efkcVl\ is the change 
of the phase gradient of the electron wava function in l/B (ав compa­
red with that value of the gradient which it would have if the so­
urce was not switehed on). This quantity varies slightly over the 
region VB . Let us estimate (25) under the ваше conditions which 
were used lor the estimation of eq.(22). Using eq.(20) we obtain 
that at the moment t=Ql%the change of the gradient (in the direc­
tion of the axis x ) is equal to "10'1 ladian per A* . The initial 
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phase yrndient 0f the plane wave etpi'ptXj is determined uy tlie 
momentum and equals to^i = wVj/jj • ThiB amounts to qify„a.t v,-D,ic 
and Н Г У А П at V, = 10" 3C . So the accusal chant;e 01' the 
phase iB appreciable for slow electrons. Meanwhile the relative 
change of such electron density is small because or the multip­
lier 4/c entering eq. (22): 
(relative change of deneity)=2£,^ (change of the phase ,-rnd.) (2o) 

:ie can argue that (25) is also a small effect, similar to 
(22). The phase change can be measured by observing an interfe­
rence picture. But this means measuring the change of the elect­
rons density (its maxima and minima). This change is especially 
small just when the phase change is appreciable, see(2b). 

DOBB the result (25) imply, that the electron momentum has 
acausal behavior too? To discuss this question we express the result 
(25) in terms of the usual momentum of the single nonrelativistic 
electron. 

4. Causal behaviour of the electron velocity contrary to its 
canonical momentum. 

Let us consider the system; external current in Vs —quantized 
electromagnetic field — a single electron, which is bound by 
some potential inside the region l̂  (located near the ori­
gin). There is a detector in Vj, , which measures the distribution 
over the electron momentum p or coordinate 0 . 

The system Hamiltonian is taken at first in the Coulomb gauge 

• / A (Jft«JK(*i) *eL i\ J,&t)f\i-\ I < 2 7 > 
The electron is nonrelativistie and spinlese /see $ 13 in /2/ and 

§ 17 in /9//. To obtain the equation for the Heisenberg operator 
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0 /() we lind at first 

and is the ваше function of Heisenberg 
operatorn, as ~}t(t) iB of the Schrodinger ones, see (27). Fur­
ther wo calculate f 9, qr, '<№"] and eat (compare §23 in /5/ ) 

+ Ц[Н'">(1ММ-[">'9ФМ (29) 

ET(£,t> = -3Aj.,tit)hi -p«<tf<*33 Щ-()1\*-у\ • (зо) 
The Lorentz l'orce operator atanda in the right-hand Bide 01' (29). 

Starting l'rom (29) pnd the electromagnetic field equations one can 

show that ^ 

aJt)-a(i) = 0 when t<RIc . 
У ' (3D 

The proof of (31) io more complicated as compared with the 

Appendix (even if it in done only in the first order in e) , 

The reason ie that £ and H <n the r .h .s . of (2У) depend upon the 

operator л#| rather than upon X . Eq. (31) io exact if the po­

tential U(^) 1B infinite outside 1̂  , the proper functions ol pl/im* 

*-V~($,) being zero outside l̂ j . In this case one can prove (31) 

in a l l orders of perturbation theory. Eq. (31) is only approxima­

tely true for realistic potentials (then Qr(tJ-o(t) is expo­

nentially email at *< " / c ) . Let us add, that despite of eq.(33), 

the difference £?(*,*}-Elc,,(*,t) of the operators (30) is a function 

of retarded integrals of J and j£ and vanishes when^<%(a direct 

proof is Kiven in /10/). 
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This result was obtained in (1]) for the oscillator potential 
17"̂ )~*в* and in dipole approximation ( A± Ij,) in (27) is replaced 
by Ail*>} I . In return it was obtained without usin(.; perturbation ttie-
ory. Eq. ( 31) теапв that the olectron coordinate distribution does 
not change till the moment R/л /11/. There is no contradiction with 
(22) Bince r.h.s. of (22) vanishes whenC-»00 /ESO also (26)/. 
Besides (22) is obtained for the case when no external potentials 
are present, while (31) is obtained for the bound electron (see 
footnote 1) 

One obtains from (28) that 

p/t)-pM - e[Au (fri'l.t) - A Jf*l. *)] = m 9t IfyCtl- fit)]. 
(32) 

The r.h.s. of (32) vanishes ii t<R/c> but А,±~\ does not. Indeed 
at xe V„ , t< R/c we have 

" (33) 
because of the nonjocal character of the longitudinal projection 
operator LKm , see (24). So, at t<4/c 

(34) 
The canonical momentum p has acausel behavior, ir. ;ontrnot to 
the operator m3,0 = ftp , This means acausal behavior of the pha­
se of the electron wave function in the coordinate representati­
on /11/. 
Bqa-. (гв), (2Ь) and (34) ате true also in classic theory 2'. Howe­
ver all claeoic obeervables (velocity, angular momentuii and so on) 

2) 
I am grateful to A. Shabad for drawing my attention to thiB 

point. 
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can be expressed in terms 01' the function #(W. In quantum mechanics 
the canonical momentum p playe an independent role, being related 
tn the phase of the wave function. This role cannot be played by 
the operator mv, since the X, %,2 - components of the velocity (28) 
do not commute. So mv cannot be represented by the operator/^'^/and 
tne plane wave cannot be written as expimirX /12/ ^ . However it 
seems that just the quantity mv is detected when measuring the 
track curvature. 

The same results can be obtained using the Lorentz gauge for­
mulation of the theory. One gets the Lorentz gauge Hamiltonian if 
one drops out in (2Y) the subindex X , replace the last two terms 
byfd'xL/),., and BUbetitute eq. (17. 7) from /9/ for the 
electromagnetic energy operator. One obtains Just the some equation 
for .jWbut now £ in r.h.s. denotes -3A/gt —grad/?,,. 'die 
equationfN^tf = p-cM now contains A instead oi A± and. consequ­
ently p lias causal behaviour. But now л is not gauge-invariant 
and cannot be a physical operator. The velocity operutor U^-lp-eHj/m 
is 0uui;e-lnvariant, ""'ГЧлЧ» •) * в n o t г е г 0 a S a i n a n a therefore 
Л1г£ has no relation to the phase. One can take, of course, the 
Coulomb (..aûe momentum Д and express it in terms of Lorentz ̂ a-
u/:e operators. The result will be p . = p , ~eA, , A ,• = Ьг, Aj 
(the derivation is not presented) .If one has not other deiinitions 
of the gauge-invariant canonical momentum (besides ft ~eAL ) 

•^Therefore the effect (34) must be considered ав a quantum one 
(as also the effects (22) and (25)) though it does not vanish when 

h " 0 (see /13/ for other quantum effects which do not vanish 
when h — О ) . 
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in the Lorent?, gauge then one get the same result as in the Co­
ulomb gauget 

_£1_Discussion_and_conclusion1 

It was shown that the theory poosesees ob.iei vtibleu suoh that 
a device measuring thorn can deteot a Buperlumiiiar signal velocity. 
Taking the effect (22) as an example let ua diecuso its theoreti­
cal preconditions. 

The quantum causality oritorium, as dei'ined in sect.2, оеотв 
reasonable and unquestionable. One gets causal behavior In ihe 
sense oi' the criterium l'or ouch local observables as E(x) , H(x) 
jr(x) . We concentrate upon using or Ml'Hx) = lfHt(x) f ( ' ' ( x ) 
for the electron density operator. It is constructed with the 
help of the gauge-invariant electron-positron field operator IP , 
inherent to the Coulomb gauge * . Remind that the "causal" electron 
denBity^H'(x)^'"'c^Bee (1), is forbidden as gauge-nonvariant 5'' 

*'lt is of interest to mention that two-dimensional quantum elect­
rodynamics is "oauoal": the function dlV/g((and, consequently, the 
r.h.B. of (22), (25)) vanish at f< R/c (compare /16/): 

i Whx = Э/at С U'/'- U'°'] = Af- A"1 = / 2>t,, f. 
The function V. from eq, (7) ie the potential farAl and in the 
two-dimensional саве A coincides with AL . 
5) 
•"One can s ta te , that i t i s forbidden as an unphysical operator by 
the Lorentz condition (see Hote 1 in App). This oa l l s up a para l le l . 
Theories which describe Ъ±фег(>1 ) spin par t ic les moving in exter­
nal electromagnetic f ie lds also have subsidiary conditions (which 
eliminate superfluous wave function components) and also suffer 
from the superluminar velocity of propagation / 1 5 / . 
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.rfe do not know any gauge-invariant e lectron density operator ha­

ving caueal behavior. HandelBtam has .constructed another gnuge-

invtiriant fermion l'ield operator, not coinciding with tp , see 

/14/.Huwever It a l so commutes nonlocally with £ , see (3.11b) 

ir. / 1 4 / . Hote further, that/V"Vx^is defined with the he lp of the 

coordinate , which natural ly a r i s e s in f i e l d theory. We know other 

e l ec t ron-pos i t i on operators, i . e . вее ch.4f in / 3 / . I t Eieeme how­

ever that the following a s s e r t i o n i e true for any p o s i t i o n opera­

t o r s : a e tate which 1в l o c a l i z e d i n О i smeared in terms of X 

but over a region having dimensions not exceeding the e l e c t r o n Comp-

ton wavelenght. If so , t h i s d i f ference between a and X i s not r e ­

l e v a n t , because in (22) one dea l s with a change of the p a r t i c l e e 

number in macroscopic volume Vs. Despite the above the orthodox 

conclusion from the resu l t (22) i s that/V(xJmust be r e j e c t e d as the 

d e f i n i t i o n of the e lectron dens i ty operator, though another d e f i n i ­

t i o n i s unknown. In the caee of such an observable a s the e lectron 

momentum one can point out an operetcr having caueal behavior: i t i s 

s u f l i c i e n t to claim that r e a l devices meaeure not p but /nf= p-eA, 

see eect, 4. The same re so lu t ion of our causal d i f f i c u l t y may be 

proposed for such observable в l i k e e lectron angular momentum or 

energy. For instance, one may r e l a t e with the n o n r e l a t i v i s t i c e l e c t ­

ron energy not the operator p'/in, + V(yJ but the operator 

(p-eA)l/lmt V(ij) though i t i s unusual. 

This re ject ion of some t h e o r e t i c a l obeervables may be cons i ­

dered as a possible formulation of our r e s u l t s : 

"The loca l commutativity of Aj, an'. Ш does not prevent the 

superluminar s ignal v e l o c i t y . A new principle must be introduced 

i n the theory; eignal v e l o c i t y must not exceed с Then Just t h i s 
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principle (and not the other postulates of the quantum electro­
dynamics) forbids operators having acaueal behavior". 

In conclusion I stress that the smallneas of the considered 
acausal ei't'ect means that they do not contradict any known expe­
riment on light velocity . There is the contradiction with the 
theoretical principle - relativistic causality, i.e. the synthe­
sis oi' the usual causality ami the special relativity. 
I wish to ejcpreso my thanke to D. Kirzhnite, A. Shabad and B. Va-
luev for discussions. 

Fib'-1 • 

The considered effects may only give an idea of possible new 
experiments. We did not discuss real detectors but simply suppo­
sed the existense of desired devices. 
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Appendix 

One notation 01 / 1 / is aasuraed. tVhen a constant external potential 

V.fx) and nonatntionary external current X(x, <) are presen'' one haa 

the i'ollowiinj equutionB lor electromagnetic potentials and epinor 

lie.'.d 

(^Э г *m)^M -. ic Г V > ' Л ^ - / # Ъ ('> (A.1J 

aAjfJtl^-ljv.MiJ,,!*!] (A.2) 
Here X denotes |-Г,х,)« '̂ he operators A, and tff without subindex J 
(the external current is absent) satisfy the вале equation, but J 

being equal to aero. It is implied that (^ in (A.2) denotes anti-
eynunetrized operator iBWYpH1 • 

Solving (Л.1) and (A.2) means that one knows how Heieenberg 
operators are expressed in terms oi' initial,i.e. Schrodinger, ope­
rators. The operators (ty( Af and W, <4 tnuet coincide at t = 0 with 
the вагае Schrodinyer operators (according to their definition, 
see aect. 2): 

f,R el = U'(o,ol f(x) 2(f 0, o) = ifidl - fix, o) U o ) 

ATfJ'x,c),Arli) = /l/Ul£>c) . 
To solve (A.l), (A.?) let цв expand^, Aj in a power series in the 
coupling constant e (G, Kallen, see §23 in /1/ and ch. 8.7 in 
/4/). 

(Л.4) 
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.Ve иве analogous expanaiona Гог ifs and A . The i n i t i a l conditions 

U .3 ) wi l l be satieiied J.f 

and operators^,"'(^,"1 and А^(х,с) w i t h n j / are equal to zero. 
.Ve Bhall no', consider the external current as small and write the 
i'ollowine aero approximation for eqs (A.l) and (Л.2): 

(№ + »)f?'0 , ал»*-}, . ( Д > 6 ) 

The solutions 01 (A.6) are well known. The first equation IH iree. 
At all times вЛх/ = V(°H") a n d b o t l 1 a r e equal to free operator 
fc (*) • 

(see (8.67) in /3/)» 'Wie second equation has the solution 

V <*> =Jty [*^\ W-$(*•/) ЩЩ.); >n-o ( A > 9 > 
Indeed, (A.8) Ratiai'ies the equation OA-„--X, and the usual 
equaltime commutation relatione (because they are satisfied by/!L, 
./hen X0 = D the operator^.'" («) coincides with the Schrodinger 
operator /L lx) (. the second term in (A.5) at X„ = О is equal to 
zero) .Ve get 

АрМ-А^М =/&>-*^«V</V=pV.J^*',к-\i-x'\)/\х-хЛ • (A.IO) 
This difference is equal to zero if £ 6 VB and X« < R/c 
(remember that Jp (%') i s localized in Vs and 1в zero when xi<0 ) 
How we write the eijuatione for operators «'"' Д.1'' tf/'" /jll> and 

(A.7) 

(A.8) 
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construct the i'ollowinc differences of these equations: 

Here wW-lf/ViO вп&А}%-Ар equal zero when Л„ < К 
Therefore the right-hand Bide:' oi' (A.11) and (A.12) vanish when 
K'-H . Веоаиве of zero i n i t i a l value в of ff>-ft'> BIAAJ'-A"' 
the solutionafor theee differences vanish when Х„<Н • For a form­
al proof one muat express the eolution of (A.11) and (A»12) in 
terms of their (zero) r.h.B» and (zero) i n i t ' a l conditions with the 
help of eqB at the end of $23 in / 1 / and eqs. (A.7) and (A.9). 

For the operators of the next (second) approximation one can 
obtain the equations of the kind (A.11) and (A.12). Their r .h .B. are 
expretieed in terms of zero and f i r s t approximation operators. These 
r . l uo . vanish when Xc<K because they can be expressed ir. terme of 
the diiferences of these operators by analogy with (A.11) and (A.12) 
and theee differences had been uhown to be zeros at X0< Af • 

One Kets by induction' that the operator differences Фг(хг,х.)-
-y/%.*'/and/)w,(TJ,xJ-^A,(^,i.)vanieh in a l l order in e (and have not 
divergencies contrary to the i r constituents). 

.Ve conclude this Appendix with two Notes, 
liote 1. The Lorentz condition must be added to eqs (A. l ) , (A.2) 
I t has the form tfy, A^ (x, *.) <P = Q (Fermi form, see /6 / ) or 
[Э|цЛ»(г,<.)]"'?, = 0 (Oupta form). Because of О ЭЛ ЛЛ =0 the condi­
tion i s satisfied for any x„ i, ' i t i s smtiefied for X, = V / 2 ,6 / 
So, i t i s sufficient to take the i n i t i a l vector a$in (B) from the 
space of allowable (by She Lorentz condition) vectors, 'fhe descrip­
t ion of thie space i s given in / 6 / for the Fermi form and in (17) 
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for the Gupta i'onn. We Just use ouch a vector in (22). 
1'he Lorentz condition requires in addition that physical ob-

servables must commute with the operators dp A/*, 9t9f.Af. (or with 
[ Э̂  A,, (x,o)] '') s e e $BO in /6/ , But an operator do commute 
with these operators if i t i s gaug"-invariant. Indeed, le t us 
consider the unitary И/ , which real ises the gauge transformation 

The generator of IV i s expressed in teime of Э/* fif, and 3^(3/, A^J: 
= diyrE-(j,*S,) i see (9.60) in / 3 / ( le t us note that one oan 
prove (A.13) in the case of interact ing fielde Д, and у using the 
equal-time commutation r e l a t i ons ) . 

Noto_2 >Ve have shown, that attf<fi the operator differences 
ш.м, ft -ft vanish, the external potential \L being arb i t ra ry . 
This means that the onusal behavior or £(x)f H(f)l /(*) i s 

proved for any (allocable) i n i t i a l state ф and any Vju • I t follows 
that t h i s behavior takes place in much more complicated situations 
than those described in the beginning of sect 2. The s t a t e ф can 
describe electrons (free or bounded by l^ ) , which are disposed 
between the source and tlu detector or are the i r const i tuents . One 
can assume that X, was a nonzero constant current t i l l the moment 
t = 0 and a t f = 0 i t begine to a l t e r somehow. 
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